Finite Differencing of Logical Formulas
for Static Analysis

THOMAS REPS

University of Wisconsin and GrammaTech, Inc.
MOOLY SAGIV

Tel Aviv University

and

ALEXEY LOGINOV

GrammaTech, Inc.

This paper concerns mechanisms for maintaining the value of an instrumentation relation (also
known as a derived relation or view), defined via a logical formula over core relations, in response
to changes in the values of the core relations. It presents an algorithm for transforming the
instrumentation relation’s defining formula into a relation-maintenance formula that captures
what the instrumentation relation’s new value should be. The algorithm runs in time linear in
the size of the defining formula.

The technique applies to program-analysis problems in which the semantics of statements is
expressed using logical formulas that describe changes to core-relation values. It provides a way
to obtain values of the instrumentation relations that reflect the changes in core-relation values
produced by executing a given statement.

We present experimental evidence that our technique is an effective one: for a variety of bench-
marks, the relation-maintenance formulas produced automatically using our approach yield the
same precision as the best available hand-crafted ones.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion—jformal methods; D.3.3 [Programming Languages|: Language Constructs and Features—
data types and structures; dynamic storage management, E.1 [Data]: Data Structures—graphs
and networks; lists, stacks, and queues; records; trees; E.2 [Data]: Data Storage Representa-
tions—composite structures; linked representations; F.3.1 [Logics and Meanings of Programs|:
Specifying and Verifying and Reasoning about Programs—assertions; invariants; mechanical ver-
tfication; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—
program analysis

General Terms: Algorithms, Languages, Theory, Verification
Additional Key Words and Phrases: Abstract interpretation, finite differencing, materialized view,
shape analysis, static analysis, 3-valued logic

Authors’ addresses: T. Reps, Comp. Sci. Dept., University of Wisconsin, and GrammaTech, Inc.,
reps@cs.wisc.edu. M. Sagiv, School of Comp. Sci., Tel Aviv University, msagiv@post.tau.ac.il.
A. Loginov, GrammaTech, Inc., alexey@grammatech.com. At the time the research reported in
the paper was carried out, A. Loginov was affiliated with the Univ. of Wisconsin.

The work was supported in part by NSF under grants CCR-{9619219,9986308}, and CCF-
{0540955,0524051}, by the U.S.-Isracl BSF under grant 96-00337, by ONR under contracts
N00014-01-1-{0708,0796}, and by the von Humboldt and Guggenheim Foundations. Portions of
the work appeared in the 12th European Symp. on Programming [Reps et al. 2003], R. Wilhelm’s
60t"-birthday Festschrift [Loginov et al. 2007], and A. Loginov’s Ph.D. dissertation [Loginov 2006].
© 2009 T. Reps, M. Sagiv, and A. Loginov

2 . T. Reps et al.

1. INTRODUCTION

This paper addresses an instance of the following fundamental challenge in abstract
interpretation:

Given the concrete semantics for a language and a desired abstraction,
how does one create the associated abstract transformers?

The problem that we address arises in program-analysis problems in which the se-
mantics of statements is expressed using logical formulas that describe changes to
core-relation values. When instrumentation relations (defined via logical formulas
over the core relations) have been introduced to refine an abstraction, the challenge
is to develop a method for obtaining values of the instrumentation relations that
reflect the changes in core-relation values [Graf and Saidi 1997; Das et al. 1999;
McMillan 1999; Sagiv et al. 2002; Ball et al. 2001]. The algorithm presented in
this paper provides a way to create formulas that maintain correct values for the
instrumentation relations, and thereby provides a way to generate, completely au-
tomatically, the part of the transformers of an abstract semantics that deals with
instrumentation relations. The algorithm runs in time linear in the size of the
instrumentation relation’s defining formula.

This research was motivated by our work on static analysis based on 3-valued
logic [Sagiv et al. 2002]; however, any analysis method that relies on logic—2-valued
or 3-valued—to express a program’s semantics may be able to benefit from these
techniques.

In our setting, two related logics come into play: an ordinary 2-valued logic, as
well as a related 3-valued logic. A memory configuration, or store, is modeled by
what logicians call a logical structure; an individual of the structure’s universe either
models a single memory element or, in the case of a summary individual, it models
a collection of memory elements. A run of the analyzer carries out an abstract
interpretation to collect a set of structures at each program point P. This involves
finding the least fixed point of a certain set of equations. When the fixed point
is reached, the structures that have been collected at program point P describe a
superset of all the execution states that can occur at P. To determine whether a
property always holds at P, one checks whether it holds in all of the structures
that were collected there. Instantiations of this framework are capable of estab-
lishing nontrivial properties of programs that perform complex pointer-based ma-
nipulations of a priori unbounded-size heap-allocated data structures. The TVLA
system (Three-Valued-Logic Analyzer) implements this approach [Lev-Ami and
Sagiv 2000; TVLA |.

Summary individuals play a crucial role. They are used to ensure that abstract
descriptors have an a priori bounded size, which guarantees that a fixed-point is
always reached. However, the constraint of working with limited-size descriptors
implies a loss of information about the store. Intuitively, certain properties of
concrete individuals are lost due to abstraction, which groups together multiple
individuals into summary individuals: a property can be true for some concrete
individuals of the group but false for other individuals. It is for this reason that
3-valued logic is used; uncertainty about a property’s value is captured by means
of the third truth value, 1/2.

Finite Differencing of Logical Formulas : 3

An advantage of using 2- and 3-valued logic as the basis for static analysis is that
the language used for extracting information from the concrete world and the ab-
stract world is identical: every syntactic expression—i.e., every logical formula—can
be interpreted either in the 2-valued world or the 3-valued world. The consistency
of the 2-valued and 3-valued viewpoints is ensured by a basic theorem that relates
the two logics [Sagiv et al. 2002, Theorem 4.9]. This provides a partial answer to
the fundamental challenge posed above: formulas that define the concrete seman-
tics, when interpreted in 2-valued logic, define a sound abstract semantics when
interpreted in 3-valued logic [Sagiv et al. 2002].

Unfortunately, unless some care is taken in the design of an analysis, there is
a danger that as abstract interpretation proceeds, the indefinite value 1/2 will be-
come pervasive. This can destroy the ability to recover interesting information from
the 3-valued structures collected (although soundness is maintained). A key role in
combating indefiniteness is played by instrumentation relations, which record aux-
iliary information in a logical structure. The benefit of introducing instrumentation
relations was annunciated as the Instrumentation Principle:

OBSERVATION 1.1. (Instrumentation Principle [Sagiv et al. 2002, Obser-
vation 2.8]). Suppose that S* is a 3-valued structure that represents the 2-valued
structure S. By explicitly “storing” in S7 the values that a formula v has in S,
it is sometimes possible to extract more precise information from S* than can be
obtained just by evaluating v in S#. O

Instrumentation relations provide a mechanism to fine-tune an abstraction: an in-
strumentation relation, which is defined by a logical formula 1 over the core-relation
symbols, captures a property that may or may not be possessed by a structure, an
individual memory cell, or a tuple of memory cells (according to whether ¢ is a
nullary, unary, or k-ary formula, respectively). For instance, the following formulas
define nullary, unary, and binary instrumentation relations relating to cycles (of
length one or more) along n edges, where the * operator denotes transitive closure:

Nullary (Does the structure contain a cycle?): Vo () = Fo1,v2: n(v1,v2) An*(va, v1)
Unary (Is v1 on a cycle?): Ve, (v1) = Fug: n(vi,v2) An*(va,v1)
Binary (Is n edge vi — v2 part of a cycle?): e, (v1,v2) def n(vi,v2) An*(va,v1)

In general, the introduction of additional instrumentation relations refines an ab-
straction into one that is prepared to track finer distinctions among stores. For
reasons discussed in §3, the values of instrumentation relations are stored and main-
tained in response to the store transformations performed by program statements.
In many cases, this technique allows more precise properties of the program’s stores
to be established.

Problem Statement and Contributions. From the standpoint of the concrete se-
mantics, instrumentation relations represent cached information that could always
be recomputed by reevaluating the instrumentation relation’s defining formula in
the local state. From the standpoint of the abstract semantics, however, reevaluat-
ing a formula in the local (3-valued) state can lead to a drastic loss of precision. To
gain maximum benefit from instrumentation relations, an abstract-interpretation
algorithm must obtain their values in some other way. We call this problem the

4 . T. Reps et al.

instrumentation-relation-maintenance problem (often shortened to the “relation-
maintenance problem”). To summarize, the problem that we address is the fol-
lowing:

Given a formula 1, that defines an instrumentation relation p, together
with formulas 7. that specify how each core relation c is transformed by
transformer 7, create a relation-maintenance formula for p.

To reduce the loss of precision, the solution to the relation-maintenance problem
developed in this paper uses an incremental-computation strategy. After a tran-
sition via transformer 7 from abstract state o to abstract state ¢’, the new value
that instrumentation relation p should have is computed from the stored value of
pin o.

The contributions of the work reported in the paper can be summarized as follows:

—We give an algorithm for solving the relation-maintenance problem. The al-
gorithm works by applying a finite-differencing transformation to p’s defining
formula 1),. The algorithm runs in time linear in the size of 1),.

—We present experimental evidence that our technique is an effective one, at least
for the analysis of programs that manipulate (cyclic and acyclic) singly-linked
lists, doubly-linked lists, and binary trees, and for certain sorting programs. In
particular, the relation-maintenance formulas produced automatically using our
approach are as effective for maintaining precision as the best available hand-
crafted ones.

Organization. The remainder of the paper is organized as follows: §2 introduces
terminology and notation. §3 defines the relation-maintenance problem. §4 pro-
vides intuition behind our solution, which is presented in §5 and §6. §5 presents
a method for generating maintenance formulas for instrumentation relations. §6
discusses extensions to handle instrumentation relations that use transitive closure.
§7 presents experimental results. §8 discusses related work. §9 presents some
concluding remarks. Finally, the Appendix presents a proof of the correctness of
our solution to the relation-maintenance problem.

2. BACKGROUND

This section introduces terminology and notation; it presents the logic that we
employ and describes the use of logical structures for representing memory stores.

The first half of §2.1 introduces 2-valued first-order logic with transitive closure.
These concepts are standard in logic. The second half of §2.1 presents a straightfor-
ward extension of the logic to the 3-valued setting, in which a third truth value—
1/2—is introduced to denote uncertainty. §2.2 summarizes the program-analysis
framework described in [Sagiv et al. 2002]. In that approach, memory configura-
tions are encoded as 2-valued logical structures. The semantics of programs, as well
as properties of memory configurations, are encoded using formulas. Abstract inter-
pretation [Cousot and Cousot 1977] is performed to compute, at each point in the
program being analyzed, a set of 3-valued logical structures that over-approximates
the memory configurations that can arise at that point.

Finite Differencing of Logical Formulas : 5

2.1 First-Order Logic with Transitive Closure
2-Valued First-Order Logic with Transitive Closure. The syntax of first-order
formulas with equality and reflexive transitive closure is defined as follows:

DEFINITION 2.1. Let R; denote a set of arity-i relation symbols,! with eq € Rs.
A formula over the vocabulary R = |J,; R; is defined by

pERk (/75::0|1|p(1)1,...,’0k)
¢ € Formulas | (=1) | (1 Ap2) | (@1 Vp2) | (Fut 1) | (Vo: 1)
v € Variables | (RTC vy, vh: ¢1)(v1,v2)

A formula of the form 0, 1, or p(vy,...,vx) is called an atomic formula.

The set of free variables of a formula is defined as usual. “RTC” stands for
reflexive transitive closure. In ¢ = (RTC v}, v5: ¢1)(v1,v2), if p1’s free-variable
set is V, we require v1,vy ¢ V. The free variables of ¢ are (V — {v{,v5}) U {v1,v2}.
O

We use several shorthand notations: (v; =v2) = eq(v1, v2); (v17v2) = —eq(vy, va);

and for a binary relation p, p*(vi,v2) = (RTC v}, v}: p(v},v5))(v1,v2). We also
use a C-like syntax for conditional expressions: (1 ? 3 : 3.2 The order of prece-
dence among the connectives, from highest to lowest, is as follows: =, A, V, V, and
3. We drop parentheses wherever possible, except for emphasis.

DEFINITION 2.2. A 2-valued interpretation over R is a 2-valued logical structure
S = (U%,15), where U is a set of individuals and +* maps each relation symbol
p € Ry to a truth-valued function: +%(p): (U®)* — {0,1}. In addition, (i) for all
u € U% 19(eq)(u,u) = 1, and (i) for all uj,us € US such that u; and us are
distinct individuals, 1% (eq)(u1, uz) = 0.

An assignment Z is a function that maps variables to individuals (i.e., it has
the functionality Z: {v1,ve,...} — U®). When Z is defined on all free variables
of a formula ¢, we say that Z is complete for p. (We generally assume that ev-
ery assignment that arises in connection with the discussion of some formula ¢ is
complete for ¢.)

The (2-valued) meaning of a formula ¢, denoted by []5(Z), yields a truth value
in {0,1}; it is defined inductively as follows:

[0]5(2) = 0 [e1 A @2]3(2) = min([p1]5(2), 213 (Z))
[1]5(2) = 1 [e1 v @2]5(2) = max([p1]5(2), [#2]5(2))
[p(vr, ..., v0)]5(Z) = SONZ(1), ... Z(we)) [Bu: ¢1]5(2) = fé%gﬂ%]]g(z[v = ul)
[~¢1]5(2) = 1 - [1]5(2) Vo: ¢1]3(2) = Jg%]ns[[gol]]“;(Z[v — ul)
[(RTC vi,vh: ¢1)(v1,v2)]3(Z)
1 ’ le(Ul) = Z(’Uz)
- max 211:1{1[@1]]5?(2[1;; > Uy, Uy > u;11]) otherwise
N u1,4..n,'u7n+’1EU,
Z(v1) = uq,

Z(v2) = Un+1

Mnstead of introducing function symbols, we encode a function of arity ¢ by means of a relation
of arity 7 + 1, together with logical constraints (described in §2.2.2 in the discussion of Fig. 10).

2In 2-valued logic, one can think of 1 ? 2 : @3 as a shorthand for (¢1 A p2) V (—@1 A 3). In
3-valued logic, it becomes a shorthand for (p1 A p2) V (mp1 A @3) V (p2 A p3) [Reps et al. 2002].

6 : T. Reps et al.

8] 0 1/2 1 ‘ \% 0 1/21

1/2
00 1/21/2 1/2 00 1/21
1/2([1/2 1/2 1/2 1/2([1/2 1/2 1
1|1/2 1/2 1 ‘ 11 11
0 1 0
(a) (b)

Fig. 1. (a) The information order (C) and its join operation (). (b) The logical order and its
join operation (V).

S and Z satisfy o if [p]5(Z) = 1. The set of 2-valued structures is denoted by
S2[R], where “[R]” is dropped if the vocabulary R is understood. O

3-Valued Logic and Embedding. In 3-valued logic, the formulas that we work with
are identical to the ones used in 2-valued logic. At the semantic level, a third truth
value—1/2—is introduced to denote uncertainty.

DEFINITION 2.3. The truth values 0 and 1 are definite values; 1/2 is an indefinite
value. For l1,1ls € {0,1/2,1}, the information order is defined as follows: I; C Iy
iff Iy =1y orly =1/2. I; C Iy denotes that I; is at least as definite as l;. We use
Iy C Iy when I; C Iy and I3 # l3. The symbol U denotes the least-upper-bound
operation with respect to C. O

As shown in Fig. 1, we place two orderings on 0, 1, and 1/2: (i) the information
order, denoted by C and illustrated in Fig. 1(a), captures “(un)certainty”; (ii) the
logical order, shown in Fig. 1(b), defines the meaning of A and V; that is, A and V
are meet and join in the logical order. 3-valued logic retains a number of properties
that are familiar from 2-valued logic, such as De Morgan’s laws, associativity of
A and V, and distributivity of A over V (and vice versa). Because ¢1 7 2 : @3 is
treated as a shorthand for (1 Aw2) V (—¢p1 Aws) V (p2 Aws) in 3-valued logic [Reps
et al. 2002], the value of 1/27 V; : V5 equals V3 U V2. We now generalize Defn. 2.2
to define the meaning of a formula with respect to a 3-valued structure.

DEFINITION 2.4. A 3-valued interpretation over R is a 3-valued logical structure
S = (U%,1%), where U is a set of individuals and +* maps each relation symbol
p € Ry to a truth-valued function: :(p): (U®)¥ — {0,1/2,1}. In addition, (i) for
all w € U®, 1*(eq)(u,u) 2 1, and (ii) for all uy,us € U? such that u; and uy are
distinct individuals, % (eq)(u1, uz) = 0.

For an assignment Z, the (3-valued) meaning of a formula ¢, denoted by []5(Z),
yields a truth value in {0,1/2,1}. The meaning of ¢ is defined exactly as in
Defn. 2.2, but interpreted over {0,1/2,1}. S and Z potentially satisfy ¢ if [¢]5 (Z) 3
1. The set of 3-valued structures is denoted by S3[R], where “[R]” is dropped if
the vocabulary R is understood. O

Defn. 2.4 requires that for each individual u, the value of ¢t°(eq)(u,u) is 1 or 1/2.
An individual for which ¢%(eq)(u,u) = 1/2 is called a summary individual. In the
program-analysis framework of [Sagiv et al. 2002], a summary individual abstracts

Finite Differencing of Logical Formulas . 7

x —{1] F{s] +{s]\]

Fig. 2. A possible store for a linked list.

one or more nodes of a data structure, and hence can represent more than one
concrete memory cell.
The embedding ordering on structures is defined as follows:

DEFINITION 2.5. Let S = (US,:5) and S" = (U®,1%") be two structures, and
let f: US — U% be a surjective function. We say that f embeds S in S’ (denoted
by S Cf &) if for every relation symbol p € Ry, and for all uy,...,ux € US,
S u, .. uk) 8 () (f(ur), ..., flug)). We say that S can be embedded in S’
(denoted by S C ') if there exists a function f such that S T/ §’. O

The Embedding Theorem says that if S CTf S’ then every piece of information
extracted from S’ via a formula ¢ is a conservative approximation of the information
extracted from S via . To formalize this, we extend mappings on individuals
to operate on assignments: if f: U% — US" is a function and Z: Var — US
is an assignment, f o Z denotes the assignment f o Z: Var — U 5" such that

(f o 2)(v) = f(Z(v)).

