Reinforcement Learning Toolbox™ provides functions and blocks for training policies using reinforcement learning algorithms including DQN, A2C, and DDPG. You can use these policies to implement controllers and decision-making algorithms for complex systems such as robots and autonomous systems. You can implement the policies using deep neural networks, polynomials, or look-up tables.
The toolbox lets you train policies by enabling them to interact with environments represented by MATLAB® or Simulink® models. You can evaluate algorithms, experiment with hyperparameter settings, and monitor training progress. To improve training performance, you can run simulations in parallel on the cloud, computer clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Parallel Server™).
Through the ONNX™ model format, existing policies can be imported from deep learning frameworks such as TensorFlow™ Keras and PyTorch (with Deep Learning Toolbox™). You can generate optimized C, C++, and CUDA code to deploy trained policies on microcontrollers and GPUs.
The toolbox includes reference examples for using reinforcement learning to design controllers for robotics and automated driving applications.
Learn the basics of Reinforcement Learning Toolbox
Model reinforcement learning environment dynamics using MATLAB
Model reinforcement learning environment dynamics using Simulink models
Create and configure reinforcement learning agents using common algorithms, such as SARSA, DQN, DDPG, and A2C
Define policy and value function representations, such as deep neural networks and Q tables
Train and simulate reinforcement learning agents
Code generation and deployment of trained policies