<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">"""Partial dependence plots for tree ensembles. """

# Authors: Peter Prettenhofer
# License: BSD 3 clause

# Note: function here are deprecated. We don't call the new versions because
# the API slightly changes (namely partial_dependence does not have the grid
# parameter anymore.)

from itertools import count
import numbers

import numpy as np
from scipy.stats.mstats import mquantiles

from ..utils.extmath import cartesian
from ..utils._joblib import Parallel, delayed
from ..utils import check_array
from ..utils.validation import check_is_fitted
from ..tree._tree import DTYPE
from ..utils import deprecated

from .gradient_boosting import BaseGradientBoosting


__all__ = [
    'partial_dependence',
    'plot_partial_dependence',
]


def _grid_from_X(X, percentiles=(0.05, 0.95), grid_resolution=100):
    """Generate a grid of points based on the ``percentiles of ``X``.

    The grid is generated by placing ``grid_resolution`` equally
    spaced points between the ``percentiles`` of each column
    of ``X``.

    Parameters
    ----------
    X : ndarray
        The data
    percentiles : tuple of floats
        The percentiles which are used to construct the extreme
        values of the grid axes.
    grid_resolution : int
        The number of equally spaced points that are placed
        on the grid.

    Returns
    -------
    grid : ndarray
        All data points on the grid; ``grid.shape[1] == X.shape[1]``
        and ``grid.shape[0] == grid_resolution * X.shape[1]``.
    axes : seq of ndarray
        The axes with which the grid has been created.
    """
    if len(percentiles) != 2:
        raise ValueError('percentile must be tuple of len 2')
    if not all(0. &lt;= x &lt;= 1. for x in percentiles):
        raise ValueError('percentile values must be in [0, 1]')

    axes = []
    emp_percentiles = mquantiles(X, prob=percentiles, axis=0)
    for col in range(X.shape[1]):
        uniques = np.unique(X[:, col])
        if uniques.shape[0] &lt; grid_resolution:
            # feature has low resolution use unique vals
            axis = uniques
        else:
            # create axis based on percentiles and grid resolution
            axis = np.linspace(emp_percentiles[0, col],
                               emp_percentiles[1, col],
                               num=grid_resolution, endpoint=True)
        axes.append(axis)

    return cartesian(axes), axes


@deprecated("The function ensemble.partial_dependence has been deprecated "
            "in favour of inspection.partial_dependence in 0.21 "
            "and will be removed in 0.23.")
def partial_dependence(gbrt, target_variables, grid=None, X=None,
                       percentiles=(0.05, 0.95), grid_resolution=100):
    """Partial dependence of ``target_variables``.

    Partial dependence plots show the dependence between the joint values
    of the ``target_variables`` and the function represented
    by the ``gbrt``.

    Read more in the :ref:`User Guide &lt;partial_dependence&gt;`.

    .. deprecated:: 0.21
       This function was deprecated in version 0.21 in favor of
       :func:`sklearn.inspection.partial_dependence` and will be
       removed in 0.23.

    Parameters
    ----------
    gbrt : BaseGradientBoosting
        A fitted gradient boosting model.
    target_variables : array-like, dtype=int
        The target features for which the partial dependency should be
        computed (size should be smaller than 3 for visual renderings).
    grid : array-like, shape=(n_points, len(target_variables))
        The grid of ``target_variables`` values for which the
        partial dependency should be evaluated (either ``grid`` or ``X``
        must be specified).
    X : array-like, shape=(n_samples, n_features)
        The data on which ``gbrt`` was trained. It is used to generate
        a ``grid`` for the ``target_variables``. The ``grid`` comprises
        ``grid_resolution`` equally spaced points between the two
        ``percentiles``.
    percentiles : (low, high), default=(0.05, 0.95)
        The lower and upper percentile used create the extreme values
        for the ``grid``. Only if ``X`` is not None.
    grid_resolution : int, default=100
        The number of equally spaced points on the ``grid``.