THEOREM 2.6. (Embedding Theorem [Sagiv et al. 2002, Theorem 4.9]).
Let S = (US,.5) and 8" = (U5 be two structures, and let f: US — U be a
function such that S T/ S’. Then, for every formula ¢ and complete assignment Z
for o, [2)3(2) C [0S (f o 2). O

In the rest of the paper, we will denote 2-valued structures by S (possibly with
subscripts and primes) and 3-valued structures by S# (possibly with subscripts).

2.2 Stores as Logical Structures and their Abstractions

Program Analysis Via 3-Valued Logic. The remainder of this section summarizes
the program-analysis framework described in [Sagiv et al. 2002]. In that approach,
concrete memory configurations (i.e., stores) are encoded as logical structures (as-
sociated with a vocabulary of relation symbols with given arities) in terms of a fixed
collection of core relations, C. Core relations are part of the underlying semantics of
the language to be analyzed; they record atomic properties of stores. For instance,
Fig. 3 gives the definition of a C linked-list datatype, and lists the relations that
would be used to represent the stores manipulated by programs that use type List,
such as the store in Fig. 2. (The core relations are fixed for a given combination of
language and datatype; in general, different languages and datatypes require differ-
ent collections of core relations.) 2-valued logical structures then represent memory
configurations: the individuals of the structure are the set of memory cells; a nullary
relation represents a Boolean variable of the program; a unary relation represents
either a pointer variable or a Boolean-valued field of a record; and a binary relation
represents a pointer field of a record. In Fig. 3, unary relations represent pointer
variables, and binary relation n represents the n-field of a List cell. Numeric-valued
variables and numeric-valued fields (such as data) can be modeled by introducing
other relations, such as the binary relation dle (which stands for “data less-than-or-
equal-to”) listed in Fig. 3; dle captures the relative order of two nodes’ data values.

8 : T. Reps et al.

Relation | Intended Meaning
eq(vi,v2) | Do v1 and v2 denote the same memory cell?

typedef struct node {

§truct node *n; z(v) Does pointer variable x point to memory cell v?
1n‘F data; n(vi,v2) | Does the n field of vi point to ve?
¥ AList; dle(v1,v2) | Is the data field of v1 less than or equal to
that of va?
(a))

Fig. 3. (a) Declaration of a linked-list datatype in C. (b) Core relations used for representing the
stores manipulated by programs that use type List.

dle

<n o\ N
g A 1
dle dle dle

L] [[[uo[us] [dle[ui [us[us]
U1 1 Ul 0 1 0 U1 1 1 1
u2 0 uz 0 0 1 u2 0 1 O
uz|0|{uz| 00| O0O|lus|O0|1|1

Fig. 4. A logical structure S4 that represents the store shown in Fig. 2 in graphical and tabular
forms using the relations of Fig. 3 (Relation eq is not shown explicitly; each node has an eq
self-loop, and the relation in tabular form is the identity matrix.)

(Alternatively, numeric-valued entities can be handled by combining abstractions of
logical structures with previously known techniques for creating numeric abstrac-
tions [Gopan et al. 2004].) Fig. 4 shows 2-valued structure Sy, which represents the
store of Fig. 2 using the relations of Fig. 3. S4 has three individuals, w1, us, and
ug, which represent the three list elements.

Information about a concrete memory configuration encoded as a logical structure
can be extracted from the logical structure by evaluating formulas.

A concrete operational semantics is defined by specifying a structure transformer
8t(n,,ny) for each outgoing control-flow graph (CFG) edge (ni,7n2). (Ordinarily
(n1,n2) is understood, and we just write st.) A structure transformer is specified by
providing a collection of relation-transfer formulas, T s, one for each core relation
c. These formulas define how the core relations of a 2-valued logical structure Sy
that arises at n; are transformed by st(,,, ,,) to create a 2-valued logical structure
So at mg; typically, they define the value of relation ¢ in Sy as a function of ¢’s
value in S7 and the values of other core relations in S;. For instance, Fig. 9,
described in more detail later in this section, shows that the value of unary relation
y in a structure transformed by the structure transformer corresponding to the
statement y = x is defined as a function of the value of unary relation z, namely:
Tyy=x(v) = x(v). We use the notation [st]2(S1) to denote the transformation of Sy
by structure transformer st.

Transformer st may optionally have a precondition formula, which filters out
structures that should not follow the transition along (ni,n2). The postcondition
operator post for edge (n1,n2) is defined by lifting (n1, ng)’s structure transformer
to sets of structures.

Finite Differencing of Logical Formulas : 9

(2 l)

<_—7

de " ndle
L [2][n [ua[uos]| dlefur[uzs)]
ur [1{wa [O]1/2][wa [1] 1
u23 O u23 O 1/2 ‘UQP, 0 1/2

Fig. 5. A 3-valued structure Sf that is the canonical abstraction of structure Sy.

Abstract stores are 3-valued logical structures. Concrete stores are abstracted to
abstract stores by means of embedding functions—onto functions that map individ-
uals of a 2-valued structure S to those of a 3-valued structure S#. The Embedding
Theorem ensures that every piece of information extracted from S# by evaluating
a formula ¢ is a conservative approximation (J) of the information extracted from
S by evaluating .

To obtain a computable abstract domain, we ensure that the size of the 3-valued
structures used to represent memory configurations is always bounded. We do this
by defining an equivalence relation on individuals and considering the (bounded-
size) quotient structure with respect to this equivalence relation; in particular,
each individual of a 2-valued logical structure (representing a concrete memory
cell) is mapped to an individual of a 3-valued logical structure according to the
vector of values that the concrete individual has for a user-chosen collection of
unary abstraction relations. Intuitively, this equivalence relation maps a group of
individuals, which are indistinguishable according to the set of (unary) abstraction
relations A, to a single individual:

DEFINITION (CANONICAL ABSTRACTION). Let S € S2[R], and let A C Ry be
some chosen (nonempty) subset of the unary relation symbols. The relations in A

are called abstraction relations; they define the following equivalence relation ~ 4
on U*:

up 4 uz <= forall p € A, 1%(p)(u1) = °(p)(uz).

Additionally, abstraction relations define the surjective function fq : US — U/ ~ 4,
such that fa(u) = [u]~,, which maps an individual to its equivalence class. The
canonical abstraction of S with respect to A (denoted by f4(S)) performs the join
(in the information order) of relation values, thereby introducing 1/2’s: for every
p € Ry,

A)y,) = || Cp) (s ug) (1)
(1, ... ux) € (US)F s.t.
falu)) =u, €US) =4, 1 <i<k

d

If A = {z}, the canonical abstraction of 2-valued logical structure Sy is Sf ,
shown in Fig. 5, with fa(u1) = u; and fa(uz2) = fa(us) = ugs. In addition to Sy,
Sf represents any list with two or more elements that is pointed to by program
variable x, and in which the first element’s data value is (definitely) less than the
data values in the rest of the list (note the absence of either a 1-valued or 1/2-valued

10 : T. Reps et al.

P |Intended Meaning ‘w,,
isn(v) |Do n fields of two or more list nodes point to v? [Jv1,v2: n(v1,v) An(ve,v) A viFve
tn (v1,v2)|Is v2 reachable from vy along zero or more n fields?|n* (v, v2)
rn,z(v) |Is v reachable from pointer variable x Foi: z(v1) A tn(v1,v)
along zero or more n fields?
cn (V) Is v on a directed cycle of n fields? Fovr: n(vi,v) A te(v,v1)

Fig. 6. Defining formulas of some commonly used instrumentation relations. The relation name
isn abbreviates “is-shared”. There is a separate reachability relation 7y, for every program
variable x. (Recall that vi7wv2 is a shorthand for —eg(v1,v2), and n*(vi,v2) is a shorthand for
(RTC vy, v): n(v),vh))(v1,v2).)

dle edge from individual us3 to individual uy). The following graphical notation is
used for depicting 3-valued logical structures:

—Individuals are represented by circles containing their names and (non-0) values
for unary relations. Summary individuals are represented by double circles.

—A unary relation p corresponding to a pointer-valued program variable is repre-
sented by a solid arrow from p to the individual u for which p(u) = 1, and by
the absence of a p-arrow to each node v’ for which p(u') = 0. (If p = 0 for all
individuals, the relation name p is not shown.)

—A binary relation ¢ is represented by a solid arrow labeled ¢ between each pair
of individuals u; and u; for which g(u,,u;) = 1, and by the absence of a g-arrow
between pairs u; and u’; for which g(u},u’;) = 0.

—Relations with value 1/2 are represented by dashed arrows.

Canonical abstraction ensures that each 3-valued structure is no larger than some
fixed size, known a priori. While canonical abstraction is defined on 2-valued struc-
tures, its operations can be applied to 3-valued structures, as well, possibly produc-
ing more abstract structures (i.e., ones with fewer individuals). In a slight abuse of
terminology, we will sometimes discuss the application of canonical abstraction to
3-valued structures.

2.2.1 Instrumentation Relations. The abstraction function on which an analysis
is based, and hence the precision of the analysis defined, can be tuned by (i) choos-
ing to equip structures with additional instrumentation relations to record derived
properties, and (ii) varying which of the unary core and unary instrumentation
relations are used as the set of abstraction relations. The set of instrumentation
relations is denoted by Z. Each arity-k relation symbol p € 7 is defined by an
instrumentation-relation definition formula ¥p,(v1,...,vs). Instrumentation rela-
tions may appear in the defining formulas of other instrumentation relations as
long as there are no circular dependences.

The introduction of unary instrumentation relations that are used as abstraction
relations provides a way to control which concrete individuals are merged together
into an abstract individual, and thereby control the amount of information lost by
abstraction. Instrumentation relations that involve reachability properties, which
can be defined using RT'C, often play a crucial role in the definitions of abstractions.
For instance, in program-analysis applications, reachability properties from specific
pointer variables have the effect of keeping disjoint sublists summarized separately.

Finite Differencing of Logical Formulas . 11

t,,dle

A)

N N/ 7

tde 1 Cale ¥ ke

[[a]rmeen] [Jurua]us] [tn Jur [us]us] [dieua Juz[us]
u1110u1010u1111u1111
w20 1 [0 u2| O[O0 [1|juz| O] 1|1 |luz|{O]1]0
u3|0] 1 |0 ||us|{O0 [0 |0 |{us| OO0 1 |lus|0|1]|1

Fig. 7. A logical structure S7, which represents the store shown in Fig. 2, in graphical and tabular
forms using the relations of Figs. 3 and 6.

tn,dle

X
7 hn =
t,dle nt,dle
|_[z]rosfea] [n JuJuss][tn [us]uss || dle]u Juss]
wp (1 1 {0 f{u [O|1/2{|ur |1| 1 |Jus|1] 1
u23 0 1 0 u23 O 1/2 U23 O 1/2 u23 0 1/2

Fig. 8. A 3-valued structure Sf that is the canonical abstraction of structure S7.

Fig. 6 lists some instrumentation relations that are important for the analysis of
programs that use type List.

Fig. 7 shows 2-valued structure S7, which represents the store of Fig. 2 using
the core relations of Fig. 3, as well as the instrumentation relations of Fig. 6. If
all unary relations are abstraction relations (A = Rq), the canonical abstraction
of 2-valued logical structure S7 is Sf, shown in Fig. 8, with f4(u1) = uy and
fa(uz) = fa(uz) = uzs.

2.2.2 Abstract Interpretation. For each kind of statement in the programming
language, the abstract semantics is again defined by a collection of formulas: the
same relation-transfer formula that defines the concrete semantics, in the case of
a core relation, and, in the case of an instrumentation relation p, by a relation-
maintenance formula i, 5.3

In our context, abstract interpretation collects a set of 3-valued structures at
each program point. It can be implemented as an iterative procedure that finds the
least fixed point of a certain set of equations [Sagiv et al. 2002]. (It is important
to understand that although the analysis framework is based on logic, it is model-
theoretic, not proof-theoretic: the abstract interpretation collects sets of 3-valued
logical structures—i.e., abstracted models; its actions do not rely on deduction or

31n [Sagiv et al. 2002], relation-transfer formulas and relation-maintenance formulas are both called
“relation-update formulas”. Here we use separate terms so that we can refer easily to relation-
maintenance formulas, which are the main subject of this paper. The term “relation-maintenance
formula” emphasizes the connection to work in the database community on view maintenance (see
§8). (“View updating” is something different: an update is made to the value of a view relation
and changes are propagated back to the base relations.)

12 . T. Reps et al.

unary rels. binary rels.

indiv. |z |y n |ul| u eqlui| u n\.‘ ;
Structure before o 110 w0172 [1] 0 x _>@

uw [0]|0 wl|0|1/2(|uw|0|1/2
Statement y

z(v)
= z(v)
= n(v1,v2)
= eq(v1,v2)

Relation-transfer formulas

unary rels. binary rels.

indiv. |z |y nlul| u eqlul| u n\i ;
Structure after w11 w012\ [u[1] 0 X,y _>@

w |0l0] |wl|o|1/2||w]|o0|1/2

Fig. 9. The relation-transfer formulas for z, y, and n express a transformation on logical structures
that corresponds to the semantics of y = x.

theorem proving.) When the fixed point is reached, the structures that have been
collected at program point P describe a superset of all the execution states that
can occur at P. To determine whether a property always holds at P, one checks
whether it holds in all of the structures that were collected there.

Fig. 9 illustrates the abstract execution of the statement y = x on a 3-valued
logical structure that represents concrete lists of length 2 or more. Instrumentation
relations and relation-maintenance formulas have been omitted from the figure.
The abstract execution of the statement y = x is revisited in Ex. 3.2 of §3, which
discusses relation-maintenance formulas.

Other Operations on Logical Structures. focus[p] is a heuristic that elaborates
a 3-valued structure—causing it to be replaced by a collection of more precise
structures that, taken together, represent the same set of concrete stores;? the
criterion for refinement is to ensure that the formula ¢ evaluates to a definite value
for all assignments to ¢’s free variables. The operation thus brings ¢ “into focus”.

By invoking focus before applying each structure transformer, focusing is used to
reduce the number of indefinite values that arise when relation-transfer and relation-
maintenance formulas are evaluated in 3-valued structures. The focus formulas aim
to sharpen the values of relations when applied to the individuals that are affected
by the transformer. (This often involves the materialization of a concrete individual
out of a summary individual.) For program-analysis applications, it was proposed
in [Sagiv et al. 2002] that for a statement of the form lhs = rhs, the focus formula
should identify the memory cells that correspond to the L-value of lhs and the R-
value of rhs. This ensures that the application of an abstract transformer performs
a strong update of the values of core relations that represent pointer variables and
fields that are updated by the statement, i.e., does not set those values to 1/2.

Not all logical structures represent admissible stores. To exclude structures that
do not, we impose integrity constraints. For instance, relation x(v) of Fig. 3 captures
whether pointer variable x points to memory cell v; x would be given the attribute
“unique”, which imposes the integrity constraint that x can hold for at most one

4This operation can be viewed as a partial concretization.

Finite Differencing of Logical Formulas : 13

Attribute Arity of | Intended Meaning
Relation

unique(p) pER p(v) holds for at most one assignment to v
function(p) pE R For each assignment to v1,

p(v1,v2) holds for at most one assignment to va
invfunction(p) | p € Rz For each assignment to va,

p(v1,v2) holds for at most one assignment to v;
acyclic(p) pE R p(v1,v2) defines an acyclic graph
tree(p) pER2 p(v1,v2) defines a tree-shaped graph

Fig. 10. The meaning of relation attributes used in this paper.

individual in any structure: V vy, ve: 2(v1) Ax(vz) = v1 = ve. This formula evalu-
ates to 1 in any 2-valued logical structure that corresponds to an admissible store.
Fig. 10 gives the list of relation attributes that are used in this paper, together
with their intended meaning. The precise integrity constraints used to enforce the
intended meaning of each attribute are introduced where the attribute is discussed.

Integrity constraints contribute to the concretization function (y) for our abstrac-
tion [Yorsh et al. 2007]. Integrity constraints are enforced by coerce, a clean-up
operation that may “sharpen” a 3-valued logical structure by setting an indefinite
value (1/2) to a definite value (0 or 1), or discard a structure entirely if an in-
tegrity constraint is definitely violated by the structure (e.g., if it cannot represent
any admissible store). To help prevent an analysis from losing precision, coerce is
applied at certain steps of the algorithm, e.g., after the application of an abstract
transformer.

In addition, most of the operations described in this section are not constrained
to manipulate 3-valued structures that are images of canonical abstraction; they
rely on the Embedding Theorem, which applies to any pair of structures for which
one can be embedded into the other. Thus, it is not necessary to perform canonical
abstraction after the application of each abstract structure transformer. To ensure
that abstract interpretation terminates, it is only necessary that canonical abstrac-
tion be applied somewhere in each loop, e.g., at the target of each backedge in the
CFG.

3. THE PROBLEM: MAINTAINING INSTRUMENTATION RELATIONS

The execution of a statement st transforms a 3-valued structure S# , which repre-
sents a store that arises just before st, into a new structure Sf , which represents
the corresponding store just after st executes. The structure that consists of just

the core relations of Sf is called a proto-structure, denoted by S’;fmto. The creation
of S;foto from S¥, denoted by S;foto .= [st]3(S7), can be expressed as
for each ¢ € C and uq,...,u; € US#,
S#
Beroto () (uy, . . oy up) i= [Test(vr, - vp)]5t (01 = ur,y. o op = ug]). (2)

roto With those of Sfé, some
tuples will have been added and others will have been deleted.
We now come to the crux of the matter: Suppose that i, defines instrumentation

In general, if we compare the various relations of S

14 . T. Reps et al.

relation p; how should the static-analysis engine obtain the value of p in 52# ?

