Process matrices by mapping row minimum and maximum values to [-1
1
]
[Y,PS] = mapminmax(X,YMIN,YMAX)
[Y,PS] = mapminmax(X,FP)
Y = mapminmax('apply',X,PS)
X = mapminmax('reverse',Y,PS)
dx_dy = mapminmax('dx_dy',X,Y,PS)
mapminmax
processes matrices by normalizing the minimum and maximum
values of each row to [YMIN
, YMAX
].
[Y,PS] = mapminmax(X,YMIN,YMAX)
takes X
and
optional parameters
X |
|
YMIN | Minimum value for each row of |
YMAX | Maximum value for each row of |
and returns
Y |
|
PS | Process settings that allow consistent processing of values |
[Y,PS] = mapminmax(X,FP)
takes parameters as a struct:
FP.ymin
, FP.ymax
.
Y = mapminmax('apply',X,PS)
returns Y
, given
X
and settings PS
.
X = mapminmax('reverse',Y,PS)
returns X
, given
Y
and settings PS
.
dx_dy = mapminmax('dx_dy',X,Y,PS)
returns the reverse
derivative.
Here is how to format a matrix so that the minimum and maximum values of each row are
mapped to default interval [-1,+1
].
x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0] [y1,PS] = mapminmax(x1)
Next, apply the same processing settings to new values.
x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0] y2 = mapminmax('apply',x2,PS)
Reverse the processing of y1
to get x1
again.
x1_again = mapminmax('reverse',y1,PS)
It is assumed that X
has only finite real values, and that the elements
of each row are not all equal. (If xmax=xmin
or if either
xmax
or xmin
are non-finite, then y=x
and no change occurs.)
y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;