Classification margins
M = margin(ens,tbl,ResponseVarName)
M = margin(ens,tbl,Y)
M = margin(ens,X,Y)
M = margin(___Name,Value)
returns the classification margin for the predictions of M
= margin(ens
,tbl
,ResponseVarName
)ens
on data
tbl
, when the true classifications are
tbl.ResponseVarName
.
returns the classification margin for the predictions of M
= margin(ens
,tbl
,Y
)ens
on data
tbl
, when the true classifications are
Y
.
returns the classification margin for the predictions of M
= margin(ens
,X
,Y
)ens
on data
X
, when the true classifications are Y
.
calculates margin with additional options specified by one or more
M
= margin(___Name,Value
)Name,Value
pair arguments, using any of the previous
syntaxes.
|
Classification ensemble created with |
|
Sample data, specified as a table. Each row of If you trained |
|
Response variable name, specified as the name of a variable in
You must specify |
|
Matrix of data to classify. Each row of If you trained |
|
Class labels of observations in |
Specify optional
comma-separated pairs of Name,Value
arguments. Name
is
the argument name and Value
is the corresponding value.
Name
must appear inside quotes. You can specify several name and value
pair arguments in any order as
Name1,Value1,...,NameN,ValueN
.
|
Indices of weak learners in the ensemble ranging from
Default: |
|
A logical matrix of size When Default: |
|
A numeric column vector with the same number of rows as
|