An instrumentation relation whose defining formula is expressed solely in terms
of core relations is said to be in core normal form. Because there are no circular
dependences, an instrumentation relation’s defining formula can always be put in
core normal form by repeated substitution until only core relations remain. When
1, is in core normal form, or has been converted to core normal form, it is possible to
determine the value of each instrumentation relation p by evaluating 1, in structure
S;J%"oto:

S#
for each uy,...,ur € U”1

ST)ty u) = [(01, oo 007 (01 = sy o). (3)

Thus, in principle it is possible to maintain the values of instrumentation relations
via Eqn. (3). In practice, however, this approach does not work very well. As
observed elsewhere [Sagiv et al. 2002], when working in 3-valued logic, it is usu-
ally possible to retain more precision by defining a special instrumentation-relation

maintenance formula, i, s1(v1, ..., v;), and evaluating p, o (v1,. .., vx) in structure
Sf&:
S#
for each uq,...,up € U°T |
s# _ st
72 (p)(uty -y uk) = [pp,se(vrs - o)lst ([vr = s oe = ug]). (4)

The advantage of the relation-maintenance approach is that the results of program
analysis can be more accurate: Ex. 3.2 shows that the relation-maintenance ap-
proach enables the precise tracking of “sharing”—information that may be essential
for verifying the correctness of list-manipulating procedures. In 3-valued logic,
when p, 5+ is defined appropriately, the relation-maintenance strategy can generate
a definite value (0 or 1) when the evaluation of ¢, on S;foto generates the indefinite
value 1/2.

To ensure that an analysis is conservative, however, one must also show that the
following property holds:

DEFINITION 3.1. Suppose that p is an instrumentation relation defined by for-
mula v,. Relation-maintenance formula p, o+ maintains p correctly for statement

stif, for all S € Sy[R] and all Z, [up.«]5(2) = [0,]J5*¥) (2). O

For an instrumentation relation in core normal form, it is always possible to
provide a relation-maintenance formula that satisfies Defn. 3.1 by defining 1, s as

Hop, st d:Cf %[C « Tec,st | ceE C]7 (5)

where g < ¢'] denotes the formula obtained from ¢ by replacing each relation
occurrence q(wy,...,wg) by ¢ {wi,...,wr}, and ¢'{ws,...,wi} denotes the for-
mula obtained from ¢’(v1,...,v;) by replacing each free occurrence of variable v;
by Wy .

The formula p, ¢ defined in Eqn. (5) maintains p correctly for statement st
because, by the 2-valued version of Eqn. (2), [re.«]5' (Z) = [[c]]2SpT°t°(Z); conse-
quently, when p, s of Eqn. (5) is evaluated in structure Si, the use of 7. in

Finite Differencing of Logical Formulas : 15

Fig. 11. A store in which w is shared; i.e., isp(u) = 1.

place of c is equivalent to using the value of ¢ when v, is evaluated in Sprot0; i.€.,

for all Z, [plc «— Test | c € C[5"(Z) = [[wp]]gp”’“’(Z). However—and this is pre-
cisely the drawback of using Eqn. (5) to obtain the u, 4—the steps of evaluating
[thple < Test | ¢ € Cl]5* (Z) mimic exactly those of evaluating [[sz]]g’""“’(Z). Con-

#
sequently, when we pass to 3-valued logic, for all Z, [¢plc < Te o | c € C]]]:f1 (Z2)

yields exactly the same value as [[wp]]gsﬁ""“’ (Z) (i.e., as evaluating Eqn. (3)). Thus,
although pip s that satisfy Defn. 3.1 can be obtained automatically via Eqn. (5),
this approach does not provide a satisfactory solution to the relation-maintenance
problem.

EXAMPLE 3.2. Eqn. (6) shows the defining formula for the instrumentation re-
lation s, (“is-shared using n fields”),

isn(v) = oy, va: n(v1,v) An(ve, v) A vy Fus, (6)

which captures whether a memory cell is pointed to by two or more pointer fields
of memory cells, e.g., see Fig. 11.

Fig. 12 illustrates how execution of the statement y = x causes the value of is,
to lose precision when its relation-maintenance formula is created according to
Eqn. (5). The initial 3-valued structure represents all singly-linked lists of length 2
or more in which all memory cells are unshared. Because execution of y = x does not
change the value of core relation n, 7, y—x(v1, v2) is n(v1, v2), and hence the formula
s, y=x(v) created according to Eqn. (5) is vy, v2: n(vi,v) An(ve,v) AviF#ve. As
shown in Fig. 12, the structure created using this maintenance formula is not as
precise as we would like. In particular, is,(u) = 1/2, which means that u can
represent a shared cell. Thus, the final 3-valued structure also represents certain
cyclic linked lists, such as

R DRONOROEO
O

This sort of imprecision can usually be avoided by devising better relation-
maintenance formulas. For instance, when g, y—x(v) is defined to be the formula
sy (v)—meaning that y = x does not change the value of is,,(v)—the imprecision
illustrated in Fig. 12 is avoided (see Fig. 13). Hand-crafted relation-maintenance
formulas for a variety of instrumentation relations are given in [Sagiv et al. 2002;
Lev-Ami and Sagiv 2000; TVLA |; however, those formulas were created by ad hoc
methods.

To sum up, prior to the work presented in this paper, the user needed to supply
a formula g, s for each instrumentation relation p and each statement st. In effect,

16 : T. Reps et al.

unary rels. binary rels. n.

indiv. [z |y |isn nlul| u eq|ul| u N

Structure before ™ 7ol 0 w012 [e[1] 0 x _>@"
u |0]0] O w |0 |[1/2]|w|0|1/2

Statement X
Ta,y= x() = z(v)
Relation-transfer formulas 7y, y=x(v) = (v)
Tn,y= x('U17U2) (’Ul,vg)
Teqy=x(v1,v2) = eq(v1,v2)
Relation-maintenance formula s, y=x(v) = w1, v2: n(v1,v) An(va,v) AviFva

unary rels. binary rels.

indiv. |z |y |isn n|ul| u eqlul| u

) n\\ :
Structure after w |11] 0 w1 0]1/2| [ur[1] 0 x,y»@
18

u [0]0]|1/2 wl|0|1/2]|w]|0|1/2

Fig. 12. An illustration of the loss of precision in the value of is,, when its relation-maintenance
formula is defined by Jvi,v2: n(vi,v) An(va,v) Avi#va. The use of this relation-maintenance
formula causes a structure to be created in which the individual u may represent a shared memory
cell.

unary rels. binary rels. e
indiv. |z |y|isn nlu| u eqlul| u n N
Structure before o 170 0 w012 [ai] 1] 0 x _>@
uw |0|0] o0 wl|0|1/2||ul0]|1/2
Statement =x
To,y= x() = z(v)
Relation-transfer formulas Tyy=x(v) = 2(v)

Tny=x(v1,v2) = n(vi,v2)
Teq,y=x(v1,v2) = eq(v1,v2)

Relation-maintenance formula s,y y=x(V) = isn (V)
unary rels. binary rels. .
indiv. |z |y|isn nlul| u eq|ul| u N
Structure after w111 0 w012 [1] 0 X,y 9@ n
u |0]0] 0 w|0(1/2]|wu|0]|1/2

Fig. 13. Example showing how the imprecision that was illustrated in Fig. 12 is avoided with
the relation-maintenance formula ps,, y=x(v) = isn(v). (Ex. 5.1 shows how this is generated
automatically.)

the user needed to write down two separate characterizations of each instrumenta-
tion relation p: (i) 1, which defines p directly; and (ii) pp, s, which specifies how
execution of each kind of statement in the language affects p. Moreover, it was the
user’s responsibility to ensure that the two characterizations were mutually consis-
tent. In contrast, with the method for automatically creating relation-maintenance
formulas presented in §5 and §6, the user’s responsibility is dramatically reduced:
the user only needs to give a single characterization of each instrumentation re-
lation p—namely, by defining 1,. (In separate work, we have developed ways to
use inductive logic programming to discover an appropriate set of instrumentation
relations that define a suitable abstraction for checking whether a given program
has a given property [Loginov et al. 2005; Loginov 2006; Loginov et al. 2007].)

Finite Differencing of Logical Formulas . 17

4. OUR APPROACH AT AN INFORMAL LEVEL

As illustrated by Ex. 3.2, relation-maintenance formulas that are defined by Eqn. (5)
can yield imprecise answers. In essence, Eqn. (5) specifies that the new value of
instrumentation relation p should be computed using its defining formula ,, but
taking into account updates to any core relation c that occurs in t,. Unfortunately,
the approach of Eqn. (5) is equivalent to that of Eqn. (3): they both rely on
recomputing the value of instrumentation relation p based on its defining formula
1p. In the presence of abstraction, the indefinite value 1/2 for a core-relation tuple
often causes recomputed instrumentation-relation tuples to evaluate to 1/2, as well.
For instance, as illustrated in Ex. 3.2, the dashed n edges incident on v in Fig. 12
cause is,(u) to evaluate to 1/2.

As we saw in Fig. 13, such recomputation is not always necessary. The values
of n—the only core relation that is used to define is,—cannot change as a result
of executing y = x; consequently, the values of instrumentation relation is,, do not
need to change as a result of y = x. Moreover, as will become apparent shortly,
even when the values of tuples in an instrumentation relation do need to change,
they can often be maintained more precisely by means other than recomputation.

The framework of Sagiv et al. includes a mechanism for maintaining more precise
values for core-relation tuples in abstract structures. Roughly speaking, the focus
operation is used to ensure that the core-relation tuples in the “vicinity” of an up-
date have precise values during a structure transformation, although they may be
set to 1/2 when abstraction is applied at the end of the transformation. (For more
details about focus, see [Sagiv et al. 2002, §6.3].) Most programming languages
have the property that they perform only localized changes to core relations. As a
practical matter, what this meant for the TVLA system—prior to our work—was
that it was usually possible to create hand-crafted relation-maintenance formulas
that retain precision under most circumstances. However, prior to the adoption in
TVLA of the techniques presented in §5 and §6 for creating relation-maintenance
formulas automatically, the task of crafting a good set of relation-maintenance for-
mulas required substantial expertise, and remained a bit of “black art”.

Fig. 14 illustrates some of the issues; it addresses the problem of maintain-
ing 4s, in response to the execution of the statement x —n =y, assuming that
x—n = NULL. The statement changes relation n: it adds a new n edge from the
individual pointed to by x to that pointed to by y. Thus, the relation-maintenance
formula for is,, is nontrivial. However, by noting that is,, can only change in a small
part of the structure (the “vicinity” of the update), one can specify the following
incremental relation-maintenance formula:

s x—n=y (V) = isn (0) V(y(v) AFvr: n(v1,0)). (7)

Eqn. (7) reuses the stored value of is, for all individuals, except the one that is
pointed to by y. For that individual, it checks whether it has an incoming n edge
prior to the update. In Fig. 14 it does not, and the value of is,, remains 0 for all
individuals.

In our first attempt to automate the process of computing incremental relation-
maintenance formulas for first-order logic, we defined the finite-differencing scheme
shown in Fig. 15. In this scheme, Ag[p] captures the change to ¢’s value. With

18 : T. Reps et al.

unary rels. binary rels.
indiv. |z |y |isn n|ul|uz| u eq |ul|uz| u X —>@
Structure before up |1{0] 0 ur |00 0 |jur|1]0] O N "
ug 0|1 0 us| 00 1/2 uz [0] 1 0 y 9G@ n
uw |0|o] o0 wlo|o|1/2||u]0]o0]|1/2

Statement x—n =y (assuming x —n = NULL)

Tz x—m=y (V) = z(v)

Ty x—n=y(v) = y(v)
Tn,x—n=y(v1,v2) = n(v1,v2) V(z(v1) Ay(v2))
Teq,x—m=y(v1,v2) = eq(v1,v2)

Relation-transfer formulas

Relation-maintenance formula is,, x—n=y(V) = 51 (v) V(y(v) ATv1: n(v1,v))
unary rels. binary rels.
indiv. |z |y |isn n|u|u2| w eq|ul|uz| u X 9@
Structure after up |10} O up| 01| 0 ||u|[1[0] O ; N ")
ug of1] 0 u2| 0|0 1/2 u|0[1]0 y_>_7_1
u |0]0| 0 w|0[0|1/2[|u]|0]|0]1/2

Fig. 14. Example of a nontrivial relation-maintenance formula for relation is,.

® Astle]
1 0
0 0

plwi,...,wg),p € C||(1p,st Bp){w1, ..., wr}
p(wi, ..., wi), p € T || Asi[hpl{wr, ..., wi}

01 B2 Astlo1] B Asit[p2]
01 A2 (Ast[p1] A p2) B(p1 A Astlwa]) B(Astpr] A Astlewa])
You: @1 (Vv:p1) 7 (3v: Astlp]) : (Vo: o1 B As[e1])

Fig. 15. A finite-differencing scheme for first-order formulas, based on exclusive-or ().

Fig. 15, the maintenance formula for instrumentation relation p is

Np,st d:Cf p @ Ast[z/]p]a (8)

where @ denotes exclusive-or. However, in 3-valued logic, we have 1/2®V =1/2,
regardless of whether V is 0, 1, or 1/2. Consequently, Eqn. (8) has the unfortunate
property that if p(u) = 1/2, then p, s evaluates to 1/2 on u, and p(u) becomes
“pinned” to the indefinite value 1/2; it will have the value 1/2 in all successor
structures Sf, in all successors of Sf, and so on. With Eqn. (8), p(u) can never
reacquire a definite value.

This led us to consider a scheme that separates the negative change to a formula’s
value from the positive change:

Pp.st =p7 _‘A;Wp] : A;‘;Wp]v 9)

where finite-differencing operators A3, [-] and Af;[] capture the negative and positive
changes, respectively. (These operators are discussed in detail in §5 and §6.) In this
approach to the relation-maintenance problem, the two finite-differencing operators
characterize the tuples of a relation that are subtracted and added in response to a
structure transformation.

Because they have the form p ? =Aj[,] : Af[,], the maintenance formulas
created using Eqn. (9) do not suffer from the problem exhibited by the mainte-
nance formulas created using Eqn. (8) (discussed above). The use of if-then-else
allows p(u) to reacquire a definite value after it has been set to 1/2: when p(u)

Finite Differencing of Logical Formulas : 19

is 1/2, pp st evaluates to a definite value on w if [[As_t[wp(v)]]]g#([v — wu]) is 1 and
[[Ajt[wp(v)]]]g#([v — u]) is 0, or vice versa.

Limitations. The finite-differencing technique that we present in this paper is
applicable to any method in which systems are described as evolving (2-valued or
3-valued) logical structures. However, it is important to note some limitations of the
approach. First, it relies on a first-order encoding of all properties. In particular,
the finite-differencing technique includes no explicit handling of numerical proper-
ties; we expect those to be modeled implicitly by other relations, such as the binary
relation dle (see §2.2). It may be possible to combine numerical finite differencing
[Goldstine 1977] with our approach, thus creating a finite-differencing technique
that is prepared to handle numerical properties explicitly. Second, for maintaining
transitive-closure (reachability) relations, the finite-differencing technique is effec-
tive only when transitive-closure relations can be updated using first-order formulas.
86 describes in detail the extent to which our approach can be used to maintain
transitive-closure relations.

5. RELATION MAINTENANCE FOR 2-VALUED (AND 3-VALUED) FIRST-ORDER
LOGIC VIA FINITE DIFFERENCING

This section presents an algorithm for creating relation-maintenance formulas that
is based on finite differencing. The discussion will be couched primarily in terms
of 2-valued logic; however, by the Embedding Theorem (Theorem 2.6, [Sagiv et al.
2002, Theorem 4.9]), the relation-maintenance formulas that we derive provide
sound results when interpreted in 3-valued logic. In 3-valued logic, as demonstrated
in Fig. 13 (and discussed further in Ex. 5.1), the resulting formula can lead to a
strictly more precise result than merely reevaluating an instrumentation relation’s
defining formula.

Our algorithm for creating a relation-maintenance formula p,, &, for p € Z, uses
an incremental-computation strategy: p, o+ is defined in terms of the stored (pre-
state) value of p, along with two finite-differencing operators, denoted by A_[-] and
AL[]. The finite-differencing operators capture the negative and positive changes,
respectively, that execution of structure transformer st induces in an instrumenta-
tion relation’s value. The formula i, o is defined as follows:

pp,st =P 7 ALYy : AZ@[%]- (10)

Maintenance formula p, o specifies the new value of p (i.e., its value in Sy, in the
case of a 2-valued structure, or S2# , in the case of a 3-valued structure) in terms of
the old values of p, A5[thy], and A%[y,] (ie., their values in Sy or S¥). Eqn. (10)
states that if p’s old value is 1, then its new value is 1 unless there is a negative
change; if p’s old value is 0, then its new value is 1 if there is a positive change.

Fig. 16 depicts how the static-analysis engine evaluates Aj[1,] and Af[y,] in
S’f& and combines these values with the old value p to obtain the desired new value
p”. The operators A[-] and AJ[] are defined recursively, as shown in Fig. 17.
The definitions in Fig. 17 make use of the operator F[p] (standing for “Future”),
defined as follows:

Fale] = 0 7200 Ally]. (11)

20 : T. Reps et al.

execute statemest
S:jroto
eAvaluat
'
retrieve| (evaluat§y ovl A
stored | \ Adw] [w,l evaluate
value

Yo

T,
M
T - ----=

Fig. 16. How to maintain the value of v, in 3-valued logic in response to changes in the values of
core relations caused by the execution of structure transformer st.

Thus, maintenance formula p, s can also be expressed as pip s = Fy[p].

