To create an IRFunctionCurve object, see the following options:
You can use the constructor IRFunctionCurve
with
a MATLAB® function handle to define an interest-rate curve. For more information on defining a function handle, see
the MATLAB Programming Fundamentals documentation.
This example uses a FunctionHandle
argument
with a value @(t) t.^2
to construct an interest-rate
curve:
rr = IRFunctionCurve('Zero',today,@(t) t.^2)
rr = Properties: FunctionHandle: @(t)t.^2 Type: 'Zero' Settle: 733600 Compounding: 2 Basis: 0
Use the method, fitNelsonSiegel
, for the Nelson-Siegel
model that fits the empirical form of the yield curve with a prespecified
functional form of the spot rates which is a function of the time
to maturity of the bonds.
The Nelson-Siegel model represents a dynamic three-factor model: level, slope, and curvature. However, the Nelson-Siegel factors are unobserved, or latent, which allows for measurement error, and the associated loadings have economic restrictions (forward rates are always positive, and the discount factor approaches zero as maturity increases). For more information, see “Zero-coupon yield curves: technical documentation,” BIS Papers, Bank for International Settlements, Number 25, October 2005.
This example uses IRFunctionCurve
to
model the default-free term structure of interest rates in the United
Kingdom.
Load the data:
load ukdata20080430
Convert repo rates to be equivalent zero coupon bonds:
RepoCouponRate = repmat(0,size(RepoRates)); RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);
Aggregate the data:
Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');
The IRFunctionCurve
object provides the capability
to fit a Nelson-Siegel curve to observed market data with the fitNelsonSiegel
method.
The fitting is done by calling the function lsqnonlin
. This method has required inputs
of Type
, Settle
, and a matrix
of instrument data.
NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',CurveSettle,... Instruments,'Compounding',-1,'InstrumentPeriod',InstrumentPeriod);
Plot the Nelson-Siegel interest-rate curve for forward rates:
PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
NSForwardRates = getForwardRates(NSModel, PlottingDates);
plot(TimeToMaturity,NSForwardRates)
title('Nelson Siegel model of UK instantaneous nominal forward curve')
Use the method, fitSvensson
, for the Svensson model to
improve the flexibility of the curves and the fit for a Nelson-Siegel
model. In 1994, Svensson extended Nelson and Siegel’s function
by adding a further term that allows for a second “hump.”
The extra precision is achieved at the cost of adding two more parameters, β3 and τ2,
which have to be estimated.
In this example of using the fitSvensson
method,
an IRFitOptions
structure, previously defined using
the IRFitOptions
constructor,
is used. Thus, you must specify FitType
, InitialGuess
, UpperBound
, LowerBound
,
and the OptOptions
optimization parameters for lsqnonlin
.
Load the data:
load ukdata20080430
Convert repo rates to be equivalent zero coupon bonds:
RepoCouponRate = repmat(0,size(RepoRates)); RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);
Aggregate the data:
Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');
Define OptOptions
for the IRFitOptions
constructor:
OptOptions = optimoptions('lsqnonlin','MaxFunEvals',1000); fIRFitOptions = IRFitOptions([5.82 -2.55 -.87 0.45 3.9 0.44],... 'FitType','durationweightedprice','OptOptions',OptOptions,... 'LowerBound',[0 -Inf -Inf -Inf 0 0],'UpperBound',[Inf Inf Inf Inf Inf Inf]);
Fit the interest-rate curve using a Svensson model:
SvenssonModel = IRFunctionCurve.fitSvensson('Zero',CurveSettle,... Instruments,'IRFitOptions', fIRFitOptions, 'Compounding',-1,... 'InstrumentPeriod',InstrumentPeriod)
Local minimum possible. lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the default value of the function tolerance. SvenssonModel = Type: Zero Settle: 733528 (30-Apr-2008) Compounding: -1 Basis: 0 (actual/actual)
The status message, output from lsqnonlin
,
indicates that the optimization to find parameters for the Svensson
equation terminated successfully.
Plot the Svensson interest-rate curve for forward rates:
PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
SvenssonForwardRates = getForwardRates(SvenssonModel, PlottingDates);
plot(TimeToMaturity,SvenssonForwardRates)
title('Svensson model of UK instantaneous nominal forward curve')
Use the method, fitSmoothingSpline
,
to model the term structure with a spline, specifically, the term
structure represents the forward curve with a cubic spline.
Note
You must have a license for Curve Fitting Toolbox™ software
to use the fitSmoothingSpline
method.
