This example shows why you should always use FEEDBACK to close feedback loops.
Consider the following feedback loop
where
K = 2; G = tf([1 2],[1 .5 3])
G = s + 2 --------------- s^2 + 0.5 s + 3 Continuous-time transfer function.
You can compute the closed-loop transfer function H
from r to y in at least two ways:
Using the feedback
command
Using the formula
To compute H
using feedback
, type
H = feedback(G,K)
H = s + 2 --------------- s^2 + 2.5 s + 7 Continuous-time transfer function.
To compute H
from the formula, type
H2 = G/(1+G*K)
H2 = s^3 + 2.5 s^2 + 4 s + 6 ----------------------------------- s^4 + 3 s^3 + 11.25 s^2 + 11 s + 21 Continuous-time transfer function.
A major issue with computing H
from the formula is that it inflates the order of the closed-loop transfer function. In the example above, H2
has double the order of H
. This is because the expression G/(1+G*K)
is evaluated as a ratio of the two transfer functions G
and 1+G*K
. If
then G/(1+G*K)
is evaluated as:
As a result, the poles of G
are added to both the numerator and denominator of H
. You can confirm this by looking at the ZPK representation:
zpk(H2)
ans = (s+2) (s^2 + 0.5s + 3) --------------------------------- (s^2 + 0.5s + 3) (s^2 + 2.5s + 7) Continuous-time zero/pole/gain model.
This excess of poles and zeros can negatively impact the accuracy of your results when dealing with high-order transfer functions, as shown in the next example. This example involves a 17th-order transfer function G
. As you did before, use both approaches to compute the closed-loop transfer function for K=1
:
load numdemo G H1 = feedback(G,1); % good H2 = G/(1+G); % bad
To have a point of reference, also compute an FRD model containing the frequency response of G and apply feedback
to the frequency response data directly:
w = logspace(2,5.1,100); H0 = feedback(frd(G,w),1);
Then compare the magnitudes of the closed-loop responses:
h = sigmaplot(H0,'b',H1,'g--',H2,'r'); legend('Reference H0','H1=feedback(G,1)','H2=G/(1+G)','location','southwest') setoptions(h,'YlimMode','manual','Ylim',{[-60 0]})
The frequency response of H2
is inaccurate for frequencies below 2e4 rad/s. This inaccuracy can be traced to the additional (cancelling) dynamics introduced near z=1. Specifically, H2
has about twice as many poles and zeros near z=1 as H1
. As a result, H2(z)
has much poorer accuracy near z=1, which distorts the response at low frequencies. See the example Using the Right Model Representation for more details.