Formula (11) and Fig. 17 define a syntax-directed translation scheme that can be
implemented via a recursive walk over a formula ¢. The operators Aj;[-] and Af,[]
are mutually recursive. For instance, At [—p1] = AL [p1] and Ay [—e1] = Afe1].
Moreover, each occurrence of Fg[¢;] contains additional occurrences of Aj,[p;] and
bl

Note how Aj[] and Af[] for ¢1 V2 and @1 Ay exhibit the “convolution”
pattern characteristic of differentiation, finite differencing, and divided differencing.

Continuing the analogy with differentiation, it helps to bear in mind that the
“independent variables” are the core relations—which are being changed by the
Te,st formulas; the dependent variable is the value of ¢. A formal justification of
Fig. 17 is stated later (Theorem 5.3 and Cor. 5.4); here we merely explain informally
a few of the cases from Fig. 17:

AL[1] =0, A;[1] = 0. The value of atomic formula 1 does not depend on any
core relations; hence its value is unaffected by changes in them.

ALlpr A2l = (Aglp1] Aw2) V(pr A AL [p2]). Tuples of individuals removed
from 1 A @9 are either tuples of individuals removed from ¢; for which ¢y also
holds (i.e., (Ag[w1] A 2)), or they are tuples of individuals removed from o for
which ¢; also holds, (i.e., (¢p1 A A [p2]).

ALBv: o] = (3v: ALJp1]) A=(3v: ¢1). For Jv: ¢ to change value from 0
to 1, there must be at least one individual for which ¢; changes value from 0 to 1
(i.e., Jv: Al [p1] holds), and Fv: ¢, must not already hold (i.e., =(3v: ;) holds).

Ablp(ws,...,wp)] = (3v: ALlp1]) A=p, if p € T and ¥, = Fv: ¢1. This case is
similar to the previous one, except that the term to ensure that Jv: ¢; does
not already hold (i.e., =(3v: ¢1)) is replaced by the formula —p. Thus, when
(3v: AL[p1]) A —p is evaluated, the stored value of Jv: ¢y, i.e., p, will be used
instead of the value obtained by reevaluating Jv: 7.

AbLp(wi,. .. wg)] = AL {ws, ... wi}], if p € T and ¥, # Jv: ¢1. To charac-
terize the positive changes to p, apply AY, to p’s defining formula Vp.

One special case is also worth noting: Af,[v; =v2] = 0 and A, [v; =v2] = 0 because
the value of the atomic formula (v; =v2) (shorthand for eg(vy,v2)) does not depend
on any core relations; hence, its value is unaffected by changes in them.®

5We avoid issues that could arise due to changes in a structure’s universe of individuals by modeling
storage allocation and deallocation via a free-storage list. We describe our solution in more detail
at the end of this section.

@ Allel AZ[g]
1 0 0
0 0 0

plwy,...,wg),
p€C,and 7 o
is of the form

- st
p ? ﬁ(Sp“et . 5p.st

(5;:55/_‘17){7-017 s ,U)k}

Oy e AP){wr, -

7wk}

p(wi, ..., wg),
p€C,and 7 o
is of the form
PV 6p st OF
5p,sth

(5p75t/\ﬂp){w1, c.. ,wk}

plwr, - we),
p€C,and 7 o
is of the form
DA Op, st OF
6p,st/\p

(—6p,st Ap){wi, ...

>/wk}

p(wi, ..., wg),
peC,but 7 &
is not of the
above forms

(1p,st Ap){w1, ..., wi}

(p A ﬁprst){’wl, ..

LWk}

p(wy, ..., wg),

((?'u: AL[oi) A=p){wr, ..., wi} ifh, = Tv:

(Fv: Agler]) Ap){ws, ..

Swi} ifyy, =V ¢

peT AL {wr, ..., wi} otherwise AGp{wr, ... wi} otherwise
1 Agler Adler

P1V 2 (AG[p1] A —p2) V(mer A A pa]) (Agler] A—Faipa]) V(oFafp1] A Agles])
PLA P2 (Al] AFsilpa]) V(Fsilpr] A Afp2]) (Aulpi] A pa) V(o1 A A fpo])

Jou: ¢y Fv: ALJoi) A=(3v: ¢1) (Fo: Aglp1]) A(3v: Fafei])

You: o (3v: A1) AVv: Fyfpr]) (Fov: Aglp]) AV v: 1)

Fig. 17. Finite-difference formulas for first-order formulas.

se|nwJo4 |e21807 jo Suduassiq dHuI

1¢

22 . T. Reps et al.

+1; - . (A% (1,0)}/\Fst[n(vzwﬂ 4
A lisn(v)] = (3@1,@2. (\/ (Fuln (Uh v) /\Ast[n(vg,v)} >/\v1;év2)/\—|zsn(v)

)
S

(n(vh /\Ast [’I’L(’Ug,)
)
)))
]
]

)) Avitos

AN

. (n(v1,v) An(ve,v) AviFv2)

AL lisn (v)] . << (A [n(v1,v)] An(va, v)
= | Jvi,v2: Vv (n(vi,v) AAG[n(v2,v)]

. ((AL [n(v1,v)] AFg[n(vs,v)

"\ V (Fan(vi,v)] AAL R(v2, v)

Fig. 18. Finite-difference formulas for the instrumentation relation sy, (v).

EXAMPLE 5.1. Consider the instrumentation relation is, (“is-shared using n
fields”), defined in Eqn. (6). Fig. 18 shows the formulas obtained for Af,[is, (v)]
and A [isn(v)].

For a particular statement, the formulas in Fig. 18 can usually be simplified.
For instance, for y = x, the relation-transfer formula 7, y—y (v, v2) is n(vi,v2); see
Fig. 12. Thus, by Fig. 17, the formulas for Al_ [n(v,v)] and A, [n(vi,v)] are
both n(vy,v) A —n(v1,v), which simplifies to 0. (In our implementation, sim-
plifications are performed greedily at formula-construction time; e.g., the con-
structor for A rewrites OAp to 0, LAp to p, pA—p to 0, etc.) The formulas
in Fig. 18 simplify to Af_, [is,(v)] = 0 and A, [is,(v)] = 0. Consequently,
His, y=x(V) = Fy_g[isy (v)] = isp(v) 770 : 0 = isy(v). As shown in Fig. 13, this
definition of fi;s, y—x(v) avoids the imprecision that was illustrated in Ex. 3.2. O

Correctness of the Relation-Maintenance Scheme

The correctness of the finite-differencing scheme given above is established with the
help of the following lemma:

LEMMA 5.2. For every formula ¢, @1, 2 and structure transformer st, the fol-
lowing properties hold:S

(). ALl & Fule] Ao
(ii). Agle] & o A—Fyly]

(ii).

meta

(a). Fa[np1] <= = Fsp1]

(b). Fulpr Vo] £ Fyp1] V Fol o]
(©). Fulpr Apa] € Fulo1] A Falps)
(d). Fy[Fv: 1] £S5 Fv: Fylpi]

(e). FylVv: 1] E3 Vu: Fylei]

PRrROOF. See App. A. O

Lemma 5.2 shows that for structures in So, Af,[] specifies the tuples that are not
in the relation defined by ¢, but need to be added in response to the execution of st,

6To simplify the presentation, we use lhsE=3rhs and lhs ==>rhs as shorthands for [ths]5 (Z) =
[rhs]5 (Z) and [lhs]$(Z) < [rhs]5(Z), respectively, for any S € Sz and assignment Z that is
complete for lhs and rhs.

Finite Differencing of Logical Formulas : 23

@ Fay]

1 1

0 0

p(wi, ..., wi),p € C||mp,st{wi, ..., wr}

p(wi, .., wi),p € Z|[p(wy, ..., we) ? 2AG[p(wy, .., wi)] * Af[p(ws, - .., wi)]
-1 —Fyfio1]

01V 2 Fa[p1] V Falpo]

1A P2 Fat[p1] A Fatp2]

Jv: o1 Fv: Faler

You: pr Vou: Fa[p1

Fig. 19. Optimized formulas for the operator F[ep].

and that A7 [p] specifies the tuples that are in the relation defined by ¢ that need to
be removed. Lemma 5.2 is used in the proof of the following theorem, which ensures
the correctness of the finite-differencing transformation given in Fig. 17, as well as
the finite-differencing-based scheme for relation maintenance given in Eqn. (10):

THEOREM 5.3. Let S1 be a structure in Sa, and let Sproto be the proto-
structure obtained from S, using structure transformer st. Let So be the struc-
ture obtained by using Sproto as the first approzimation to So and then fill-
ing in instrumentation relations in a topological ordering of the dependences
among them: for each arity-k relation p € I, 192(p) is obtained by evaluating
[p(v1, . o)]52 (o1 —). .. op = ul]) for all tuples (u),...,u,) € (US2)k,
Then for every formula o(v1,...,v) and complete assignment Z for o(vy,...,vk),
[Falp(vr,- . o)ll5"(2) = [p(vr, -, v)]52(2).

PROOF. See App. A. O

For structures in Ss, the soundness of the finite-differencing transformation given
in Fig. 17, as well as the finite-differencing-based scheme for relation maintenance
given in Eqn. (10), follows from Theorem 5.3 by the Embedding Theorem (Theo-
rem 2.6):

COROLLARY 5.4. Let 51,52 € S be defined as in Theorem 5.53. Let Sfﬁ €
S3 be such that f: UST — UST embeds S in Sf, ie, S Cf Sfﬁ. Then
for every formula @(vi,...,vx) and complete assignment Z for o(vi,...,vx),

S#
[Falo(vr,....o)lls" (f o Z) 2 [p(vr,...,v)[5%(2). O
Optimized Formulas for Fg[]

For a non-atomic formula ¢, the operator Fgp] defined in Formula (11) intro-
duces a copy of ¢, because it has no way, in general, to refer to a relation that
holds the stored value of ¢. The reevaluation of ¢ inherent in the version of F][]
from Formula (11) (i.e., Fy[p] = ¢ ? ... : ...) may cause a substantial loss of
precision. One way to retain higher precision is to propagate Fg[-] into the subfor-
mulas of ¢, down to the level of atomic formulas—either core-relation symbols or
instrumentation-relation symbols—as shown in Fig. 19.

Suppose that ¢’ is the result of F[p] by the method of Fig. 19. An evaluation
of ¢’ will evaluate (copies of) the operators of ¢, down to the level of each atomic

24 . T. Reps et al.

subformula p(wy,...,wg) in @. At that level, if p € Z, Fg[-] will have introduced
an occurrence of p in ¢':

def

Falp(wi,...,wr)] = plws,...,wg) ? AL [p(ws,. .., wk)] s ALp(wr, ..., wg)].
(12)
The occurrence of p in the test refers to the stored (“pre-state”) value of
instrumentation-relation p; consequently, the stored tuples of relation p will be
used when evaluating ¢'.

Note that AJ;[p] and AZ,[p] in Formula (12) dispatch according to the case for
p € T in Fig. 17. In particular, because Fg[-] occurs in four of the eight cases for
Af[] and Ag[] in Fig. 17—i.e., for V, A, 3, and V-—the optimized F [] is invoked
recursively on various subterms of .

The correctness of the version of Fg[-] defined in Fig. 19 follows from Lemma 5.2.

The method described above also usually produces smaller instrumentation-
relation maintenance formulas, and hence creates abstract transformers that gen-
erally can be evaluated more quickly. This technique is incorporated into our im-
plementation.

Complexity of the Relation-Maintenance Scheme

There are at most three operations that can be applied to each subformula ¢ consid-
ered during the method for creating a relation-maintenance formula: F g [p], Ao,
and Af[p]. Duplicate work can be avoided be performing function caching (also
known as memoization [Michie 1968]). Moreover, for each of the possible operator-
node kinds for ¢’s outermost operator, each of the operations Fg[p], A [¢], and
Al]p] introduces a constant number of operator nodes into the answer formula
(together with the results of additional calls on Fgp;], Agle:], and Af[p;] for
various subformula(s) ¢; of). We will assume that the algorithm (i) uses a DAG
representation of the output formula (so that subformulas are shared in the answer
formula), (ii) memoizes calls on Fy[¢], Ay [¢], and Af,[¢] (thereby possibly creating
shared subformulas in the answer formula), and (iii) the hashed-lookup operation
used during memoization takes unit time per lookup. Under these assumptions,
for an instrumentation relation defined by formula v, the overall cost of creating a
relation-maintenance formula via our finite-differencing scheme is linear in the size
of the DAG that represents ¢ in core normal form (see §3).

Discussion

Earlier in the paper we touted the advantages of being able to apply related 2-valued
and 3-valued interpretation functions to a single formula—which, in essence, uses
overloading to define two related meaning functions. Thus, it may seem somewhat
inconsistent for us to address the problem of maintaining instrumentation relations
by an approach that involves explicit transformations of formulas rather than by
an approach based on overloading. (In unpublished work, we have studied such
an approach—e.g., interpreting instrumentation predicate p’s defining formula 1,
with respect to both the pre-state structure S; and a specification of the differences
between the core predicates of S and those of Sproto.) The reason that we use
a transformation-based approach is that it gives us an opportunity to simplify
the resulting formulas (either on the fly, or in a post-processing phase after finite

Finite Differencing of Logical Formulas : 25

differencing).

In the context of evaluation in 3-valued logic, simplification is important be-
cause even formulas that are tautologies in 2-valued logic may evaluate to 1/2 in
3-valued logic. For instance, pV —p yields 1/2 when p has the value 1/2, even
when p is a nullary relation symbol. The finite-differencing transformation that
we implemented uses a formula-minimization procedure for 3-valued logic that we
developed [Reps et al. 2002]. The minimization procedure applies to propositional
logic; for propositional logic, it is guaranteed to return an answer that captures
the formula’s “supervaluational meaning” [van Fraassen 1966]. This procedure is
used as a subroutine in a heuristic method for minimizing first-order formulas; the
method works on a formula bottom-up, applying the propositional minimizer to the
body of each non-propositional operator (i.e., each quantifier or transitive-closure
operator).

A relation-maintenance formula that has been simplified in this way can some-
times yield a definite value in situations where the evaluation of the unsimplified
relation-maintenance formula—or, equivalently, an overloaded evaluation of the re-
lation’s defining formula—ryields 1/2. (For instance, minimizing p V —p yields 1,
which evaluates to 1 even when p has the value 1/2.) Consequently, the formula-
transformation approach to the relation-maintenance problem leads to more precise
static-analysis algorithms.

Malloc and Free

In [Sagiv et al. 2002], the modeling of storage-allocation/deallocation operations is
carried out with a two-stage structure transformer, the first stage of which changes
the number of individuals in the structure. This creates some problems for the
finite-differencing approach in establishing appropriate, mutually consistent values
for relation tuples that involve the newly allocated individual. Such relation values
are needed for the second stage, in which relation-transfer formulas for core relations
and relation-maintenance formulas for instrumentation relations are applied in the
usual fashion, using Eqns. (2) and (4).

However, there is a simple way to sidestep this problem, which is to model the
free-storage list explicitly, making the following substructure part of every 3-valued
structure:

freelist —>@--@> (13)

A malloc is modeled by advancing the pointer freelist into the list, and returning
the memory cell that it formerly pointed to. A free is modeled by inserting, at
the head of freelist’s list, the cell being deallocated. This approach models limits
on available storage naturally, while the introduction of one integrity constraint
enables it to model unbounded storage.”

It is true that the use of structure (13) to model storage-allocation/deallocation
operations also causes the number of individuals in a 3-valued structure to change;

"Instead of a free-storage list, one could use a (bounded or unbounded) set of memory locations
to model storage allocation and deallocation. In that approach, instead of reachability from the
pointer freelist, a core unary relation would mark free cells, thus distinguishing them from
allocated cells that have been leaked.

26 : T. Reps et al.

p IntendedMeaning Up

tn(v1,v2) | Is va reachable from vi along n fields? n*(v1,v2)

Tn,z (V) Is v reachable from pointer variable z along n fields? | Jv; : z(v1) A tn(v1,v)
cn(v) Is v on a directed cycle of n fields? v n(vy,v) Atn(v,v1)

Fig. 20. Defining formulas of some instrumentation relations that depend on RT'C. (Recall that
n*(v1, v2) is a shorthand for (RTC v{,v}: n(v],v}))(v1,v2).)

however, because the new individual is materialized using the usual mechanisms
from [Sagiv et al. 2002] (namely, the focus and coerce operations), values for relation
tuples that involve the newly materialized individual will always have safe, mutually
consistent values.

6. MAINTENANCE FORMULAS FOR REACHABILITY AND TRANSITIVE CLO-
SURE

Several instrumentation relations that depend on RTC are shown in Fig. 20. Un-
fortunately, finding a good way to maintain instrumentation relations defined using
RTC is challenging because the evaluation of a formula that uses the RTC op-
erator in a 3-valued structure generally produces many tuples with the value 1/2.
This happens because in an abstracted binary relation, tuples (“edges”) that involve
summary individuals often have the value 1/2. (For instance, see the dashed n
edges incident on u in structure (13).) Because the semantics of a tuple (uq,us2)
computed via RTC is defined to be the “max over all paths P from u; to us of
the minimum value of an edge along P” (see Defns. 2.2 and 2.4), the presence of
indefinite edge-tuples often causes the path-tuple computed for a pair (uj,u2) to
have the value 1/2. Moreover, it is not known, in general, whether it is possible
to write a first-order formula (i.e., without using a transitive-closure operator) that
specifies how to maintain the closure of a directed graph in response to edge in-
sertions and deletions. Thus, our strategy has been to investigate special cases for
classes of instrumentation relations for which first-order maintenance formulas do
exist. Whenever these do not apply, the system falls back on safe maintenance
formulas (which themselves use RTC).

