Superclasses:
Data partitions for cross validation
An object of the cvpartition
class defines
a random partition on a set of data of a specified size. Use this
partition to define test and training sets for validating a statistical
model using cross validation.
cvpartition | Create cross-validation partition for data |
disp | Display cvpartition object |
display | Display cvpartition object |
repartition | Repartition data for cross-validation |
test | Test indices for cross-validation |
training | Training indices for cross-validation |
NumObservations | Number of observations (including observations with missing group values) |
NumTestSets | Number of test sets |
TestSize | Size of each test set |
TrainSize | Size of each training set |
Type | Type of partition |
Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes (MATLAB) in the MATLAB® Object-Oriented Programming documentation.
Use a 10-fold stratified cross validation to compute the misclassification
error for classify
on iris data.
load('fisheriris'); CVO = cvpartition(species,'k',10); err = zeros(CVO.NumTestSets,1); for i = 1:CVO.NumTestSets trIdx = CVO.training(i); teIdx = CVO.test(i); ytest = classify(meas(teIdx,:),meas(trIdx,:),... species(trIdx,:)); err(i) = sum(~strcmp(ytest,species(teIdx))); end cvErr = sum(err)/sum(CVO.TestSize);