Fusion filter tuner configuration options
The tunerconfig
object creates a tuner configuration for a fusion
filter (insfilterAsync
, ahrsfilter
, or imufilter
) used to tune the filter for reduced estimation error.
creates a config
= tunnerconfig(filterName
)tunerconfig
object controlling the optimization algorithm of
the tune function of the fusion filter. The filterName
input can be
'imufilter'
, 'ahrsfilter'
, or
'insfilterAsync'
corresponding to the three types of fusion filters,
respectively.
configures the created config
= tunnerconfig(fitlerName
,Name,Value
)tunerconfig
object properties using one or more
Name,Value
pair arguments. Name
is a property
name and Value
is the corresponding value. Name
must
appear inside quotes. You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN
. Any unspecified properties take
default values.
For example, tunnerconfig('imufilter','MaxIterations',3)
create a
tunerconfig
object for the imufilter
object with the
maximum number of allowed iterations equal to 3.
filterName
— Fusion filter name'imufilter'
| 'ahrsfilter'
| 'insfilterAsync'
Fusion filter names, specified as 'imufilter'
,
'ahrsfilter'
, or 'insfilterAsync'
.
TunableParameters
— Tunable parametersTunable parameters, specified as an array of strings. Each string is a tunable property name of the fusion filter. By default, the property contains all the tunable parameters of a fusion filter.
Example: ["AccelerometerNoise" "GyroscopeNoise"
]
StepForward
— Factor of forward step1.1
(default) | scalar larger than 1Factor of a forward step, specified as a scalar larger than 1. During the tuning process, the tuner increases or decreases the noise parameters to achieve smaller estimation errors. This property specifies the ratio of parameter increase during a parameter increase step.
StepBackward
— Factor of backward step0.5
(default) | scalar in range (0,1)Factor of a backward step, specified as a scalar in the range of (0,1). During the tuning process, the tuner increases or decreases the noise parameters to achieve smaller estimation errors. This property specifies the factor of parameter decrease during a parameter decrease step.
MaxIterations
— Maximum number of iterations20
(default) | positive integerMaximum number of iterations allowed by the tuning algorithm, specified as a positive integer.
ObjectiveLimit
— Cost at which to stop the tuning process0.1
(default) | positive scalarCost at which to stop the tuning process, specified as a positive scalar. The tuning
process stops if the ObjectiveLimit
is achieved before the program
reaches the maximum number of iterations.
Display
— Enable showing the iteration details"iter"
(default) | "none"
Enable showing the iteration details, specified as "iter"
or
"none"
. When specified as:
"iter"
— The program shows the tuned parameter details in
each iteration in the Command Window.
"none"
— The program does not show any tuning
information.
Cost
— Metric for evaluating filter performance"RMS"
(default) | "Custom"
Metric for evaluating filter performance, specified as "RMS"
or
"Custom"
. When specified as:
"RMS"
— The program optimizes the root-mean-squared (RMS)
error between the estimate and the truth.
"Custom"
— The program optimizes the filter performance by
using a customized cost function specified by the
CustomCostFcn
property.
CustomCostFcn
— Customized cost functionCustomized cost function, specified as a function handle.
Create a tunerconfig object for the insfilterAsync
object.
config = tunerconfig('insfilterAsync')
config = tunerconfig with properties: TunableParameters: [1×14 string] StepForward: 1.1000 StepBackward: 0.5000 MaxIterations: 20 OptimalityTolerance: 0.1000 Display: iter Cost: RMS
Display the default tunable parameters.
config.TunableParameters
ans = 1×14 string
"AccelerometerNoise" "GyroscopeNoise" "MagnetometerNoise" "GPSPositionNoise" "GPSVelocityNoise" "QuaternionNoise" "AngularVelocityNoise" "PositionNoise" "VelocityNoise" "AccelerationNoise" "GyroscopeBiasNoise" "AccelerometerBiasNoise" "GeomagneticVectorNoise" "MagnetometerBiasNoise"
insfilterAsync
to Optimize Pose EstimateLoad the recorded sensor data and ground truth data.
load('insfilterAsyncTuneData.mat');
Create timetables for the sensor data and the truth data.
sensorData = timetable(Accelerometer, Gyroscope, ... Magnetometer, GPSPosition, GPSVelocity, 'SampleRate', 100); groundTruth = timetable(Orientation, Position, ... 'SampleRate', 100);
Create an insfilterAsync
filter object that has a few noise properties.