In this section, we confine ourselves to important special cases for the main-
tenance of instrumentation relations specified via the RTC of a binary formula
©1(v1,v2). In §6.1, we consider the case in which ¢;(vy,v2) defines a directed
acyclic graph. In §6.2, we consider the case in which ¢;(v1,v2) defines a tree-
shaped graph. Finally, in §6.3, we consider the case in which ¢1(v1,v2) defines a
deterministic graph—i.e., a possibly-cyclic graph, in which every node has outde-
gree at most one (this class of graphs corresponds to possibly-cyclic linked lists).
This collection of techniques allows us to handle most common data structures,
such as lists (singly- and doubly-linked; cyclic and acyclic) and trees. The precision
of all of these techniques is due to the fact that maintenance of RTC after unit-
size changes (single-edge additions or deletions)® is performed via first-order logical
formulas only. However, maintaining RTC of an arbitrary directed graph, as well
as maintaining RT'C of restricted classes of graphs with arbitrary-size changes, is

8These techniques can be extended to handle bounded-size addition and deletion sets.

Finite Differencing of Logical Formulas . 27

not known to be first-order expressible. In such cases, our algorithm returns a for-
mula that uses the RT'C operator; the evaluation of such a formula may yield more
indefinite answers than necessary.

To specify that the maintenance of binary relation p(v1,v2) defined as the RTC of
binary formula 1 (v1, v2) should rely on one of the special cases, the user annotates
formula 7 with attributes. To state that ¢i(v1,vs) defines a directed acyclic
graph, the user gives p; attribute “acyclic”; to state that ¢;(v1,v2) defines a tree-
shaped graph, the user gives o7 attribute “tree”; to state that i(v1,v2) defines
a deterministic graph, the user gives ¢; attribute “function”. See Fig. 10 for the
intended meanings of these attributes.

The analysis uses the attributes to generate integrity constraints to be enforced by
the sharpening operation coerce (see §2.2.2). For instance, when relation p(vy,v9)
is defined as the RT'C of formula ¢;(v1,v2) that is annotated with the attribute
“acyclic”, the analysis generates the following two constraints:

Vi, v2: p(ur,v2) Ap(ve,v1) = v1 =2

Vi, vt p(v1,v2) Avi # va = —p(va,v1).
When ¢1(v1,v2) is annotated with the attribute “tree”, the analysis generates the
above acyclicity constraints, together with constraints that ensure that ;(v1, v2)
is an inverse partial function.

Whenever coerce determines that a constraint is (possibly) not satisfied after the
application of a transformer, a warning is generated.

6.1 Transitive-Closure Maintenance in Directed Acyclic Graphs

Consider a binary instrumentation relation p, defined by ¥,(vi,v2) =
(RTC v}, vh: v1)(vi,v2). If the graph defined by ¢; is acyclic, it is possible to
give a first-order formula that maintains p after the addition or deletion of a single
p1-edge. The method we use is a minor modification of a method for maintaining
non-reflexive transitive closure in a directed acyclic graph, due to Dong and Su
[2000].

In the case of an insertion of a single ¢;-edge, the maintenance formula is

F i [p](v1,v2) = p(v1,v2) V(0] 05 p(or,v]) A AL 1] (v],v5) Ap(vh, v2)). (14)

The new value of p contains the old tuples of p, as well as those that represent
two old paths (i.e., p(v1,v]) and p(vh,v2)) connected with the new ¢1-edge (i.e.,

Adlea](v], v3))-

The maintenance formula to handle the deletion of a single ¢;-edge is a bit more
complicated. We first identify the tuples of p that represent paths that might rely
on the edge to be deleted, and thus may need to be removed from p (S stands for
suspicious):

Slp, 1](v1,v2) = vy, v3: pur, vh) AAG[er](vh,v3) Ap(vh, v2).
We next collect a set of p-tuples that definitely remain in p (T stands for trusted):
T'p, p1)(v1,v2) = (p(v1,v2) A =S[p, 1] (v, v2)) V Farfipr](v1, v2). (15)

Finally, the maintenance formula for p for a single ¢1-edge deletion is

Fst[p](vlv U2) =3 Ullv U/2: T[p, (,01](’017 Ui) A T[p, (pl](viv U/2) A T[p, 901](“/27 U2)' (16)

28 : T. Reps et al.

a b
Fig. 21. Edge (a,b) is being deleted; u; is the last node along path ui, ..., u;, uiy1, ..., ux from
which a is reachable.
@ A
(Gr: A%l Aw)wr, i iy = 30: o1

(3 UII:UZ ef[ﬁal](vlv)

v3)

p(wi, ..., wg), P(Ul, v1) ifypp =

peET A avll,’ué [1](1} ,'UIQ) /\—lp(Ul,’L)Q) {wl,wg} (RTC v/l,vlzz Lpl)(vl,’uz)
)

/\p('u27)
A:rt[l/)p]{wly Wi} otherwise
® Aglel
(Fv: Aglea]) Ap){wa, ... wi} ifihp = Vu: o1

(3], v5: AGler] (v, v5))

p(wi, ..., wy), T[p, ¢1](v1,v1) ifyp =
pel Al = 30 AT, e1](v],v5) | Ap(vr,v2) | {wr,we} (RTC vy,v5: w1)(v1,v2)

AT[p, ¢1](v3, v2)
Agp{wr, .. wi} otherwise

Fig. 22. Extension of the finite-differencing method from Fig. 17 to cover RTC formulas, for
unit-sized changes to a directed acyclic graph defined by ¢;.

Maintenance formulas (14) and (16) maintain p when two conditions hold: the
graph defined by ¢; is acyclic, and the change to the graph is a single edge addition
or deletion (but not both). To see that under these assumptions the maintenance
formula for a (;-edge deletion is correct, suppose that there is a suspicious tuple
p(ur,ug), i.e., S[p,¢1](u1,ur) = 1, but there is a ¢i-path wuq,...,u; that does
not use the deleted ¢i-edge. We need to show that Fg[p](u1,ur) has the value 1.
Suppose that (a,b) is the p1-edge being deleted; because the graph defined by ¢,
is acyclic, there is a u; # uy that is the last node along path wy, ..., u;, wig1,...,u
from which a is reachable (see Fig. 21). Because p(ui,u;) and p(u;t1,ur) both
hold, and because u; cannot be reachable from b (by acyclicity), neither tuple is
suspicious; consequently, T'[p, ¢1](u1,u;) = 1 and T'[p, v1](uit1,ur) = 1. Because
(ui, uiq1) is an edge in the new (as well as the old) graph defined by ¢, we have
Fi[o1](ui, uir1) = 1, which means that T[p, p1](ui, uir1) = 1 as well, yielding
Fo[p](u1,ur) = 1 by Equ. (16).

Fig. 22 extends the method for generating relation-maintenance formulas to han-
dle instrumentation relations specified via the RTC of a binary formula that de-
fines a directed acyclic graph. Fig. 22 makes use of the operator T'[p, ¢1](v,v’)
(Eqn. (15)), but recasts Eqns. (14) and (16) as finite-difference expressions Af;[1),]
and A [t),], respectively.

Finite Differencing of Logical Formulas : 29

relation p . Ajt [¥p]

tn(v3,v4) A$[tn(vg, vg)]
= (tn(v3,v4) V(Iv1,v2: tn(vz,v1) AAT[n(v1,v2)] Atn (v2,v4))) Aty (v3,v4)
Tn,z(v) A [rn,=(v)]

(Fo1: AL[2(v1) A ta(v1,0)]) A=,z ()

(For: (A;[z(m)} AFsi[tn(v1,0)]) V(Fs[z(v1)] A Aj‘t[tn(ul ,0))) A=,z (v)
cn(v) Aflen(v)]

= (Fovr: AL,) At (v,v1)]) A—en(v)

(3v1: (AL [n(v1,0)] A Faaltn (v, 01)]) V(Fatln(v1,0)] A A% [t (v, 01)])) A mn(0)

Fig. 23. The formulas obtained via the finite-differencing scheme given in Figs. 17 and 22 for the
positive changes in the values of the instrumentation relations defined in Fig. 20.

relation p AL p]

tn(v3,v4) Ay [tn(v3,v4)]
= (Fv1,v2: Tltn,n](v3,v1) AT [tn,n](v1,v2) AT [tn, n](v2,v4)) A tn(v3,vs)
< (tn(v3,v1) A=S[tn, n)(v3,v1) V Fg[n](v3, v1)))
o, v2: A (tn(vi,v2) A=S[tn, n](v1,v2) VFg[n](vi,v2)) | Atn(vs,va)
A (tn(v2,v4) AS[tn, n](v2, v4) V Fg[n] (v, vs))
(tn(v3,v1) A=(T], vh: tn(v3,v]) AAL[R](V], 0h) Atn(vh,v1)) V Fet[n](vs, v1))
= (3 v1,v2:0 A (ta(v1,v2) A=(3o], vt (v, v]) AAG[R](v],0h) Atn (v, v2)) V Fgi[n](v1, v2)))
A (tn(v2,v4) A(3],vh: ta(va, v]) AAG[R](V], v5) Atn(vh,v4)) V Fei[n](va, v4))
/\tn(vg,m)
Tn,z(v) Agi[rn,z(0)]
AL[Fv1: z(v1) Atn(vr,v)]
(3ovr: AL [z(v1) Atn(v1,0)]) A (Fv1Fgfz(v1) At (v, v)])
(Fvr: (Ag D)) Atn(v1,0)) V(2(01) AA Gt (v1,v)])))
A
= (2(v1) Atn (v1,0))
- (Elfulz (? =AL[z(v1) Ate(vi,v)]))
: A:;[z(m) Atn(v1,0)]
(For: (Ag (D] A tn(v1,0)) V(2(v1) AAG [t (v1,0)))))
A

= (z(v1) A tn(v1,v))
- (EI vyt (? =((AL[z(v)] Atn (v,) V(z(v1) AAG [ta(v1,0)]))))
: (AL E@D] ARt (v1,v)]) V(Fs[z(0)] A A [t (v1,0)]))

cn(v) A len(v)]

AL [Bvr: n(vr,v) Atn(v,v1)]

(Fv1: Ag[n(v1,v) Atn(v,01)]) A=Fsi[For: n(v1,v) Atn(v,01)]

(Fvr: (Agy[n(v1,v)] Ata(v, 1)) V(n(v1,v) AAG [t (v,01)])) A=Fsi[Tor: n(vi,v) Atn(v,v1)]

Fig. 24. The formulas obtained via the finite-differencing scheme given in Figs. 17 and 22 for the
negative changes in the values of the instrumentation relations defined in Fig. 20.

Figs. 23 and 24 show the formulas obtained via the finite-differencing scheme
given in Figs. 17 and 22 for positive and negative changes, respectively, for instru-
mentation relations defined in Fig. 20.

6.1.1 Testing the Unit-Size-Change Assumption. To know whether this special-
case maintenance strategy can be applied, for each statement st we need to know at
analysis-generation time whether the change performed at st, to the graph defined
by @1, always results in a single edge addition or deletion. If in any admissible
structure in S3[R] there is a unique satisfying assignment to the two free variables
of Afj[p1] and no assignment satisfies A,[p1], then the pair Af;[p1], Ay [¢1] defines
a change that adds exactly one edge to the graph. Similarly, if in any admissible
structure in S2[R] there is a unique satisfying assignment to the two free variables of

30 : T. Reps et al.

© Anchored(p, Ao)
0,1 Ao
V1 = V2 V1 GAQHAQU{UQ}HUQ €A0—>AOU{U1}HA()
p() Ao
P(®) unique(p) — Ay U {0} Ao

function(p) Av1 € Ao — Ao U {v2}
p(v1,v2) | invfunction(p) Ave € Ao — Ao U {v1}

[Ao
Y1 = T2 — Anchored(p2, Ao)

[1 =92V s — Anchored(—p2 A —p3), Ag)

| ¢1 =92/ ps — Anchored(—p2 V —p3), Ao)
e [v1=Vv: w2 — Anchored(Iv: —p2), Ao)

[©1=3v: 2 — Anchored(Y v: —p2), Ao)

[Ao
©1 V2 Anchored(p1, Ao) N Anchored(p2, Ao)
1 A P2 uA.(Anchored(p1, AU Ao) U Anchored(p2, AU Ag))
Ju: 1,V 1 (Anchored(p1, Ao — {v}) — {v}) U Ao

(RTC v1,v5: ¢1)(v1,v2) | (Anchored(1, Ao — {v1,v3}) — {v1,v5}) U Ao

Fig. 25. Function Anchored conservatively identifies anchored variables in ¢. Ag contains variables
known to be anchored due to the surrounding context.

AZ[p1] and no assignment satisfies AJ,[¢1], then the change is a deletion of exactly
one edge from the graph.

Because answering (unique-)satisfiability questions in this logic is in general un-
decidable, we employ a conservative approximation based on a syntactic analysis of
logical formulas. The analysis uses a heuristic to determine a set of variables V' such
that for each admissible structure, the variables in V' have a single possible bind-
ing in the formula’s satisfying assignments. We refer to such variables as anchored
variables. For instance, if relation g has the attribute “unique”, for each admissible
structure there is a single possible binding for variable v in any assignment that
satisfies ¢(v); in a formula that contains an occurrence of ¢(v), v is an anchored
variable.

If both free variables of Af,[p1] are anchored and Aj,[p1] = 0, then the change
adds one edge to the graph defined by ;. Similarly, if both free variables of AZ,[¢1]
are anchored and AJ;[¢1] = 0, then the change removes one edge from the graph. In
these cases, the reflexive transitive closure of ;1 can be updated using the method
discussed above.

A Test for Anchored Variables. Function Anchored, shown in Fig. 25, conserva-
tively identifies anchored variables in a formula ¢. It is invoked as Anchored(p, 0).
(In our application, at top-level ¢ is always either Af,[p1] or Ay [¢1].) Anchored
uses a handful of patterns to identify anchored variables. For example, if vari-
able v, is anchored and binary relation p has the attribute “function”,” then v,
is anchored as well. In essence, negations are handled by pushing the negation
deeper into the formula. In a disjunction, an anchored variable must be anchored

9For instance, in program-analysis applications a relation n(v1,v2) that records whether field n of
v1 points to va has the “function” attribute.

Finite Differencing of Logical Formulas : 31

© Agle]

(Bv: Aglp1]) Ap){wr, ..., wi} ifipp, =Vou: 1

PO Wl o o1, 0) A A= (o]0 o) Ap(u, va)) [, wa) P =
pel D2 1 st D2 2 ’ (RTC vi,vé:cpl)(vhvg)

Agpp{wr, .., w} otherwise

Fig. 26. Extension of the finite-differencing method from Fig. 17 to cover RTC formulas, for
unit-sized changes to a tree-shaped graph defined by ¢i1. The finite-difference expression A;@[wp}
is as defined in Fig. 22.

in both subformulas. The conjunction rule accumulates anchored variables in A
by a process of successive approximation, during which variables anchored in the
left subformula are used to identify new anchored variables in the right subformula
and vice versa; this process is iterated until a fixed point is reached. The rules for
Jv: 1 and Yv: 1 contain recursive calls on Anchored with v removed from the
second argument (because bound variable v refers to a different occurrence of v
from an identically named v in Ag). If v is anchored in ¢1, it needs to be removed
before this call returns, to avoid confusion with a v in the outer scope (note the
second subtraction of {v}). Finally, the union of Ay is performed because v may be
in Ag, in which case it has to be included in the answer. (RTC v}, vh: ¢1)(v1,v2)
is handled similarly to Jv: ¢; and Vv: ¢y.

6.2 Transitive-Closure Maintenance in Tree-Shaped Graphs

Consider a binary instrumentation relation p, defined by ¥,(vi,v2) =
(RTC vi,vh: ¢1)(v1,v2). If the graph defined by ¢; is not only acyclic but is
tree-shaped, it is possible to take advantage of this fact.!® This fact has no bearing
on the maintenance formula that updates the values of relation p after a positive
unit-size change A*[p;] to the relation ¢, (see Formula (14)). However, it allows
the values of p to be updated in a more efficient manner after a negative unit-size
change A~ [p1] to ¢1. In a tree-shaped graph, there exists at most one path between
a pair of nodes; if that path goes through the ¢; edge to be deleted, it should be
removed (cf. Formula (16)):

Fo[p](v1,v2) = p(v1,v2) A (30], 090 plur,v1) AAglei](vy,v9) Ap(vy,v2)). (17)

Fig. 26 extends the method for generating relation-maintenance formulas to han-
dle instrumentation relations specified via the RTC of a binary formula that de-
fines a tree-shaped graph. Fig. 26 recasts Eqn. (17) as a finite-difference expression
A lty):

When comparing the techniques of §6.1 for the maintenance of the RTC of a
binary formula ¢; with those presented in this subsection, we will refer to the
method of §6.1 as acyclic-p1 maintenance and the method of this subsection as
tree-shaped-p1 maintenance.

10The special-case maintenance strategy that we describe in this subsection also applies only in
the case that the change to the graph is a single edge addition or deletion (but not both). We
rely on the test described in §6.1.1 to ensure that this is the case.

32 : T. Reps et al.

T n n N En ern : n n

PELN e DRl E e DEL L L O)
n NN n n ; n n n

\?H—W\HHH“\HNH;H—%Z\HSH—%SN (b)

X y

Fig. 27. Possible stores for panhandle linked lists. (a) A panhandle list pointed to by x. We will
refer to lists of this shape as type-X lists. (b) A panhandle list pointed to by x with y pointing
to a node on the cycle. We will refer to lists of this shape as type-XY lists.

6.3 Transitive-Closure Maintenance in Deterministic Graphs

A deterministic graph is a graph in which every node has outdegree at most one. If
the graph defined by ¢, is deterministic, it is possible to give first-order formulas
that maintain reachability information in the graph in response to the addition or
deletion of a single ¢;-edge.

The class of deterministic graphs corresponds exactly to the set of possibly-cyclic
linked lists. Our solution to the problem of reachability maintenance in possibly-
cyclic linked lists can be summarized as follows:

(1) A binary instrumentation relation sfe,, (for spanning-forest edge) is introduced
to maintain a spanning forest of the (possibly-cyclic) graph defined by the n
edges. Thus, we have two types of edges: possibly-cyclic n edges and acyclic
sfe,, edges.