    Returns
    -------
    pdp : array, shape=(n_classes, n_points)
        The partial dependence function evaluated on the ``grid``.
        For regression and binary classification ``n_classes==1``.
    axes : seq of ndarray or None
        The axes with which the grid has been created or None if
        the grid has been given.

    Examples
    --------
    &gt;&gt;&gt; samples = [[0, 0, 2], [1, 0, 0]]
    &gt;&gt;&gt; labels = [0, 1]
    &gt;&gt;&gt; from sklearn.ensemble import GradientBoostingClassifier
    &gt;&gt;&gt; gb = GradientBoostingClassifier(random_state=0).fit(samples, labels)
    &gt;&gt;&gt; kwargs = dict(X=samples, percentiles=(0, 1), grid_resolution=2)
    &gt;&gt;&gt; partial_dependence(gb, [0], **kwargs) # doctest: +SKIP
    (array([[-4.52...,  4.52...]]), [array([ 0.,  1.])])
    """
    if not isinstance(gbrt, BaseGradientBoosting):
        raise ValueError('gbrt has to be an instance of BaseGradientBoosting')
    check_is_fitted(gbrt, 'estimators_')
    if (grid is None and X is None) or (grid is not None and X is not None):
        raise ValueError('Either grid or X must be specified')

    target_variables = np.asarray(target_variables, dtype=np.int32,
                                  order='C').ravel()

    if any([not (0 &lt;= fx &lt; gbrt.n_features_) for fx in target_variables]):
        raise ValueError('target_variables must be in [0, %d]'
                         % (gbrt.n_features_ - 1))

    if X is not None:
        X = check_array(X, dtype=DTYPE, order='C')
        grid, axes = _grid_from_X(X[:, target_variables], percentiles,
                                  grid_resolution)
    else:
        assert grid is not None
        # dont return axes if grid is given
        axes = None
        # grid must be 2d
        if grid.ndim == 1:
            grid = grid[:, np.newaxis]
        if grid.ndim != 2:
            raise ValueError('grid must be 2d but is %dd' % grid.ndim)

    grid = np.asarray(grid, dtype=DTYPE, order='C')
    assert grid.shape[1] == target_variables.shape[0]

    n_trees_per_stage = gbrt.estimators_.shape[1]
    n_estimators = gbrt.estimators_.shape[0]
    pdp = np.zeros((n_trees_per_stage, grid.shape[0],), dtype=np.float64,
                   order='C')
    for stage in range(n_estimators):
        for k in range(n_trees_per_stage):
            tree = gbrt.estimators_[stage, k].tree_
            tree.compute_partial_dependence(grid, target_variables, pdp[k])
    pdp *= gbrt.learning_rate

    return pdp, axes


@deprecated("The function ensemble.plot_partial_dependence has been "
            "deprecated in favour of "
            "sklearn.inspection.plot_partial_dependence in "
            " 0.21 and will be removed in 0.23.")
def plot_partial_dependence(gbrt, X, features, feature_names=None,
                            label=None, n_cols=3, grid_resolution=100,
                            percentiles=(0.05, 0.95), n_jobs=None,
                            verbose=0, ax=None, line_kw=None,
                            contour_kw=None, **fig_kw):
    """Partial dependence plots for ``features``.

    The ``len(features)`` plots are arranged in a grid with ``n_cols``
    columns. Two-way partial dependence plots are plotted as contour
    plots.

    Read more in the :ref:`User Guide &lt;partial_dependence&gt;`.

    .. deprecated:: 0.21
       This function was deprecated in version 0.21 in favor of
       :func:`sklearn.inspection.plot_partial_dependence` and will be
       removed in 0.23.