filter = insfilterAsync('State', initialState, ... 'StateCovariance', initialStateCovariance, ... 'AccelerometerBiasNoise', 1e-7, ... 'GyroscopeBiasNoise', 1e-7, ... 'MagnetometerBiasNoise', 1e-7, ... 'GeomagneticVectorNoise', 1e-7);
Create a tuner configuration object for the filter. Set the maximum iterations to two. Also, set the tunable parameters as the unspecified properties.
config = tunerconfig('insfilterAsync','MaxIterations',8); config.TunableParameters = setdiff(config.TunableParameters, ... {'GeomagneticVectorNoise', 'AccelerometerBiasNoise', ... 'GyroscopeBiasNoise', 'MagnetometerBiasNoise'}); config.TunableParameters
ans = 1×10 string
"AccelerationNoise" "AccelerometerNoise" "AngularVelocityNoise" "GPSPositionNoise" "GPSVelocityNoise" "GyroscopeNoise" "MagnetometerNoise" "PositionNoise" "QuaternionNoise" "VelocityNoise"
Use the tuner noise function to obtain a set of initial sensor noises used in the filter.
measNoise = tunernoise('insfilterAsync')
measNoise = struct with fields:
AccelerometerNoise: 1
GyroscopeNoise: 1
MagnetometerNoise: 1
GPSPositionNoise: 1
GPSVelocityNoise: 1
Tune the filter and obtain the tuned parameters.
tunedParams = tune(filter,measNoise,sensorData,groundTruth,config);
Iteration Parameter Metric _________ _________ ______ 1 AccelerationNoise 2.1345 1 AccelerometerNoise 2.1264 1 AngularVelocityNoise 1.9659 1 GPSPositionNoise 1.9341 1 GPSVelocityNoise 1.8420 1 GyroscopeNoise 1.7589 1 MagnetometerNoise 1.7362 1 PositionNoise 1.7362 1 QuaternionNoise 1.7218 1 VelocityNoise 1.7218 2 AccelerationNoise 1.7190 2 AccelerometerNoise 1.7170 2 AngularVelocityNoise 1.6045 2 GPSPositionNoise 1.5948 2 GPSVelocityNoise 1.5323 2 GyroscopeNoise 1.4803 2 MagnetometerNoise 1.4703 2 PositionNoise 1.4703 2 QuaternionNoise 1.4632 2 VelocityNoise 1.4632 3 AccelerationNoise 1.4596 3 AccelerometerNoise 1.4548 3 AngularVelocityNoise 1.3923 3 GPSPositionNoise 1.3810 3 GPSVelocityNoise 1.3322 3 GyroscopeNoise 1.2998 3 MagnetometerNoise 1.2976 3 PositionNoise 1.2976 3 QuaternionNoise 1.2943 3 VelocityNoise 1.2943 4 AccelerationNoise 1.2906 4 AccelerometerNoise 1.2836 4 AngularVelocityNoise 1.2491 4 GPSPositionNoise 1.2258 4 GPSVelocityNoise 1.1880 4 GyroscopeNoise 1.1701 4 MagnetometerNoise 1.1698 4 PositionNoise 1.1698 4 QuaternionNoise 1.1688 4 VelocityNoise 1.1688 5 AccelerationNoise 1.1650 5 AccelerometerNoise 1.1569 5 AngularVelocityNoise 1.1454 5 GPSPositionNoise 1.1100 5 GPSVelocityNoise 1.0778 5 GyroscopeNoise 1.0709 5 MagnetometerNoise 1.0675 5 PositionNoise 1.0675 5 QuaternionNoise 1.0669 5 VelocityNoise 1.0669 6 AccelerationNoise 1.0634 6 AccelerometerNoise 1.0549 6 AngularVelocityNoise 1.0549 6 GPSPositionNoise 1.0180 6 GPSVelocityNoise 0.9866 6 GyroscopeNoise 0.9810 6 MagnetometerNoise 0.9775 6 PositionNoise 0.9775 6 QuaternionNoise 0.9768 6 VelocityNoise 0.9768 7 AccelerationNoise 0.9735 7 AccelerometerNoise 0.9652 7 AngularVelocityNoise 0.9652 7 GPSPositionNoise 0.9283 7 GPSVelocityNoise 0.8997 7 GyroscopeNoise 0.8947 7 MagnetometerNoise 0.8920 7 PositionNoise 0.8920 7 QuaternionNoise 0.8912 7 VelocityNoise 0.8912 8 AccelerationNoise 0.8885 8 AccelerometerNoise 0.8811 8 AngularVelocityNoise 0.8807 8 GPSPositionNoise 0.8479 8 GPSVelocityNoise 0.8238 8 GyroscopeNoise 0.8165 8 MagnetometerNoise 0.8165 8 PositionNoise 0.8165 8 QuaternionNoise 0.8159 8 VelocityNoise 0.8159
Fuse the sensor data using the tuned filter.