(2) We introduce a binary instrumentation relation sfp,, (for spanning-forest path)
that captures reachability along the (acyclic) sfe,, edges. sfp,, is the RTC of
sfe,,, but because sfe,, is acyclic and tree-shaped, sfp,, can be maintained via
the techniques described in §6.1 or §6.2.

(3) We introduce a binary instrumentation relation ¢, to capture reachability along
n edges. Instead of defining ¢, as n*, as done in Fig. 20, we express t, using
first-order logic, based on sfp,, (cf. Fig. 32). Thus, ¢, can be maintained in
terms of sfp,,, via the techniques described in §5.

(4) A unary core relation roc,, (for representative of the cycle) is introduced to
identify a distinguished node of each cycle; the outgoing n edge from a roc,
node is a cycle-breaking edge that is not used in the construction of the spanning
forest.

In other words, we have a two-level scheme: reachability in the induced, acyclic
spanning forest (sfp,,) is maintained via the rules from §6.1 or §6.2; reachability in
the underlying, possibly-cyclic graph (¢,) is then maintained via the rules from §5.

6.3.1 Abstractions of Possibly-Cyclic Linked Lists. We illustrate our techniques
on panhandle lists, i.e., linked lists that contain a cycle but in which at least the
head of the list is not part of the cycle. (The lists shown in Fig. 27 are examples of
panhandle lists.) Fig. 3 gives the definition of a C linked-list datatype, and lists the
core relations that would be used to represent the stores manipulated by programs
that use type List, such as the stores in Fig. 27.

Fig. 28 shows two versions of 2-valued structure Ssg, which represents the store

Finite Differencing of Logical Formulas : 33

Fig. 28. A logical structure Sag that represents the store shown in Fig. 27(a) in graphical form:
(a) So2s with relations from Fig. 3; (b) S2s with relations from Figs. 3 and 6. (Transitive-closure
relation ¢, has been omitted to reduce clutter.)

X
A _n AN
u, u, U, u,

Fig. 29. A 3-valued structure ng that is the canonical abstraction of structure S2g. In addition
to Sog, ng represents any type-X panhandle list with at least two nodes in the panhandle and at
least two nodes in the cycle.

shown in Fig. 27(a): Fig. 28(a) shows the relations from Fig. 3.} Fig. 28(b) shows
the relations from Fig. 3, as well as the instrumentation relations from Fig. 6.

If all unary relations are abstraction relations (i.e., A = Ri), the canonical
abstraction of 2-valued logical structure Sag is S;’;, shown in Fig. 29, with the list
nodes corresponding to ug and ug in Ssg represented by the summary individual us
of ng, and the list nodes corresponding to us, ug, u7, ug, and ug in Sag represented
by the summary individual u4 of S;"g. ng represents any type-X panhandle list
with at least two nodes in the panhandle and at least two nodes in the cycle.

6.3.2 Reachability Maintenance in Possibly-Cyclic Linked Lists. Unfortunately,
the relations defined in Figs. 3 and 6 do not permit precise maintenance of reach-
ability information, such as relation 7, ;, in possibly-cyclic lists. A difficulty arises
when reachability information has to be updated after the deletion of an n edge
on a cycle (e.g., as a result of statement y->n = NULL). With the relations defined
in Figs. 3 and 6, such an update requires the reevaluation of a transitive-closure
formula, which generally results in a drastic loss of precision in the presence of
abstraction.

We demonstrate the issue on panhandle lists represented by the abstract structure
S;% shown in Fig. 30, i.e., lists of type XY . (Note that although the store depicted
in Fig. 27(b) embeds into structure Sfé, S;fé is not the canonical abstraction of the
store from Fig. 27(b); in particular, nodes w4, ug, u7, and ug are all indistinguish-
able according to the instrumentation relations discussed thus far. However, this
embedding gives Fig. 30 a shape similar to figures that appear later in the section,
which will help in illustrating our solution.) Statement y->n = NULL has the effect

11'We will not show the dle relation in the rest of this section because it is not relevant to the
problem of reachability maintenance.

34 : T. Reps et al.

...... o
@i@i@i@

Fig. 30. Logical structure S;% that represents type- XY panhandle lists, such as the store depicted
in Fig. 27(b). The relations from Fig. 6 are omitted to reduce clutter. Their values are as expected
for a type-XY list: rn . holds for all nodes, .,y and ¢, hold for all nodes on the cycle, and isy
holds for us.

of deleting the n edge leaving us, thus making the nodes represented by ug, u7, and
ug unreachable from x.12 Note that a first-order-logic formula over the relations of
Figs. 3 and 6 cannot distinguish the list nodes represented by u4 from those repre-
sented by ug, u7, and ug in Sg%: all of those nodes are reachable from both x and y,
none of those nodes are shared, and all of them lie on a cycle. Our inability to char-
acterize the group of nodes represented by u4 via a first-order formula requires the
maintenance formula for the reachability relation 7, , to recompute some transitive-
closure information, e.g., the transitive-closure subformula of the core normal form
of the definition of 7, ;, namely, n*(v1, v). However, in the presence of abstraction,

reevaluating transitive-closure formulas often yields 1/2. For instance, in Sfé, for-
mula n*(vy,v) evaluates to 1/2 under the assignment [v; — u1, v — uy] because of
the many 1/2 values of relation n (see the dashed edges connecting w; with usg, for
example).

The essence of a solution that enables maintaining reachability relations for
possibly-cyclic lists in first-order logic is to find a way to break the symmetry
of each cycle. The basic idea for a solution was suggested to us by W. Hesse and
N. Immerman. As discussed at the beginning of §6.3, it consists of maintaining a
spanning-tree representation of a possibly-cyclic list. Reachability in such a rep-
resentation can be maintained using first-order-logic formulas. Reachability in the
actual list can be expressed in first-order logic based on the spanning-tree repre-
sentation. We now explain our approach and highlight some differences with the
approach taken by Hesse [2003].

Our approach relies on the introduction of additional core and instrumentation
relations. We extend the set of core relations (Fig. 3) with unary relation roc,,
which designates one node on each cycle to be the representative of the cycle. (We
refer to such a node as a roc, node.) Relation roc,, is used for tracking a unique
cut edge on each cycle, which allows the maintenance of a spanning tree. Fig. 31(a)
shows 2-valued structure Ss;, which represents the store of Fig. 27(a) using the
extended set of core relations. Here, we let u7 be the roc, node. In general, we
simply require that exactly one node on each cycle be designated as a roc,, node.
Later in this section we describe how we ensure this.!?

12(learly, all nodes except us also become unreachable from y.
13With the relation-transfer formulas that we use for relation roc, in this paper, the roc, node
for a cycle is the source of the n edge that was inserted to complete the cycle. Note that with

Finite Differencing of Logical Formulas : 35

Fig. 31. A logical structure S31 that represents the store shown in Fig. 27(a) in graphical form:
(a) S31 with the extended set of core relations.(b) S31 with the extended set of core and instru-
mentation relations (core relations appear in grey). Transitive-closure relations sfp,, and t, have
been omitted to reduce clutter. The values of the transitive-closure relations can be readily seen
from the graphical representation of relations sfe,, and n. For instance, node us is related via the
sfp,, relation to itself and all nodes appearing to the left or above it in the pictorial representation.

P ‘Intended Meaning |1/)p

isn (V) Do n fields of two or more list nodes Jv1,v2: n(vi,v) An(ve,v) AviFve
point to v?

sfe,, (v1,v2)|Is there an n edge from vs to v1 n(va, v1) A rocs (v2)

(assuming that vs is not a roc, node)
sfp,, (v1,v2) |Is v2 reachable from vy along sfe,, edges? |sfel (vi,v2)
Sfpn(vzv vl) \
sfpn(u, Ul) A
Ju,w: | rocn(u) An(u,w)
A Sfpn (UQ, w)
T,z (V) Is v reachable from pointer variable x For: z(v1) A tn(v1,v)
along n fields?

tn(v1,v2) |Is va reachable from v; along n fields?

Joi,v2: 10cn(vi) An(v, v2)

cn (V) Is v on a directed cycle of n fields? A sl (v, 0)

pr,,(v) Does v lie on an sfe,, path from x (does v|3v1: z(v1) A sfp,, (v1,v)
precede x on an n-path to a roc, node)?

pr(v) Does v lie on an sfe,, path from a shared [Jvi: isn(v1) A sfp,, (vi,v)

node (does v precede a shared node
on an n-path to a roc, node)?

Fig. 32. Defining formulas of instrumentation relations. The sharing relation s, is defined as in
Fig. 6. Relations t,, .z, and ¢, are redefined via first-order-logic formulas in terms of other
relations. The exact meaning and purpose of relations sfe,,, sfp,,, pr,, and pr;, will be explained
later in the section. Their names stand for spanning-forest edge, spanning-forest path, precedes
x (along a certain path in a cycle), and precedes a shared node (along a certain path in a cycle),
respectively.

Fig. 32 lists the extended set of instrumentation relations. Note that relation
rocy is not part of the semantics of the language. A natural question is whether

this approach, the node that receives the roc, designation in a given cycle depends on the order
of operations that the program performs to construct the cycle.

36 : T. Reps et al.

roc,(v) can be defined as an instrumentation relation. For instance, we could try
to define it using the following defining formula:

en(V) ATy n(vr,v) A e, (vr) (18)

Formula (18) identifies nodes that lie on a cycle but have a predecessor that does not
lie on the cycle. There are three problems with this approach. First, this definition
works for panhandle lists but not for cyclic lists without a panhandle. (In general, no
other definition can work for cyclic lists without a panhandle because if one existed,
it would need to choose one list node among identical-looking nodes that lie on each
cycle.) Second, because the cyclicity relation ¢, is defined in terms of roc, (and
sfp,,), the definition of roc,, has a circular dependence, which is disallowed. (This
circularity cannot be avoided, if we want all reachability relations to benefit from
the precise maintenance of one transitive-closure relation—here, sfp,,.) The third
problem with introducing roc,, as an instrumentation relation is discussed later in
the section (see footnote 15).

We divide our description of the abstraction based on the new set of relations into
three parts, which describe (i) how the relations of Fig. 32 define directed spanning
forests, (ii) how we maintain precision on a cycle in the presence of abstraction, and
(iil) how we generate maintenance formulas for instrumentation relations automat-
ically. The three parts highlight the differences between our approach and that of
Hesse.

Defining Directed Spanning Forests. Recall from §6.3.2 that the core relations
are extended with unary relation roc,, which designates one node on each cycle to
be the representative of the cycle. The roc,, nodes can be used to define a (di-
rected) spanning forest of the n edges. Instrumentation relation sfe,,—sfe stands
for spanning-forest edge—is used to maintain the set of edges that forms the span-
ning forest. In Hesse’s work, the spanning-forest edges are directed in the same
direction as the n edges; as a result, he maintains a directed spanning forest in
which each edge is directed towards the root of a spanning-forest tree. In our work,
we define sfe,, to be directed in the direction opposite to that of the n edges. The
graph defined by the sfe,, relation then defines a directed spanning forest with roc,,
nodes as spanning-forest roots, and with each spanning-forest edge directed away
from the root of a spanning-forest tree (see Fig. 31(b)).

Instrumentation relation sfp,,—sfp stands for spanning-forest path—is used to
maintain the set of paths in the spanning forest of list nodes. Binary reachability
in the actual lists (see relation ¢, in Fig. 32) can be defined in terms of n, roc,,, and
sfp,, using a first-order-logic formula: vy is reachable from v, if there is a spanning-
forest path from vy to v1 or there is a pair of spanning-forest paths, one from the
source of a cut edge (a roc, node) to v; and the other from vy to the target of the
cut edge (the n-successor of the same roc,, node).

Unary reachability relations r,, and the cyclicity relation ¢, can be defined
via first-order formulas, as well. We defined 7, , in terms of binary reachability
relation t,. While we could define ¢, in terms of ¢,, as well, we chose another
simple definition by observing that a node lies on a cycle if and only if there is a
spanning-forest path from it to the target of a cut edge (the n-successor of a roc,,
node).

Finite Differencing of Logical Formulas : 37

Fig. 31(b) shows 2-valued structure Ss;, which represents the store of Fig. 27(a)
using the extended set of core and instrumentation relations. The relations pr, and
pr;, will be explained shortly.

Preserving Node Ordering on a Cycle in the Presence of Abstraction. The fact
that our techniques need to be applicable in the presence of abstraction introduces
a complication that is not present in the setting studied by Hesse. His concern
was with the expressibility of certain properties within the confines of a logic with
certain syntactic restrictions. Our concern is with the ability to maintain precision
in the framework of canonical abstraction.

Unary reachability relations
Tn,e (one for every program
variable x) play a crucial role

Ue
in the analysis of programs _ ~o
that manipulate acyclic linked S AN
lists. In addition to keeping /
disjoint lists summarized sep- U n U, n N u, Us
arately, they keep list nodes _—_— @ @ @
gbisfen Nt sfe,,

that have been visited during a

traversal summarized separately N n,sfe, y
from nodes that have not been
visited: if x is the pointer used
to traverse the list, then the
nodes that have been visited will
have value 0 for relation 7, g,
while the nodes that have not
been visited will have value 1. If
a list contains a cycle, then all nodes on the cycle are reachable from the same set
of variables, namely, all variables that point to any node in that list. As a result,
the instrumentation relations discussed thus far cannot prevent nodes uy4, ug, and
ug of Sg,% shown in Fig. 30 from being summarized together. Thus, assuming that

Fig. 33. A 3-valued structure 83#3 that is the
canonical abstraction of structure Sg% if relations
pr,, and pr,, are not added to A and node uy of
S# (represented by us in S%) is the roc,, node.

uy is the roc, node, the canonical abstraction of S;% is the 3-valued structure S;é
shown in Fig. 33. The nodes represented by uy4, ug, and ug of S;fé are represented
by the single summary individual ug in Szfg. The symmetry hides all information
about the order of traversal via pointer variable y. Moreover, the values of the sfp,,
relation (not shown in Fig. 33) lose precision because ancestors of the shared node
in the spanning tree are summarized together with its descendants in the spanning
tree.

We break the symmetry of the nodes on a cycle using a general mechanism via
unary properties akin to unary reachability relations r, ;. In the definitions of rela-
tions pr, of Fig. 32, full reachability (relation ¢,) has been replaced with spanning-
forest reachability (relation sfp,,). The relations pr, distinguish nodes according to
whether or not they are reachable from program variable x along spanning-forest
edges. The relation pr,, is defined similarly but using instrumentation relation és,,;
pr, partitions the nodes of a panhandle list into ancestors and descendants of the
shared node in the spanning tree. Fig. 34 shows structure S?ﬁ, which is the canon-
ical abstraction of Sg% of Fig. 30, assuming that uy is the roc,, node. In S;Z, each

38 : T. Reps et al.

n

P

\
—————— -
‘8 =
~
)t A o)
Ug Ug u,
~_/
n
X y
Fig. 34. A 3-valued structure S;’Z that is the canonical abstraction of structure S;E if node w7 is

the rocy, node. S;ﬁ represents panhandle lists of type XY, such as the store of Fig. 27(b). The

only instrumentation relations shown in the figure are pr,, pry, and pr,,. As in structure S:ﬁ)
shown in Fig. 30, rn . holds for all nodes, rn,y and ¢, hold for all nodes on the cycle, and isy
holds for us.

of the nodes u4, ug, and ug has a distinct vector of values for the relations pry and
pr,,, thus breaking the symmetry.

Automatic Generation of Maintenance Formulas for Instrumentation Relations.
In his thesis, Hesse gives hand-specified relation-maintenance formulas for a col-
lection of relations that are used for maintaining a spanning-forest representation
of possibly-cyclic linked lists. Instead of specifying relation-maintenance formulas
by hand, we rely on finite differencing, as described in previous sections of this
paper, to generate maintenance formulas for all instrumentation relations. Finite-
differencing-generated maintenance formulas have been effective in maintaining all
relations defined via first-order-logic formulas, i.e., all relations of Fig. 32 except
sfp,,. Additionally, under certain conditions, finite-differencing-generated mainte-
nance formulas have been effective in maintaining relations defined via the reflexive
transitive closure of binary relations. Two conditions are necessary for this tech-
nique to be applicable for maintaining relation sfp,,:

Graph-shape condition. The graph defined by sfe,, must be acyclic or tree-shaped.

Unit-size-change condition. Each program statement must only change the graph
of n edges by adding a single edge or deleting a single edge (but not both).

The graph-shape condition applies in our setting because the graph defined by sfe,,
defines a spanning forest (which is both acyclic and tree-shaped). The unit-size-
change condition requires some discussion.

The relation sfe,, is defined in terms of n and roc,. While we have not yet
discussed the relation-update formulas for core relation roc,, it should be clear
that the value of the relation roc,, should only change in response to a change in
the value of a node’s n field. There are two types of statements that change the value
of the n field and thus may have an effect on the value of the sfe,, relation—namely,
statements of the forms x->n = NULL and x->n = y. The former destroys the n

14Note that in the presence of multiple panhandles, we may be required to introduce finer distinc-
tions to account for the possibility of multiple shared nodes on a cycle. These distinctions could
take the form of a family of is-shared relations—one for each variable—to capture the panhandle
that contributes to sharing. We do not discuss a detailed solution to this problem here, as it will
not provide significant further insight.

Finite Differencing of Logical Formulas : 39

edge leaving the node pointed to by x, and the latter creates a new n-connection
from the node pointed to by x to the node pointed to by y. While both of these
statements add or remove a single edge of the n relation, it is not necessarily the
case that they add or remove a single edge of the sfe,, relation. When interpreted
on logical structure S?ﬁ of Fig. 34, statement y->n = NULL has the effect of deleting
the n edge leaving us, an action that should result in the deletion of the sfe,, edge
entering us (not shown in the figure). However, to preserve the spanning-forest
representation, we need to ensure that roc, holds only for nodes that lie on a cycle,
and that sfe, represents spanning-forest edges. This requires setting the value of
roc, for uz to 0 and adding an sfe,, edge from ug to u7. Because, as this example
illustrates, a language statement may result in the deletion of one sfe,, edge and the
addition of another, neither of the techniques from §6.1 and §6.2 for maintaining
instrumentation relations defined via RTC applies.