    Parameters
    ----------
    gbrt : BaseGradientBoosting
        A fitted gradient boosting model.
    X : array-like, shape=(n_samples, n_features)
        The data on which ``gbrt`` was trained.
    features : seq of ints, strings, or tuples of ints or strings
        If seq[i] is an int or a tuple with one int value, a one-way
        PDP is created; if seq[i] is a tuple of two ints, a two-way
        PDP is created.
        If feature_names is specified and seq[i] is an int, seq[i]
        must be &lt; len(feature_names).
        If seq[i] is a string, feature_names must be specified, and
        seq[i] must be in feature_names.
    feature_names : seq of str
        Name of each feature; feature_names[i] holds
        the name of the feature with index i.
    label : object
        The class label for which the PDPs should be computed.
        Only if gbrt is a multi-class model. Must be in ``gbrt.classes_``.
    n_cols : int
        The number of columns in the grid plot (default: 3).
    grid_resolution : int, default=100
        The number of equally spaced points on the axes.
    percentiles : (low, high), default=(0.05, 0.95)
        The lower and upper percentile used to create the extreme values
        for the PDP axes.
    n_jobs : int or None, optional (default=None)
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary &lt;n_jobs&gt;`
        for more details.
    verbose : int
        Verbose output during PD computations. Defaults to 0.
    ax : Matplotlib axis object, default None
        An axis object onto which the plots will be drawn.
    line_kw : dict
        Dict with keywords passed to the ``matplotlib.pyplot.plot`` call.
        For one-way partial dependence plots.
    contour_kw : dict
        Dict with keywords passed to the ``matplotlib.pyplot.plot`` call.
        For two-way partial dependence plots.
    **fig_kw : dict
        Dict with keywords passed to the figure() call.
        Note that all keywords not recognized above will be automatically
        included here.

    Returns
    -------
    fig : figure
        The Matplotlib Figure object.
    axs : seq of Axis objects
        A seq of Axis objects, one for each subplot.

    Examples
    --------
    &gt;&gt;&gt; from sklearn.datasets import make_friedman1
    &gt;&gt;&gt; from sklearn.ensemble import GradientBoostingRegressor
    &gt;&gt;&gt; X, y = make_friedman1()
    &gt;&gt;&gt; clf = GradientBoostingRegressor(n_estimators=10).fit(X, y)
    &gt;&gt;&gt; fig, axs = plot_partial_dependence(clf, X, [0, (0, 1)]) #doctest: +SKIP
    ...
    """
    import matplotlib.pyplot as plt
    from matplotlib import transforms
    from matplotlib.ticker import MaxNLocator
    from matplotlib.ticker import ScalarFormatter

    if not isinstance(gbrt, BaseGradientBoosting):
        raise ValueError('gbrt has to be an instance of BaseGradientBoosting')
    check_is_fitted(gbrt, 'estimators_')

    # set label_idx for multi-class GBRT
    if hasattr(gbrt, 'classes_') and np.size(gbrt.classes_) &gt; 2:
        if label is None:
            raise ValueError('label is not given for multi-class PDP')
        label_idx = np.searchsorted(gbrt.classes_, label)
        if gbrt.classes_[label_idx] != label:
            raise ValueError('label %s not in ``gbrt.classes_``' % str(label))
    else:
        # regression and binary classification
        label_idx = 0

    X = check_array(X, dtype=DTYPE, order='C')
    if gbrt.n_features_ != X.shape[1]:
        raise ValueError('X.shape[1] does not match gbrt.n_features_')

    if line_kw is None:
        line_kw = {'color': 'green'}
    if contour_kw is None:
        contour_kw = {}

    # convert feature_names to list
    if feature_names is None:
        # if not feature_names use fx indices as name
        feature_names = [str(i) for i in range(gbrt.n_features_)]
    elif isinstance(feature_names, np.ndarray):
        feature_names = feature_names.tolist()

    def convert_feature(fx):
        if isinstance(fx, str):
            try:
                fx = feature_names.index(fx)
            except ValueError:
                raise ValueError('Feature %s not in feature_names' % fx)
        return fx

    # convert features into a seq of int tuples
    tmp_features = []
    for fxs in features:
        if isinstance(fxs, (numbers.Integral, str)):
            fxs = (fxs,)
        try:
            fxs = np.array([convert_feature(fx) for fx in fxs], dtype=np.int32)
        except TypeError:
            raise ValueError('features must be either int, str, or tuple '
                             'of int/str')
        if not (1 &lt;= np.size(fxs) &lt;= 2):
            raise ValueError('target features must be either one or two')

        tmp_features.append(fxs)

    features = tmp_features

    names = []
    try:
        for fxs in features:
            l = []
            # explicit loop so "i" is bound for exception below
            for i in fxs:
                l.append(feature_names[i])
            names.append(l)
    except IndexError:
        raise ValueError('All entries of features must be less than '
                         'len(feature_names) = {0}, got {1}.'
                         .format(len(feature_names), i))