The IRFunctionCurve
object is used to fit
a smoothing spline representation of the forward curve with a penalty
function. Required inputs are Type
, Settle
,
the matrix of Instruments
, and Lambdafun
,
a function handle containing the penalty function
Load the data:
load ukdata20080430
Convert repo rates to be equivalent zero coupon bonds:
RepoCouponRate = repmat(0,size(RepoRates)); RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);
Aggregate the data:
Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');
Choose parameters for Lambdafun
:
L = 9.2; S = -1; mu = 1;
Define the Lambdafun
penalty function:
lambdafun = @(t) exp(L - (L-S)*exp(-t/mu)); t = 0:.1:25; y = lambdafun(t); figure semilogy(t,y); title('Penalty Function for VRP Approach') ylabel('Penalty') xlabel('Time')
Use the fitSmoothinSpline
method to fit the
interest-rate curve and model the Lambdafun
penalty
function:
VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,... Instruments,lambdafun,'Compounding',-1, 'InstrumentPeriod',InstrumentPeriod);
Plot the smoothing spline interest-rate curve for forward rates:
PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
VRPForwardRates = getForwardRates(VRPModel, PlottingDates);
plot(TimeToMaturity,VRPForwardRates)
title('Smoothing Spline model of UK instantaneous nominal forward curve')
When using an IRFunctionCurve
object, you
can create a custom fitting function with the fitFunction
method. To use fitFunction
, you must define
a FunctionHandle
. In addition, you must also use
the constructor IRFitOptions
to
define IRFitOptionsObj
to support an InitialGuess
for
the parameters of the curve function.
The following example demonstrates the use of fitFunction
with
a FunctionHandle
and an IRFitOptionsObj
:
Settle = repmat(datenum('30-Apr-2008'),[6 1]); Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');... datenum('07-Mar-2013');datenum('07-Sep-2016');... datenum('07-Mar-2025');datenum('07-Mar-2036')]; CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3]; CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425]; Instruments = [Settle Maturity CleanPrice CouponRate]; CurveSettle = datenum('30-Apr-2008');
Define the FunctionHandle
:
functionHandle = @(t,theta) polyval(theta,t);
Define the OptOptions
for IRFitOptions
:
OptOptions = optimoptions('lsqnonlin','display','iter');
Define fitFunction
:
CustomModel = IRFunctionCurve.fitFunction('Zero', CurveSettle, ... functionHandle,Instruments, IRFitOptions([.05 .05 .05],'FitType','price',... 'OptOptions',OptOptions));
Norm of First-order Iteration Func-count f(x) step optimality CG-iterations 0 4 38036.7 4.92e+04 1 8 38036.7 10 4.92e+04 0 2 12 38036.7 2.5 4.92e+04 0 3 16 38036.7 0.625 4.92e+04 0 4 20 38036.7 0.15625 4.92e+04 0 5 24 30741.5 0.0390625 1.72e+05 0 6 28 30741.5 0.078125 1.72e+05 0 7 32 30741.5 0.0195312 1.72e+05 0 8 36 28713.6 0.00488281 2.33e+05 0 9 40 20323.3 0.00976562 9.47e+05 0 10 44 20323.3 0.0195312 9.47e+05 0 11 48 20323.3 0.00488281 9.47e+05 0 12 52 20323.3 0.0012207 9.47e+05 0 13 56 19698.8 0.000305176 1.08e+06 0 14 60 17493 0.000610352 7e+06 0 15 64 17493 0.0012207 7e+06 0 16 68 17493 0.000305176 7e+06 0 17 72 15455.1 7.62939e-05 2.25e+07 0 18 76 15455.1 0.000177499 2.25e+07 0 19 80 13317.1 3.8147e-05 3.18e+07 0 20 84 12865.3 7.62939e-05 7.83e+07 0 21 88 11779.8 7.62939e-05 7.58e+06 0 22 92 11747.6 0.000152588 1.45e+05 0 23 96 11720.9 0.000305176 2.33e+05 0 24 100 11667.2 0.000610352 1.48e+05 0 25 104 11558.6 0.0012207 3.55e+05 0 26 108 11335.5 0.00244141 1.57e+05 0 27 112 10863.8 0.00488281 6.36e+05 0 28 116 9797.14 0.00976562 2.53e+05 0 29 120 6882.83 0.0195312 9.18e+05 0 30 124 6882.83 0.0373993 9.18e+05 0 31 128 3218.45 0.00934981 1.96e+06 0 32 132 612.703 0.0186996 3.01e+06 0 33 136 13.0998 0.0253882 3.05e+06 0 34 140 0.0762922 0.00154002 5.05e+04 0 35 144 0.0731652 3.61102e-06 29.9 0 36 148 0.0731652 6.32335e-08 0.063 0 Local minimum possible. lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the default value of the function tolerance.
Plot the custom function that is defined using fitFunction
:
Yields = bndyield(CleanPrice,CouponRate,Settle(1),Maturity); scatter(Maturity,Yields); PlottingPoints = min(Maturity):30:max(Maturity); hold on; plot(PlottingPoints, getParYields(CustomModel, PlottingPoints),'r'); datetick legend('Market Yields','Fitted Yield Curve') title('Custom Function fit to Market Data')
IRBootstrapOptions
| IRDataCurve
| IRFitOptions
| IRFunctionCurve