To work around this problem, the transformers associated with the statements
x->n = NULL and x->n = y each have two phases. In one phase, we apply the part
of the transformer that corresponds to the relation n, and update the values of all
instrumentation relations. In the other phase, we apply the part of the transformer
that corresponds to the relation roc,, and update the values of all instrumentation
relations. As we explain below, each phase of the two transformers satisfies the
requirement that the change adds a single edge or removes a single edge of the sfe,,
relation.'® Additionally, by paying attention to the order of phases, we ensure that
the graph defined by the relation sfe,, remains acyclic and tree-shaped throughout
the application of the transformers.

To preserve the graph-shape condition in the case of statement x->n = NULL, we
apply the part of the transformer that corresponds to the relation n first:

Tn,x—>n = NULL(U17U2) = n(U17U2) A _‘55(1)1)' (19)

Unless x points to a roc, node (or x->n is NULL), this phase results in the deletion
of the sfe, edge that enters the node pointed to by x. In the second phase, we
apply the part of the transformer that corresponds to the relation roc,,:

Troc, x—>n = WiLL(V) = rocy, (V) A Jvy: n(v,v1) A sfp,, (v, v1). (20)

This phase sets the roc,, property of the source ng of a cut edge to 0, if there is no
longer a spanning-forest path from ng to the target n; of the same cut edge. When
this happens and x does not point to ng, i.e., the cut edge is not being deleted, this
phase results in the addition of an sfe,, edge from n; to ns.

To preserve the graph-shape condition in the case of statement x->n = y, we
apply the part of the transformer that corresponds to the relation roc,, first:

Troc, x—>n = (V) = 10cn (V) V(z(v) A vy : y(v1) A sfp,, (v,v1)). (21)

If there is a spanning-forest path from node n,, pointed to by x, to node n,, pointed
to by y, the statement creates a new cycle in the data structure. The update of

15The third problem with defining roc,, as an instrumentation relation (alluded to earlier in the
section) is that we would lose the ability to apply the two parts of a transformer separately: the
change in the values of n would immediately trigger a change in the values of roc,. The resulting
transformer would not be able to satisfy the unit-size-change condition.

40 : T. Reps et al.

Formula (21) sets the roc,, property of n, to 1, thus making n, the source of a new
cut edge and n, the target of the cut edge. Because there was no n edge from n,
to n, prior to the execution of this statement,'® this phase results in no change to
the sfe, relation. In the second phase, we apply the part of the transformer that
corresponds to the relation n:

Tnx—>n = y(U1,02) = n(v1,v2) V(z(v1) Ay(va)). (22)

Unless the node pointed to by x became a roc,, node in the first phase, this phase
results in the addition of an sfe,, edge from n, to n,.

The break-up of the transformers corresponding to statements x->n = NULL and
x->n = y into two phases, as described above, ensures that the sfe, relation re-
mains acyclic and tree-shaped throughout the analysis (the graph-shape condition)
and that the change to the sfe, relation that results from each phase is a unit-
size change (the unit-size-change condition).!” Thus, it is sound to maintain sfp,,
(= sfer) via the techniques described in either §6.1 or §6.2. Additionally, it is also
sound to maintain the remaining instrumentation relations via the techniques of §5
because the remaining relations are defined by first-order-logic formulas. Sound-
ness guarantees that the stored values of instrumentation relations agree with the
relations’ defining formulas throughout the analysis. However, the stored values
may not agree with the relations’ intended meanings. For instance, if the n-transfer
phase of the transformer for statement x->n = NULL removes a non-cut n edge on a
cycle, the sfe,, relation will temporarily not span the entire list. However, we do not
query the results of abstract interpretation in between the phases of a two-phase
transformer. Thus, the stored values of instrumentation relations agree with the
relations’ intended meanings, as well as their defining formulas, at all points in the
program’s control-flow graph.

Optimized Maintenance of Relation sfp,. By demonstrating that the acyclicity
and unit-size-change conditions hold for relation sfe, , we were able to rely on the
techniques of §6.1 to maintain the relation sfp,,. Note, however, that the definition
of sfe,, ensures that the graph defined by sfe,, is not only acyclic but is tree-shaped.
This fact has no bearing on the maintenance formula that updates the values of
relation sfp,, after a positive unit-size change A*[sfe,,] to sfe,, (see Formula (14)).
However, it allows the values of sfp,, to be updated in a more efficient manner after
a negative unit-size change A~ [sfe,] to sfe,,. In a tree-shaped graph, there exists
at most one path between a pair of nodes; if that path goes through the sfe,, edge
to be deleted, the corresponding sfp,, edge should be removed (cf. Formula (16)):

Filsfp,) (v1,v2) = sfp,(v1,v2)
A =(3wy, vy Sfpn(vlvvi)/\A’[Sfen](vi,v’z)/\Sfpn(v’z,vz))-(|
23

16By normalizing procedures to include a statement of the form x->n = NULL prior to a statement
of the form x->n = y, we ensure that x->n is always NULL prior to the latter assignment.
17The test described in §6.1.1 confirms that the unit-size-change condition holds for each phase.

Finite Differencing of Logical Formulas . 41

of non-identity Performance
Category Test Program maintenance formulas Analysis Time (sec.) % increase
schemas # inst. Ref. FD FD

total | TC | non-TC acyc. tree acyc. tree
Search 2 0 2 2 0.30 0.30 0.31 1.10 1.90
GetLast 3 0 3 4 0.31 0.32 0.32 2.23 2.22
SLL DeleteAll 11 2 9 15 0.30 0.32 0.30 4.97 | -0.13
Shape Reverse 12 2 10 16 0.43 0.49 0.44 12.69 1.99
Analysis Create 11 2 9 21 0.28 0.31 0.28 9.61 | -0.60
Delete 12 2 10 39 1.13 2.13 1.23 87.90 7.76
Merge 11 2 9 64 1.77 3.67 1.96 | 107.27 | 10.42
Insert 12 2 10 72 1.19 2.03 1.31 70.43 9.67
DLL Append 15 2 13 50 1.76 1.78 1.77 1.13 0.57
Shape Delete 16 2 14 74 8.35 8.78 8.38 5.15 0.36
Analysis Splice 15 2 13 96 1.06 1.69 1.10 59.70 | 3.79
Binary InsertSorted 13 2 11 43 1.25 1.28 1.28 1.97 1.54
Tree Lindstrom 10 2 8 43 40.44 82.29 41.48 | 103.47 2.57
Shape DSW 10 2 8 52 || 101.30 | 180.20 | 109.51 77.89 8.15
Analysis DeleteSorted 13 2 11 554 75.26 | 409.31 97.71 | 443.85 | 29.69
ReverseSorted 18 2 16 23 0.47 0.54 0.49 13.05 2.58
BubbleSort 18 2 16 80 5.74 8.91 6.42 55.32 | 11.77
SLL BubbleSortBug 18 2 16 80 5.41 7.61 6.01 40.75 | 11.14
Sorting InsertSortBug2 18 2 16 87 5.19 17.57 6.09 | 238.55 | 17.04
InsertSort 18 2 16 88 5.65 18.55 6.66 | 228.26 | 17.95
InsertSortBugl 18 2 16 88 18.94 32.93 20.25 73.84 7.27
MergeSorted 18 2 16 91 2.26 4.22 2.53 86.35 | 11.46
Information | Good Flow 12 2 10 66 13.59 23.28 15.37 71.30 | 13.59
Flow Bad Flow 12 2 10 86 78.05 | 180.85 94.92 | 131.70 | 21.79

Fig. 35. Results from using hand-crafted vs. automatically-generated maintenance formulas for
instrumentation relations.

7. EXPERIMENTAL EVALUATION

To evaluate the techniques presented in §5 and §6, we extended TVLA version
2 to generate relation-maintenance formulas, and applied it to a test suite of five
existing analysis specifications, involving twenty-four programs, along with a variety
of different abstractions and properties to check (see Fig. 35). The experiment
was designed to determine what penalty is incurred when the relation-maintenance
formulas generated by our finite-differencing-based algorithm are used in place of
hand-crafted relation-maintenance formulas. In the experiment, we used the set of
hand-crafted relation-maintenance formulas that had been built up during several
years of experience with TVLA. The idea was that if the penalty is low for the
programs, abstractions, and program properties in the test suite, that would be
evidence that the penalty will be low for other examples—and that one can afford to
forgo the effort of hand-crafting maintenance formulas for other analysis examples.

The test programs consisted of various operations on acyclic singly-linked lists,
doubly-linked lists, binary trees, and binary-search trees, plus several sorting pro-
grams [Lev-Ami et al. 2000]. The system was used to verify a variety of properties
of the test programs. For instance, Reverse, an in-situ list-reversal program, must
preserve list properties and lose no elements; InsertSorted and DeleteSorted must
preserve binary-search-tree properties; InsertSort must return a sorted list; Good
Flow must not allow high-security input data to flow to a low-security output chan-
nel. (Loginov et al. discuss the verification of stronger properties, such as the partial
correctness of several of the algorithms [Loginov et al. 2005; Loginov 2006; Loginov

42 . T. Reps et al.

et al. 2007].)

Lindstrom and DSW are two variants of Deutsch-Schorr-Waite, a constant-space
tree-traversal algorithm that uses destructive pointer rotation. For Lindstrom and
DSW, we verified that the algorithms have no unsafe pointer operations or memory
leaks, and that the data structure produced at the end is, in fact, a binary tree.
(Loginov et al. [2006] discuss the verification of the total correctness of Deutsch-
Schorr-Waite—i.e., that the binary tree produced at the end is identical to the input
tree and that the algorithm terminates.)

A few of the programs contained bugs: for instance, InsertSortBug2 is an insert-
sort program that ignores the first element of the list; BubbleBug is a bubble-sort
program with an incorrect condition for swapping elements, which causes an infinite
loop if the input list contains duplicate data values. (See [Lev-Ami et al. 2000; Dor
et al. 2000; Lev-Ami and Sagiv 2000] for more details.)

In TVLA, the operational semantics of a programming language is defined by
specifying, for each kind of statement, an action schema to be used on outgoing
CFG edges. Action schemas are instantiated according to a program’s statement
instances to create the CFG. For each combination of action schema and instru-
mentation relation, a maintenance-formula schema must be provided. The number
of non-identity maintenance-formula schemas is reported in columns 3-5 of Fig. 35
(grouped under the header “schemas”). In columns 4-5, they are broken down into
those whose defining formula contains an occurrence of RTC (under the header
“T'C”), and those that do not (under the header “non-TC”). Relation-maintenance
formulas produced by finite differencing are generally larger than the hand-crafted
ones. Because this affects analysis time, the number of instances of non-identity
maintenance-formula schemas is a meaningful size measure for our experiments.
These numbers appear in column 6 (under the header “# inst.”). The number of
instances of non-identity schemas for DeleteSorted is high because DeleteSorted
includes three inline expansions of the routine that finds the tree node that takes
the place of the deleted node.'®

The data structures manipulated by all programs in our test suite are acyclic and
tree-shaped, thus acyclic reachability maintenance (i.e., the technique described in
§6.1), as well as tree-shaped reachability maintenance (i.e., the technique described
in §6.2), apply for the maintenance of reachability relations. In the absence of hand-
crafted maintenance formulas for reachability relations in possibly-cyclic linked lists,
we could not extend our experiments to cover the technique of §6.3. Instead, we
validated that technique as part of the verification of properties of Reverse when
applied to possibly-cyclic linked lists (see [Loginov et al. 2007]).

For each program in the test suite, we first ran the analysis using hand-crafted
maintenance formulas, to obtain a reference answer in which CFG nodes were an-
notated with their final sets of logical structures. We then ran the analysis using
automatically generated maintenance formulas with acyclic reachability mainte-
nance (§6.1) and compared the result against the reference answer. For all 24 test
programs, the analysis using automatically generated formulas yielded answers iden-
tical to the reference answers, thus establishing the same properties. Finally, we ran

18Work on interprocedural shape analysis provides a solution that does not require inline-expanded
programs [Rinetzky and Sagiv 2001; Rinetzky et al. 2005; Jeannet et al. 2004; 2010].

Finite Differencing of Logical Formulas : 43

the analysis using automatically generated maintenance formulas with tree-shaped
reachability maintenance (§6.2) and compared the result against the reference an-
swer. Again, for all 24 test programs, the analysis using automatically generated
formulas yielded answers identical to the reference answers, thus establishing the
same properties.

Columns 7-11 show performance data, which were collected on a 3GHz PC with
3.7GB of RAM running CentOS 4 Linux. The column labeled “Ref.” gives the ref-
erence times (i.e., when the hand-crafted maintenance formulas are used). Columns
labeled “acyc.” give the data for the analyses that used automatically generated
maintenance formulas with acyclic reachability maintenance. Columns labeled
“tree” give the data for the analyses that used automatically generated maintenance
formulas with tree-shaped reachability maintenance. (As stated above, for each test
program the use of hand-crafted maintenance formulas, acyclic-reachability mainte-
nance formulas, and tree-shaped reachability maintenance formulas all established
identical properties.) In each case, five runs were made; the longest and shortest
times were discarded from each set, and the remaining three averaged. The geo-
metric mean of the slowdowns when using the automatically generated formulas
with acyclic reachability maintenance was approximately 60%, with a median of
55%, mainly due to the fact that the automatically generated formulas are larger
than the hand-crafted ones. The maximum slowdown was 444%. The highest slow-
downs occurred in analyses of programs that involved deletions of edges in a data
structure’s graph.

Because the edge-deletion maintenance formulas produced by the tree-shaped
reachability-maintenance technique are much smaller than those that are produced
by acyclic reachability maintenance, our expectation was that the use of tree-shaped
reachability-maintenance formulas would cause a much smaller slowdown. This
expectation was confirmed: the geometric mean of the slowdowns when using the
automatically generated formulas with tree-shaped reachability maintenance was
approximately 8%, with a median of 7%. The maximum slowdown was 30%.1° A
few analyses were actually faster with the automatically generated formulas; these
speedups are either due to random variation or are accidental benefits of subformula
orderings that are advantageous for short-circuit evaluation.

These results are encouraging. At least for abstractions of several common data
structures, they suggest that the algorithm for generating relation-maintenance
formulas from §5 and §6 is capable of automatically generating formulas that (i)
are as precise as the hand-crafted ones, and (ii) have a tolerable effect on runtime
performance.

The extended version of TVLA also uncovered several bugs in the hand-crafted
formulas. A maintenance formula of the form g, o (v1,...,v%) = p(v1,...,vk)
is called an identity relation-maintenance formula. For each identity relation-
maintenance formula in the hand-crafted specification, we checked that (after sim-
plification) the corresponding generated relation-maintenance formula was also an
identity formula. Each inconsistency turned out to be an error in the hand-crafted
specification. We also found one instance of an incorrect non-identity hand-crafted

19We expect that some simple optimizations, such as caching the results from evaluating subfor-
mulas, could reduce the slowdown further.

44 . T. Reps et al.

maintenance formula. (The measurements reported in Fig. 35 are based on cor-
rected hand-crafted specifications.)

8. RELATED WORK

Our work addresses an instance of the following fundamental challenge in applying
abstract interpretation:

Given the concrete semantics for a language and a desired abstraction,
how does one create sound abstract transformers?

In our context, a desired abstraction is specified by defining the set of instrumen-
tation relations to use. The question is how to obtain sound relation-maintenance
formulas for use in the abstract transformer. A weakness of the original formu-
lation of TVLA [Sagiv et al. 2002; Lev-Ami and Sagiv 2000] was that the user
needed to define relation-maintenance formulas by hand to specify how each struc-
ture transformer affects each instrumentation relation. Past criticisms of TVLA
based on this deficiency [Ball et al. 2001; Mgller and Schwartzbach 2001] are no
longer valid, at least for analyses that can be specified using formulas that define
acyclic relations (and also for some classes of formulas that define cyclic relations).
With the algorithm presented in §5 and §6, the user’s responsibility is merely to
write the v, formulas that define the set of instrumentation relations; appropriate
relation-maintenance formulas are then created automatically.

For certain situations [Graf and Saidi 1997; Reps et al. 2004; Yorsh et al. 2004], it
is known how to create best abstract transformers in the sense of [Cousot and Cousot
1979]; that is, the abstract transformers created are the most precise transformers
that are possible, given the abstraction that is in use. Graf and Saidi [1997] showed
that theorem provers can be used to generate best abstract transformers for abstract
domains that are fixed, finite, Cartesian products of Boolean values. (The use of
such domains is known as predicate abstraction; predicate abstraction is also used in
SLAM [Ball et al. 2001] and other systems [Das et al. 1999].) Reps et al. [2004] gave
a method—which applies to a broader class of abstract domains than predicate-
abstraction domains—for computing the effect of applying the best transformer.
Yorsh et al. [2004] gave a related method for abstract domains based on canonical
abstraction (i.e., for shape analysis). Both of those methods provide a way to apply
a best transformer, but do not produce an ezxplicit representation of the abstract
transformer. Moreover, they each involve a sequence of calls on an appropriate
decision procedure (or semi-decision procedure). In the case of shape analysis, the
method of Yorsh et al. [2004] is generally much more expensive than the algorithm
described in §5 and §6.

In contrast, the abstract transformers created using the algorithm described in
85 and §6 are not best transformers; however, the algorithm uses only very simple,
linear-time, recursive tree-traversal procedures, whereas the theorem provers used in
predicate abstraction are not even guaranteed to terminate. Moreover, our setting
makes available much richer abstract domains than the ones offered by predicate
abstraction, and experience to date has been that very little precision is lost (using
only good abstract transformers) once the right instrumentation relations have been
identified.

