Transforms and filters are tools for processing and analyzing discrete data, and are commonly
used in signal processing applications and computational mathematics. When data is represented
as a function of time or space, the Fourier transform decomposes the data into frequency
components. The fft
function uses a fast Fourier transform
algorithm that reduces its computational cost compared to other direct implementations. For a
more detailed introduction to Fourier analysis, see Fourier Transforms. The conv
and filter
functions are also useful tools for modifying the amplitude or phase of
input data using a transfer function.
The Fourier transform is a powerful tool for analyzing data across many applications, including Fourier analysis for signal processing.
Use the Fourier transform for frequency and power spectrum analysis of time-domain signals.
Transform 2-D optical data into frequency space.
Smooth noisy, 2-D data using convolution.
Filtering is a data processing technique used for smoothing data or modifying specific data characteristics, such as signal amplitude.