    # compute PD functions
    pd_result = Parallel(n_jobs=n_jobs, verbose=verbose)(
        delayed(partial_dependence)(gbrt, fxs, X=X,
                                    grid_resolution=grid_resolution,
                                    percentiles=percentiles)
        for fxs in features)

    # get global min and max values of PD grouped by plot type
    pdp_lim = {}
    for pdp, axes in pd_result:
        min_pd, max_pd = pdp[label_idx].min(), pdp[label_idx].max()
        n_fx = len(axes)
        old_min_pd, old_max_pd = pdp_lim.get(n_fx, (min_pd, max_pd))
        min_pd = min(min_pd, old_min_pd)
        max_pd = max(max_pd, old_max_pd)
        pdp_lim[n_fx] = (min_pd, max_pd)

    # create contour levels for two-way plots
    if 2 in pdp_lim:
        Z_level = np.linspace(*pdp_lim[2], num=8)

    if ax is None:
        fig = plt.figure(**fig_kw)
    else:
        fig = ax.get_figure()
        fig.clear()

    n_cols = min(n_cols, len(features))
    n_rows = int(np.ceil(len(features) / float(n_cols)))
    axs = []
    for i, fx, name, (pdp, axes) in zip(count(), features, names,
                                        pd_result):
        ax = fig.add_subplot(n_rows, n_cols, i + 1)

        if len(axes) == 1:
            ax.plot(axes[0], pdp[label_idx].ravel(), **line_kw)
        else:
            # make contour plot
            assert len(axes) == 2
            XX, YY = np.meshgrid(axes[0], axes[1])
            Z = pdp[label_idx].reshape(list(map(np.size, axes))).T
            CS = ax.contour(XX, YY, Z, levels=Z_level, linewidths=0.5,
                            colors='k')
            ax.contourf(XX, YY, Z, levels=Z_level, vmax=Z_level[-1],
                        vmin=Z_level[0], alpha=0.75, **contour_kw)
            ax.clabel(CS, fmt='%2.2f', colors='k', fontsize=10, inline=True)

        # plot data deciles + axes labels
        deciles = mquantiles(X[:, fx[0]], prob=np.arange(0.1, 1.0, 0.1))
        trans = transforms.blended_transform_factory(ax.transData,
                                                     ax.transAxes)
        ylim = ax.get_ylim()
        ax.vlines(deciles, [0], 0.05, transform=trans, color='k')
        ax.set_xlabel(name[0])
        ax.set_ylim(ylim)

        # prevent x-axis ticks from overlapping
        ax.xaxis.set_major_locator(MaxNLocator(nbins=6, prune='lower'))
        tick_formatter = ScalarFormatter()
        tick_formatter.set_powerlimits((-3, 4))
        ax.xaxis.set_major_formatter(tick_formatter)

        if len(axes) &gt; 1:
            # two-way PDP - y-axis deciles + labels
            deciles = mquantiles(X[:, fx[1]], prob=np.arange(0.1, 1.0, 0.1))
            trans = transforms.blended_transform_factory(ax.transAxes,
                                                         ax.transData)
            xlim = ax.get_xlim()
            ax.hlines(deciles, [0], 0.05, transform=trans, color='k')
            ax.set_ylabel(name[1])
            # hline erases xlim
            ax.set_xlim(xlim)
        else:
            ax.set_ylabel('Partial dependence')

        if len(axes) == 1:
            ax.set_ylim(pdp_lim[1])
        axs.append(ax)

    fig.subplots_adjust(bottom=0.15, top=0.7, left=0.1, right=0.95, wspace=0.4,
                        hspace=0.3)
    return fig, axs
</pre></body></html>