You can customize the FIS tuning process by specifying either a custom cost function or a custom optimization method.
For more information on tuning a FIS, see Tune Fuzzy Rules and Membership Function Parameters and Tune Fuzzy Trees.
You can specify a custom cost function for tuning your fuzzy system. Doing so is useful for:
Training a FIS using a custom model without using input/output training data. For an example, see Tune Fuzzy Robot Obstacle Avoidance System Using Custom Cost Function.
Combining the outputs of the component FISs of a FIS tree using mathematical operations, as shown in this example.
As an example, consider the FIS tree from Tune Fuzzy Trees. Suppose you cant you want to modify the FIS tree as shown in the following diagram, combining the FIS outputs using known mathematical operations from the training data.
Create the FIS tree.
fis1 = sugfis('Name','fis1'); fis1 = addInput(fis1,[0 10],'NumMFs',3,'MFType','gaussmf'); fis1 = addOutput(fis1,[-1 1],'NumMFs',3); fis2 = sugfis('Name','fis2'); fis2 = addInput(fis2,[0 10],'NumMFs',3,'MFType','gaussmf'); fis2 = addOutput(fis2,[-1 1],'NumMFs',3); fis3 = sugfis('Name','fis3'); fis3 = addInput(fis3,[0 10],'NumMFs',3,'MFType','gaussmf'); fis3 = addOutput(fis3,[0 1],'NumMFs',3); con = ["fis1/input1" "fis2/input1";"fis2/input1" "fis3/input1"]; fisT = fistree([fis1 fis2 fis3],con);
Generate training data.
x = (0:0.1:10)'; y1 = sin(x)+cos(x); y2 = y1./exp(x); y = [y1;y2];
To implement the addition and multiplication operations, use a custom cost function. For this example, use the function customcostfcn
, included at the end of the example. Learn a rule base using this cost function.
options = tunefisOptions('Method',"particleswarm",'OptimizationType',"learning"); options.MethodOptions.MaxIterations = 5; rng('default') fisTout1 = tunefis(fisT,[],@(fis)customcostfcn(fis,x,y),options);
Best Mean Stall Iteration f-count f(x) f(x) Iterations 0 100 0.746 1.31 0 1 200 0.5089 1.249 0 2 300 0.5089 1.086 1 3 400 0.5089 1.112 2 4 500 0.5089 1.106 3 5 600 0.4999 1.051 0 Optimization ended: number of iterations exceeded OPTIONS.MaxIterations.
Next, tune all the parameters of the FIS tree.
options.Method = 'patternsearch'; options.MethodOptions.MaxIterations = 25; [in,out,rule] = getTunableSettings(fisTout1); rng('default') fisTout2 = tunefis(fisTout1,[in;out;rule],@(fis)customcostfcn(fis,x,y),options);
Iter Func-count f(x) MeshSize Method 0 1 0.499882 1 1 13 0.499864 2 Successful Poll 2 51 0.499727 4 Successful Poll 3 72 0.499727 2 Refine Mesh 4 117 0.499727 1 Refine Mesh 5 157 0.499542 2 Successful Poll 6 170 0.499485 4 Successful Poll 7 191 0.499485 2 Refine Mesh 8 217 0.499483 4 Successful Poll 9 238 0.499483 2 Refine Mesh 10 275 0.499483 4 Successful Poll 11 296 0.499483 2 Refine Mesh 12 340 0.499483 1 Refine Mesh 13 381 0.499483 2 Successful Poll 14 425 0.499483 1 Refine Mesh 15 497 0.499483 0.5 Refine Mesh 16 536 0.499394 1 Successful Poll 17 547 0.499217 2 Successful Poll 18 591 0.499217 1 Refine Mesh 19 603 0.499211 2 Successful Poll 20 630 0.498972 4 Successful Poll 21 652 0.498972 2 Refine Mesh 22 696 0.498972 1 Refine Mesh 23 768 0.498972 0.5 Refine Mesh 24 843 0.498972 0.25 Refine Mesh 25 859 0.495584 0.5 Successful Poll 26 869 0.494138 1 Successful Poll Maximum number of iterations exceeded: increase options.MaxIterations.
You can add more input/output MFs and specify additional FIS tree outputs to improve the tuning performance. Using additional MF parameters and more training data for additional FIS tree outputs can further fine tune the outputs of fis1
, fis2
, and fis3
.
You can also implement your own FIS parameter optimization method using getTunableSettings
, getTunableValues
, and setTunableValues
. This example uses these functions to tune a rule base of a fuzzy system.
Create a FIS to approximate , where varies from 0 to .
fisin = mamfis;
Add an input with a range of [0, ] and having five Gaussian MFs. Also, ass an output with a range of [–1, 1] and having five Gaussian MFs.
fisin = addInput(fisin,[0 2*pi],'NumMFs',5,'MFType','gaussmf'); fisin = addOutput(fisin,[-1 1],'NumMFs',5,'MFType','gaussmf');
Add five rules.
fisin = addRule(fisin,[1 1 1 1;2 2 1 1;3 3 1 1;4 4 1 1;5 5 1 1]); fisin.Rules
ans = 1x5 fisrule array with properties: Description Antecedent Consequent Weight Connection Details: Description ________________________________ 1 "input1==mf1 => output1=mf1 (1)" 2 "input1==mf2 => output1=mf2 (1)" 3 "input1==mf3 => output1=mf3 (1)" 4 "input1==mf4 => output1=mf4 (1)" 5 "input1==mf5 => output1=mf5 (1)"
For a faster FIS update, set DisableStructuralChecks
to true
.
fisin.DisableStructuralChecks = true;
Obtain the rule parameter settings.