dt = seconds(diff(groundTruth.Time)); N = size(sensorData,1); qEst = quaternion.zeros(N,1); posEst = zeros(N,3); % Iterate the filter for prediction and correction using sensor data. for ii=1:N if ii ~= 1 predict(filter, dt(ii-1)); end if all(~isnan(Accelerometer(ii,:))) fuseaccel(filter,Accelerometer(ii,:), ... tunedParams.AccelerometerNoise); end if all(~isnan(Gyroscope(ii,:))) fusegyro(filter, Gyroscope(ii,:), ... tunedParams.GyroscopeNoise); end if all(~isnan(Magnetometer(ii,1))) fusemag(filter, Magnetometer(ii,:), ... tunedParams.MagnetometerNoise); end if all(~isnan(GPSPosition(ii,1))) fusegps(filter, GPSPosition(ii,:), ... tunedParams.GPSPositionNoise, GPSVelocity(ii,:), ... tunedParams.GPSVelocityNoise); end [posEst(ii,:), qEst(ii,:)] = pose(filter); end
Compute the RMS errors.
orientationError = rad2deg(dist(qEst, Orientation)); rmsorientationError = sqrt(mean(orientationError.^2))
rmsorientationError = 2.7801
positionError = sqrt(sum((posEst - Position).^2, 2)); rmspositionError = sqrt(mean( positionError.^2))
rmspositionError = 0.5966
Visualize the results.
figure(); t = (0:N-1)./ groundTruth.Properties.SampleRate; subplot(2,1,1) plot(t, positionError, 'b'); title("Tuned insfilterAsync" + newline + "Euclidean Distance Position Error") xlabel('Time (s)'); ylabel('Position Error (meters)') subplot(2,1,2) plot(t, orientationError, 'b'); title("Orientation Error") xlabel('Time (s)'); ylabel('Orientation Error (degrees)');
imufilter
to Optimize Orientation EstimateLoad recorded sensor data and ground truth data.
ld = load('imufilterTuneData.mat'); qTrue = ld.groundTruth.Orientation; % true orientation
Create an imufilter
object and fuse the filter with the sensor data.
fuse = imufilter;
qEstUntuned = fuse(ld.sensorData.Accelerometer, ...
ld.sensorData.Gyroscope);
Create a tunerconfig
object and tune the imufilter to improve the orientation estimate.
cfg = tunerconfig('imufilter');
tune(fuse, ld.sensorData, ld.groundTruth, cfg);
Iteration Parameter Metric _________ _________ ______ 1 AccelerometerNoise 0.1149 1 GyroscopeNoise 0.1146 1 GyroscopeDriftNoise 0.1146 1 LinearAccelerationNoise 0.1122 1 LinearAccelerationDecayFactor 0.1103 2 AccelerometerNoise 0.1102 2 GyroscopeNoise 0.1098 2 GyroscopeDriftNoise 0.1098 2 LinearAccelerationNoise 0.1070 2 LinearAccelerationDecayFactor 0.1053 3 AccelerometerNoise 0.1053 3 GyroscopeNoise 0.1048 3 GyroscopeDriftNoise 0.1048 3 LinearAccelerationNoise 0.1016 3 LinearAccelerationDecayFactor 0.1002 4 AccelerometerNoise 0.1001 4 GyroscopeNoise 0.0996 4 GyroscopeDriftNoise 0.0996 4 LinearAccelerationNoise 0.0962 4 LinearAccelerationDecayFactor 0.0950 5 AccelerometerNoise 0.0950 5 GyroscopeNoise 0.0943 5 GyroscopeDriftNoise 0.0943 5 LinearAccelerationNoise 0.0910 5 LinearAccelerationDecayFactor 0.0901 6 AccelerometerNoise 0.0900 6 GyroscopeNoise 0.0893 6 GyroscopeDriftNoise 0.0893 6 LinearAccelerationNoise 0.0862 6 LinearAccelerationDecayFactor 