Layer replacing an unsupported Keras layer, ONNX layer, or unsupported functionality from
functionToLayerGraph
PlaceholderLayer
is a layer that importKerasLayers
and importONNXLayers
insert into a layer array or layer graph in place of an
unsupported Keras or ONNX™ layer. It can also represent unsupported functionality from functionToLayerGraph
.
Importing layers from a Keras or ONNX network that has layers that are not supported by Deep Learning Toolbox™ creates PlaceholderLayer
objects. Also, when you create a
layer graph using functionToLayerGraph
, unsupported functionality
leads to PlaceholderLayer
objects.
Name
— Layer nameLayer name, specified as a character vector or a string scalar.
Data Types: char
| string
Description
— Layer descriptionLayer description, specified as a character vector or a string scalar.
Data Types: char
| string
Type
— Layer typeLayer type, specified as a character vector or a string scalar.
Data Types: char
| string
KerasConfiguration
— Keras configuration of layerKeras configuration of a layer, specified as a structure. The fields of the structure depend on the layer type.
Note
This property only exists if the layer was created when importing a Keras network.
Data Types: struct
ONNXNode
— ONNX configuration of layerONNX configuration of a layer, specified as a structure. The fields of the structure depend on the layer type.
Note
This property only exists if the layer was created when importing an ONNX network.
Data Types: struct
Weights
— Imported weightsImported weights, specified as a structure.
Data Types: struct
Specify the Keras network file to import layers from.
modelfile = 'digitsDAGnetwithnoise.h5';
Import the network architecture. The network includes some layer types that are not
supported by Deep Learning Toolbox. The importKerasLayers
function replaces each unsupported layer with a placeholder layer and returns a warning
message.
lgraph = importKerasLayers(modelfile)
Warning: Unable to import some Keras layers, because they are not yet supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object. > In nnet.internal.cnn.keras.importKerasLayers (line 26) In importKerasLayers (line 102) lgraph = LayerGraph with properties: Layers: [15×1 nnet.cnn.layer.Layer] Connections: [15×2 table]
Display the imported layers of the network. Two placeholder layers replace the Gaussian noise layers in the Keras network.
lgraph.Layers
ans = 15x1 Layer array with layers: 1 'input_1' Image Input 28x28x1 images 2 'conv2d_1' Convolution 20 7x7 convolutions with stride [1 1] and padding 'same' 3 'conv2d_1_relu' ReLU ReLU 4 'conv2d_2' Convolution 20 3x3 convolutions with stride [1 1] and padding 'same' 5 'conv2d_2_relu' ReLU ReLU 6 'gaussian_noise_1' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer 7 'gaussian_noise_2' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer 8 'max_pooling2d_1' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same' 9 'max_pooling2d_2' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same' 10 'flatten_1' Keras Flatten Flatten activations into 1D assuming C-style (row-major) order 11 'flatten_2' Keras Flatten Flatten activations into 1D assuming C-style (row-major) order 12 'concatenate_1' Depth concatenation Depth concatenation of 2 inputs 13 'dense_1' Fully Connected 10 fully connected layer 14 'activation_1_softmax' Softmax softmax 15 'ClassificationLayer_activation_1' Classification Output crossentropyex
Find the placeholder layers using findPlaceholderLayers
. The output
argument contains the two placeholder layers that importKerasLayers
inserted in place of the Gaussian noise layers of the Keras network.
placeholders = findPlaceholderLayers(lgraph)
placeholders = 2x1 PlaceholderLayer array with layers: 1 'gaussian_noise_1' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer 2 'gaussian_noise_2' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
Display the configuration of each placeholder layer.
gaussian1.KerasConfiguration gaussian2.KerasConfiguration
ans = struct with fields: trainable: 1 name: 'gaussian_noise_1' stddev: 1.5000 ans = struct with fields: trainable: 1 name: 'gaussian_noise_2' stddev: 0.7000
This example shows how to import the layers from a pretrained Keras network, replace the unsupported layers with custom layers, and assemble the layers into a network ready for prediction.
Import Keras Network
Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5'
classifies images of digits.
filename = 'digitsDAGnetwithnoise.h5'; lgraph = importKerasLayers(filename,'ImportWeights',true);
Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.