[~,~,rule] = getTunableSettings(fisin);
Make the rule antecedents nontunable. In the rule consequents, do not allow NOT logic (negative MF indices) or empty variables (zero MF indices).
for i = 1:numel(rule) rule(i).Antecedent.Free = false; rule(i).Consequent.AllowNot = false; rule(i).Consequent.AllowEmpty = false; end
Generate data for tuning.
x = (0:0.1:2*pi)'; y = sin(x);
To tune the rule parameters, use the customtunefis
function defined at the end of this example. Set the number of iterations to 2, and do not allow invalid parameter values when updating the FIS using setTunableValues
.
numite = 2; ignoreinvp = false; fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);
Initial cost = 1.170519 Iteration 1: Cost = 0.241121 Iteration 2: Cost = 0.241121
Display the tuned rules.
fisout.Rules
ans = 1x5 fisrule array with properties: Description Antecedent Consequent Weight Connection Details: Description ________________________________ 1 "input1==mf1 => output1=mf4 (1)" 2 "input1==mf2 => output1=mf5 (1)" 3 "input1==mf3 => output1=mf3 (1)" 4 "input1==mf4 => output1=mf1 (1)" 5 "input1==mf5 => output1=mf2 (1)"
Allow NOT logic in the rules, and optimize the FIS again.
for i = 1:numel(rule) rule(i).Consequent.AllowNot = true; end fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);
Initial cost = 1.170519 Iteration 1: Cost = 0.357052 Iteration 2: Cost = 0.241121
fisout.Rules
ans = 1x5 fisrule array with properties: Description Antecedent Consequent Weight Connection Details: Description ________________________________ 1 "input1==mf1 => output1=mf4 (1)" 2 "input1==mf2 => output1=mf5 (1)" 3 "input1==mf3 => output1=mf3 (1)" 4 "input1==mf4 => output1=mf1 (1)" 5 "input1==mf5 => output1=mf2 (1)"
With NOT logic, there are more combinations of rule parameters, and it generally takes more iterations to tune a FIS.
Next, reset AllowNot
to false
and set AllowEmpty
to true
. In other words, allow the absence of variables (zero output MF indices) in the consequents. Tune the FIS with the updated rule parameter settings.
for i = 1:numel(rule) rule(i).Consequent.AllowNot = false; rule(i).Consequent.AllowEmpty = true; end try fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp); catch me disp("Error: "+me.message) end
Initial cost = 1.170519
Error: Rule consequent must have at least one nonzero membership function index.
The tuning process fails since the FIS only contains one output, which must be nonzero (nonempty) in the rule consequent. To ignore invalid parameter values, specify IgnoreInvalidParameters
with setTunableValues
.
Set ignoreinvp
to true
, which specifies IgnoreInvalidParameters
value in the call to setTunableValues
used in customtunefis
.
ignoreinvp = true; fisout = customtunefis(fisin,rule,x,y,numite,ignoreinvp);
Initial cost = 1.170519 Iteration 1: Cost = 0.241121 Iteration 2: Cost = 0.241121
fisout.Rules
ans = 1x5 fisrule array with properties: Description Antecedent Consequent Weight Connection Details: Description ________________________________ 1 "input1==mf1 => output1=mf4 (1)" 2 "input1==mf2 => output1=mf5 (1)" 3 "input1==mf3 => output1=mf3 (1)" 4 "input1==mf4 => output1=mf1 (1)" 5 "input1==mf5 => output1=mf2 (1)"
In this case, the tuning process bypasses the invalid values and uses only valid parameter values for optimization.
By default, tunefis
ignores invalid values when updating fuzzy system parameters. You can change this behavior by setting tunefisOptions.IgnoreInvalidParameters
to false
.
function cost = customcostfcn(fis,x,y) tY = evalfis(fis,x); sincosx = tY(:,1)+tY(:,2); sincosexpx = sincosx.*tY(:,3); actY = [sincosx;sincosexpx]; d = y(:)-actY; cost = sqrt(mean(d.*d)); end function fis = customtunefis(fis,rule,x,y,n,ignore) % Show initial cost. cost = findcost(fis,x,y); fprintf('Initial cost = %f\n',cost); % Optimize rule parameters. numMFs = numel(fis.Outputs.MembershipFunctions); for ite = 1:n for i = 1:numel(rule) % Get consequent value. pval = getTunableValues(fis,rule(i)); % Loop through output MF indices to minimize the cost. % Use output indices according to AllowNot and AllowEmpty. allowNot = rule(i).Consequent.AllowNot; allowEmpty = rule(i).Consequent.AllowEmpty; if allowNot && allowEmpty mfID = -numMFs:numMFs; elseif allowNot && ~allowEmpty mfID = [-numMFs:-1 1:numMFs]; elseif ~allowNot && allowEmpty mfID = 0:numMFs; else mfID = 1:numMFs; end cost = 1000; minCostFIS = fis; for j = 1:length(mfID) % Update consequent value. pval(1) = mfID(j); % Set updated consequent value to the FIS. fis = setTunableValues(fis,rule(i),pval,'IgnoreInvalidParameters',ignore); % Evaluate cost. rmse = findcost(fis,x,y); % Update FIS with the minimum cost. if rmse<cost cost = rmse; minCostFIS = fis; end end fis = minCostFIS; end fprintf('Iteration %d: Cost = %f\n',ite,cost); end end function cost = findcost(fis,x,y) actY = evalfis(fis,x); d = y - actY; cost = sqrt(mean(d.*d)); end