0.0855 7 AccelerometerNoise 0.0855 7 GyroscopeNoise 0.0848 7 GyroscopeDriftNoise 0.0848 7 LinearAccelerationNoise 0.0822 7 LinearAccelerationDecayFactor 0.0818 8 AccelerometerNoise 0.0817 8 GyroscopeNoise 0.0811 8 GyroscopeDriftNoise 0.0811 8 LinearAccelerationNoise 0.0791 8 LinearAccelerationDecayFactor 0.0789 9 AccelerometerNoise 0.0788 9 GyroscopeNoise 0.0782 9 GyroscopeDriftNoise 0.0782 9 LinearAccelerationNoise 0.0769 9 LinearAccelerationDecayFactor 0.0768 10 AccelerometerNoise 0.0768 10 GyroscopeNoise 0.0762 10 GyroscopeDriftNoise 0.0762 10 LinearAccelerationNoise 0.0754 10 LinearAccelerationDecayFactor 0.0753 11 AccelerometerNoise 0.0753 11 GyroscopeNoise 0.0747 11 GyroscopeDriftNoise 0.0747 11 LinearAccelerationNoise 0.0741 11 LinearAccelerationDecayFactor 0.0740 12 AccelerometerNoise 0.0740 12 GyroscopeNoise 0.0734 12 GyroscopeDriftNoise 0.0734 12 LinearAccelerationNoise 0.0728 12 LinearAccelerationDecayFactor 0.0728 13 AccelerometerNoise 0.0728 13 GyroscopeNoise 0.0721 13 GyroscopeDriftNoise 0.0721 13 LinearAccelerationNoise 0.0715 13 LinearAccelerationDecayFactor 0.0715 14 AccelerometerNoise 0.0715 14 GyroscopeNoise 0.0706 14 GyroscopeDriftNoise 0.0706 14 LinearAccelerationNoise 0.0700 14 LinearAccelerationDecayFactor 0.0700 15 AccelerometerNoise 0.0700 15 GyroscopeNoise 0.0690 15 GyroscopeDriftNoise 0.0690 15 LinearAccelerationNoise 0.0684 15 LinearAccelerationDecayFactor 0.0684 16 AccelerometerNoise 0.0684 16 GyroscopeNoise 0.0672 16 GyroscopeDriftNoise 0.0672 16 LinearAccelerationNoise 0.0668 16 LinearAccelerationDecayFactor 0.0667 17 AccelerometerNoise 0.0667 17 GyroscopeNoise 0.0655 17 GyroscopeDriftNoise 0.0655 17 LinearAccelerationNoise 0.0654 17 LinearAccelerationDecayFactor 0.0654 18 AccelerometerNoise 0.0654 18 GyroscopeNoise 0.0641 18 GyroscopeDriftNoise 0.0641 18 LinearAccelerationNoise 0.0640 18 LinearAccelerationDecayFactor 0.0639 19 AccelerometerNoise 0.0639 19 GyroscopeNoise 0.0627 19 GyroscopeDriftNoise 0.0627 19 LinearAccelerationNoise 0.0627 19 LinearAccelerationDecayFactor 0.0624 20 AccelerometerNoise 0.0624 20 GyroscopeNoise 0.0614 20 GyroscopeDriftNoise 0.0614 20 LinearAccelerationNoise 0.0613 20 LinearAccelerationDecayFactor 0.0613
Fuse the sensor data again using the tuned filter.
qEstTuned = fuse(ld.sensorData.Accelerometer, ...
ld.sensorData.Gyroscope);
Compare the tuned and untuned filter RMS error performances.
dUntuned = rad2deg(dist(qEstUntuned, qTrue)); dTuned = rad2deg(dist(qEstTuned, qTrue)); rmsUntuned = sqrt(mean(dUntuned.^2))
rmsUntuned = 6.5864
rmsTuned = sqrt(mean(dTuned.^2))
rmsTuned = 3.5098
Visualize the results.
N = numel(dUntuned); t = (0:N-1)./ fuse.SampleRate; plot(t, dUntuned, 'r', t, dTuned, 'b'); legend('Untuned', 'Tuned'); title('imufilter - Tuned vs Untuned Error') xlabel('Time (s)'); ylabel('Orientation Error (degrees)');
You have a modified version of this example. Do you want to open this example with your edits?