The Keras network contains some layers that are not supported by Deep Learning Toolbox. The importKerasLayers
function displays a warning and replaces the unsupported layers with placeholder layers.
Plot the layer graph using plot
.
figure
plot(lgraph)
title("Imported Network")
Replace Placeholder Layers
To replace the placeholder layers, first identify the names of the layers to replace. Find the placeholder layers using findPlaceholderLayers
.
placeholderLayers = findPlaceholderLayers(lgraph)
placeholderLayers = 2x1 PlaceholderLayer array with layers: 1 'gaussian_noise_1' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer 2 'gaussian_noise_2' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
Display the Keras configurations of these layers.
placeholderLayers.KerasConfiguration
ans = struct with fields:
trainable: 1
name: 'gaussian_noise_1'
stddev: 1.5000
ans = struct with fields:
trainable: 1
name: 'gaussian_noise_2'
stddev: 0.7000
Define a custom Gaussian noise layer. To create this layer, save the file gaussianNoiseLayer.m
in the current folder. Then, create two Gaussian noise layers with the same configurations as the imported Keras layers.
gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1'); gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');
Replace the placeholder layers with the custom layers using replaceLayer
.
lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1); lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);
Plot the updated layer graph using plot
.
figure
plot(lgraph)
title("Network with Replaced Layers")
Specify Class Names
If the imported classification layer does not contain the classes, then you must specify these before prediction. If you do not specify the classes, then the software automatically sets the classes to 1
, 2
, ..., N
, where N
is the number of classes.
Find the index of the classification layer by viewing the Layers
property of the layer graph.
lgraph.Layers
ans = 15x1 Layer array with layers: 1 'input_1' Image Input 28x28x1 images 2 'conv2d_1' Convolution 20 7x7x1 convolutions with stride [1 1] and padding 'same' 3 'conv2d_1_relu' ReLU ReLU 4 'conv2d_2' Convolution 20 3x3x1 convolutions with stride [1 1] and padding 'same' 5 'conv2d_2_relu' ReLU ReLU 6 'new_gaussian_noise_1' Gaussian Noise Gaussian noise with standard deviation 1.5 7 'new_gaussian_noise_2' Gaussian Noise Gaussian noise with standard deviation 0.7 8 'max_pooling2d_1' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same' 9 'max_pooling2d_2' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same' 10 'flatten_1' Keras Flatten Flatten activations into 1-D assuming C-style (row-major) order 11 'flatten_2' Keras Flatten Flatten activations into 1-D assuming C-style (row-major) order 12 'concatenate_1' Depth concatenation Depth concatenation of 2 inputs 13 'dense_1' Fully Connected 10 fully connected layer 14 'activation_1' Softmax softmax 15 'ClassificationLayer_activation_1' Classification Output crossentropyex
The classification layer has the name 'ClassificationLayer_activation_1'
. View the classification layer and check the Classes
property.
cLayer = lgraph.Layers(end)
cLayer = ClassificationOutputLayer with properties: Name: 'ClassificationLayer_activation_1' Classes: 'auto' OutputSize: 'auto' Hyperparameters LossFunction: 'crossentropyex'
Because the Classes
property of the layer is 'auto'
, you must specify the classes manually. Set the classes to 0
, 1
, ..., 9
, and then replace the imported classification layer with the new one.
cLayer.Classes = string(0:9)
cLayer = ClassificationOutputLayer with properties: Name: 'ClassificationLayer_activation_1' Classes: [0 1 2 3 4 5 6 7 8 9] OutputSize: 10 Hyperparameters LossFunction: 'crossentropyex'
lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);
Assemble Network
Assemble the layer graph using assembleNetwork
. The function returns a DAGNetwork
object that is ready to use for prediction.
net = assembleNetwork(lgraph)
net = DAGNetwork with properties: Layers: [15x1 nnet.cnn.layer.Layer] Connections: [15x2 table] InputNames: {'input_1'} OutputNames: {'ClassificationLayer_activation_1'}
assembleNetwork
| findPlaceholderLayers
| functionToLayerGraph
| importKerasLayers
| importONNXLayers
You have a modified version of this example. Do you want to open this example with your edits?