Finite Differencing of Logical Formulas : 45

Other work on automatically creating abstract transformers includes the follow-
ing:

—Methods based on semantic reinterpretation [Mycroft and Jones 1985; 1986; Niel-
son 1989; Malmkjeer 1993; Lim and Reps 2008] factor the concrete semantics of
a language into two parts: (i) a client specification, and (ii) a semantic core. The
interface to the core consists of certain base types, function types, and opera-
tors, and the client is expressed in terms of this interface. Such an organization
permits the core to be reinterpreted to produce an alternative semantics for the
subject language.

Semantic reinterpretation is convenient in that soundness of the entire abstract
semantics can be established via purely local soundness arguments for each of the
reinterpreted operators. However, semantic reinterpretation has a purely local—
and hence myopic—view of the behavior of a transformer, and hence can lead to
abstract transformers that lose a substantial amount of precision. In contrast, the
algorithm presented in §5 and §6 is generally able to retain an appropriate amount
of precision because the finite-differencing approach to obtaining an abstract
transformer for a concrete transformer 7 aims to reuse as much information as
possible from the pre-state structure, and thereby avoids formula-reevaluation
operations for tuples of a relation whose values cannot be changed by 7.

—Scherpelz et al. [2007] developed a method for creating abstract transformers
for use with parameterized predicate abstraction [Cousot 2003]. It uses weakest
liberal precondition (WLP) followed by heuristics that approximate how combi-
nations of pre-state relations imply the WLP of a post-state relation with respect
to a transformer 7. Generating the abstract transformer for a (nullary) instru-
mentation relation p in vocabulary R involves two steps (where p is defined by
the nullary formula v,()):

(1) Create the formula ¢ = WLP(7,1,()).

(2) Find a Boolean combination p, -[R] of the pre-state relations such that if
Up.~[R] holds in the pre-state then ¢ must also hold in the pre-state (and
hence p must hold in the post-state).

The abstract transformer is a function that sets the value of p in the post-state

according to whether p, ,[R] holds in the pre-state.

Because WLP performs substitution on 1,(), the formula created by step (1)
is related to the naive relation-maintenance formula defined in Eqn. (5) of §3.
Step (2) applies several heuristics to ¢ to produce one or more strengthenings
of ¢; step (2) returns the disjunction of the strengthened variants of ¢. In
contrast, the algorithm presented in §5 and §6 does not operate by trying to
strengthen the naive relation-maintenance formula; instead, it uses a systematic
approach—based on finite differencing of p’s defining formula ¢, ()—to identify
how 7 changes p’s value. Moreover, our method is not restricted to nullary
instrumentation relations: it applies to relations of arbitrary arity.

A special case of canonical abstraction occurs when no abstraction relations are
used at all, in which case all individuals of a logical structure are collapsed to
a single individual. When this is done, in almost all structures the only useful
information remaining resides in the nullary core and instrumentation relations.
Predicate abstraction can be seen as going one step further, retaining only the

46 : T. Reps et al.

nullary instrumentation relations (and no abstracted core relations). However,
to be able to evaluate a “Future” formula—as defined in Eqns. (11) and (12)
of §5—such as F,[p] = p? ~AZ[p] : Af[p], one generally needs the pre-state
abstract structure to hold (abstracted) core relations. From this standpoint, our
method and that of Scherpelz et al. [2007] are incomparable; they have different
goals, and neither can be said to subsume the other.

Paige and Koenig [1982] studied how finite-differencing transformations of ap-
plicative set-former expressions could be exploited to optimize loops in very-high-
level languages, such as SETL. Liu et al. used related program-transformation
methods in the setting of a functional programming language to derive incremental
algorithms for various problems from the specifications of exhaustive algorithms
[Liu and Teitelbaum 1995; Liu et al. 1996]. In their work, the goal is to maintain
the value of a function F'(x) as the input z undergoes small changes. The methods
described in §5 and §6 address a similar kind of incremental-computation problem,
except that the language in which the exhaustive and incremental versions of the
problem are expressed is first-order logic with reflexive transitive closure.

The finite-differencing operators defined in §5 and §6 are most closely related to a
number of previous papers on logic and databases: finite-difference operators for the
propositional case were studied by Akers [1959] and Sharir [1982]. Previous work
on incrementally maintaining materialized views in databases [Gupta and Mumick
1999], “first-order incremental evaluation schemes (FOIES)” [Dong and Su 1995],
and “dynamic descriptive complexity” [Patnaik and Immerman 1997] has also ad-
dressed the problem of maintaining one or more auxiliary relations after new tuples
are inserted into or deleted from the base relations. In databases, view mainte-
nance is solely an optimization; the correct information can always be obtained by
reevaluating the formula. In the abstract-interpretation context, where abstraction
has been performed, this is no longer true: reevaluating a formula in the local (3-
valued) state can lead to a drastic loss of precision. Thus, one aspect that sets
our work apart from previous work is the goal of developing a finite-differencing
transformation suitable for use when abstraction has been performed.

In §6.3.2, we compared our work to that of Hesse [2003], which is closest in spirit
to our techniques for maintaining reachability information in possibly-cyclic linked
lists. Below, we discuss a few approaches that bear resemblance to ours in that
they attempt to translate or simulate a data structure that cannot be handled by
some core techniques into one that can.

The idea of using spanning-tree representations for specifying or reasoning about
data structures that are “close to trees” is not new. Klarlund and Schwartzbach
introduced graph types, which can be used to specify some common non-tree-
shaped data structures in terms of a spanning-tree backbone and regular expressions
that specify where non-backbone edges occur within the backbone [Klarlund and
Schwartzbach 1993]. Examples of data structures that can be specified by graph
types are doubly-linked lists and threaded trees. A panhandle list cannot be spec-
ified by a graph type because in a graph type the location of each non-backbone
edge has to be defined in terms of the backbone using a regular expression, and a
regular expression cannot be used to specify the existence of a backedge to some
node that occurs earlier in the list. In the PALE project [Mgller and Schwartzbach

Finite Differencing of Logical Formulas . 47

2001], which incorporates work on graph types, automated reasoning about pro-
grams that manipulate data structures specified as graph types can be carried out
using a decision procedure for monadic second-order logic. Unfortunately, the deci-
sion procedure has non-elementary complexity. An advantage of our approach over
that of PALE is that we do not rely on the use of a decision procedure.

Immerman et al. [2004] presented structure simulation, a technique that broadens
the applicability of decision procedures to a larger class of data structures. Under
certain conditions, it allows data structures that cannot be reasoned about using
decidable logics to be translated into data structures that can, with the translation
expressed as a first-order-logic formula. Unlike graph types, structure simulation is
capable of specifying panhandle lists. However, this technique shares a limitation of
graph types because it relies on decision procedures for automated reasoning about
programs.

Manevich et al. [2005] specified abstractions (in canonical-abstraction and
predicate-abstraction forms) for showing safety properties of programs that manip-
ulate possibly-cyclic linked lists. By maintaining reachability within list segments
that are not interrupted by nodes that are shared or pointed to by a variable, they
are able to break the symmetry of a cycle. The definition of several key instrumen-
tation relations in that work makes use of transitive-closure formulas that cannot
be handled precisely by finite differencing. As a result, a drawback of that work is
the need to define some relation-maintenance formulas by hand. Another drawback
is the difficulty of reasoning about reachability (in a list) from a program vari-
able (see reachability relations 7, , of Fig. 32). Because in [Manevich et al. 2005]
reachability in a list has to be expressed in terms of reachability over a sequence of
uninterrupted segments, a formula that expresses the reachability of node v from
program variable x in a list has to enumerate all permutations of other program
variables that may act as interruptions on a path from x to v in the list.

A number of past approaches to the analysis of programs that manipulate linked
lists relied on first-order axiomatizations of reachability information. All of these
approaches involved the use of first-order-logic decision procedures. While our ap-
proach does not have this limitation, it is instructive to compare our work with
those approaches that included mechanisms for breaking the symmetry on a cycle.
Nelson [1983] defined a set of first-order axioms that describe the ternary reacha-
bility relation 7, (u, v, w), which has the meaning: w is reachable from u along n
edges without encountering v. The use of this relation alone is not sufficient in our
setting because in the presence of abstraction we require unary distinctions (such
as the relations pr, and pr;, of Fig. 32) to break the symmetry. Additionally, the
maintenance of ternary relations is more expensive than the maintenance of binary
relations. Lahiri and Qadeer [2006] specify a collection of first-order axioms that
are sufficient to verify properties of procedures that perform a single change to a
cyclic list, e.g., the removal of an element. They also verify properties of in-situ
list reversal, albeit under the assumption that the input list is acyclic. In a recent
publication, we describe a case study in which we use the techniques developed in
§6.3 to verify the total correctness (partial correctness and termination) of Reverse
when applied to any linked list, including cyclic and panhandle lists [Loginov et al.
2007]. Lahiri and Qadeer break the symmetry of cycles in a similar fashion to how it
is done by Manevich et al. [2005]: the blocking cells of Lahiri and Qadeer [2006] are

48 : T. Reps et al.

a subset of the interruptions of Manevich et al. [2005]. The blocking cells include
only the set of head variables—program variables that act as heads of lists used in
the program. This set has to be maintained carefully by the user to (i) satisfy the
system’s definition of acceptable (well-founded) lists, (ii) allow the system to ver-
ify useful postconditions, and (iii) avoid falling prey to the difficulty—which arises
in the work of Manevich et al. [2005]—of expressing reachability in the list. The
current mechanism of Lahiri and Qadeer [2006] is insufficient for reasoning about
panhandle lists because the set of blocking cells does not include shared nodes.
This limitation can be partially addressed by generalizing the set of blocking cells
to mimic interruptions of Manevich et al. [2005] more faithfully. However, this may
make it more difficult to satisfy points (ii) and (iii) above. As in our work, Lahiri
and Qadeer rely on the insight that reachability information can be maintained in
first-order logic. They use a collection of manually-specified update formulas that
define how their relations are affected by the statements of the language and the
(user-inserted) statements that manage the set of head variables.

Distefano et al. [2006] presented a shape-analysis algorithm for singly-linked lists
based on separation logic. As shown by Reynolds [2002], one of the advantages
of separation logic is that, for some programs, it can be used to specify invariants
in an intuitive way. In most simple list-manipulating programs, the invariants are
much more succinct than ones produced by TVLA [Yorsh et al. 2007].2° Also, as
shown by Ishtiaq and O’Hearn [2001], the separating conjunction of separation logic
presents a simpler way to express postconditions than is possible in the framework
of Sagiv et al. [2002] (see also [Jeannet et al. 2010]).

However, the framework of Sagiv et al. provides several benefits compared with
existing domains based on separation logic (“separation domains”):

—The framework of Sagiv et al. handles arbitrary imperative programs, and can
prove arbitrary properties that can be expressed in first-order logic with reflexive
transitive closure (including numeric properties [Gopan et al. 2004; Gopan et al.
2005]). In contrast, existing separation domains concentrate on proving memory
safety and preservation of data-structure invariants in linked lists.

—The framework of Sagiv et al. can be applied to arbitrary data structures, whereas
existing separation domains can be applied to data structures without sharing
(e.g., acyclic singly-linked lists and binary trees) and data structures with sharing
that can be defined explicitly (e.g., binary trees with parent pointers), but not
to data structures that exhibit more complex sharing patterns (e.g., DAGs).

—Canonical abstraction is based on an intuitive abstraction principle. Moreover,
results can be rendered in a natural way (see §2.2). Both features make it easier
to understand where information is lost, compared with results obtained from
tools that use separation domains.

—For programs that manipulate data structures beyond singly-linked lists, and for
proving properties beyond memory safety, it is challenging to guarantee that an
analysis using a separation domain terminates: the abstract domain is infinite,

20Yorsh et al. [2007] presented a method that, given a 3-valued structure S# . creates a formula
©[S#] that is satisfied by exactly the set of structures that S# represents. For most 3-valued
structures, such formulas are quite complicated.

Finite Differencing of Logical Formulas : 49

and a widening operation is not known that guarantees that the analysis will
terminate in a finite number of iterations. This situation is the case in all existing
separation domains, e.g., the one described by Berdine et al. [2007]. In contrast,
abstract domains based on canonical abstraction are finite, and hence termination
is guaranteed.

The techniques used to create abstract transformers for canonical-abstraction do-
mains and separation domains are quite different. In our approach, the next state
is determined using three primitives (see §2.2.2 and [Sagiv et al. 2002]): (i) partial
concretization (or partial model enumeration) via the focus operation, (ii) formula
evaluation, using the finite-differencing-based formulas created by the techniques
presented in §5 and §6, and (iii) very lightweight logical reasoning via the coerce
operation. Analyses based on separation logic use specialized decision procedures
and formula-normalization procedures. Existing tools based on separation domains
spend a lot of time in formula normalization and in entailment checks.?! In part,
this is because the separating conjunction does not distribute over ordinary logical
conjunction, but the primary reason for the high cost is that the separating con-
junction involves an implicit second-order quantification. Consequently, the overall
cost of an analysis specified using the framework of Sagiv et al. can be comparable
to—or even lower—than that of an analysis based on a separation domain. (For a
comparison, see [Bogudlov et al. 2007b].)

9. CONCLUSIONS

This paper addresses a fundamental challenge that arises in abstract interpretation:

Given the concrete semantics for a language and a desired abstraction,
how does one create the associated abstract transformers?

This challenge arises in program-analysis problems in which the semantics of state-
ments is expressed using logical formulas that describe changes to core-relation
values. When instrumentation relations have been introduced to refine an abstrac-
tion, the challenge is to reflect the changes in core-relation values in the values of the
instrumentation relations. The algorithm presented in this paper provides a way
to create formulas that maintain correct values for the instrumentation relations,
and thereby provides a way to generate—completely automatically—the part of the
transformers of an abstract semantics that deals with instrumentation relations.
The work described in this paper opened the way for TVLA to be extended to
support automatic abstraction refinement [Loginov et al. 2005; Loginov 2006]. The
idea is to start the analyzer with a crude abstraction, and use the results of analysis
runs that fail to establish a definite answer (about whether the property of interest
does or does not hold) as feedback about how the abstraction should be refined.

21In the instantiation of the framework of Sagiv et al. that we extended in this work—mnamely,
TVLA version 2—the coerce operation dominates the cost of analysis. In our experiments, exe-
cution of coerce accounted for 56%-98% of analysis time, with a mean of 72%. Aggregated over
all test cases, execution of coerce accounted for 85% of the total analysis time. Bogudlov et al.
studied the cost of key operations in TVLA. They achieved substantial speedups (as much as
50-fold) due to a number of optimizations of the coerce operation. The reader is referred to their
tool paper and the accompanying technical report for more details [Bogudlov et al. 2007b; 2007a].

50 : T. Reps et al.

Abstraction refinement had previously been used in the model-checking commu-
nity [Kurshan 1994; Clarke et al. 2000; Ball and Rajamani 2001]; however, finding
an analog of this that was suitable for TVLA was a challenging problem because
canonical abstraction is considerably more sophisticated than the abstractions used
by the model-checking community: in particular, predicate abstraction [Graf and
Saidi 1997] can be viewed as the degenerate case of canonical abstraction in which
only nullary relations are retained [Reps et al. 2004, §4]. Because of this difference,
we found that we had to use mechanisms that were completely different from those
used in tools such as SLAM [Ball and Rajamani 2001], BLAST [Henzinger et al.
2002], and Magic [Chaki et al. 2003]. Our solution involved using inductive logic
programming to discover an appropriate set of instrumentation relations that refine
the abstraction in use [Loginov et al. 2005; Loginov 2006]. Finite-differencing is a
crucial enabling technique in this approach because it provides the ability to create
relation-maintenance formulas automatically after refinement has been performed.

Finally, although the work described in the paper was motivated by a problem
that arose in work on static analysis based on 3-valued logic, any method in which
systems are described as evolving (2-valued or 3-valued) logical structures—e.g.,
Alloy [Jackson 2006] or Abstract State Machines [Boerger and Staerk 2003]—may
be able to benefit from these techniques.

Acknowledgments. We are grateful to W. Hesse, N. Immerman, T. Lev-Ami, and
R. Wilhelm for their comments and suggestions concerning this work. R. Manevich
provided invaluable help with TVLA.

REFERENCES

AKERS, JR., S. 1959. On a theory of Boolean functions. J. Soc. Indust. Appl. Math. 7, 4 (Decem-
ber), 487-498.

BaLL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI, S. 2001. Automatic predicate abstrac-
tion of C programs. In Prog. Lang. Design and Impl. 203—213.

BaLL, T. AND RAJAMANI, S. 2001. Automatically validating temporal safety properties of inter-
faces. In SPIN Workshop. 103—122.

BERDINE, J., CALCAGNO, C., COOK, B., DISTEFANO, D., O’HEARN, P., WiEs, T., AND YANG, H.
2007. Shape analysis for composite data structures. In Computer Aided Verif. 178-192.

BOERGER, E. AND STAERK, R. 2003. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer.

BoaubpLov, 1., LEv-Awmi, T., REPs, T., AND SAGIv, M. 2007a. Revamping TVLA: Making para-
metric shape analysis competitive. Tech. Rep. TR-2007-01-01, Tel-Aviv Univ., Tel-Aviv, Israel.

BoaubpLrov, 1., LEv-Awmi, T., REps, T., AND SAG1v, M. 2007b. Revamping TVLA: Making para-
metric shape analysis competitive (tool paper). In Computer Aided Verif. 221-225.

CHAKI, S., CLARKE, E., GROCE, A., JHA, S., AND VEITH, H. 2003. Modular verification of software
components in C. In Int. Conf. on Softw. Eng. 385-395.

CLARKE, E., GRUMBERG, O., JHA, S., Lu, Y., AND VEITH, H. 2000. Counterexample-guided
abstraction refinement. In Computer Aided Verif. 154-169.

CousoT, P. 2003. Verification by abstract interpretation. In Verification: Theory and Practice.
243-268.

Cousort, P. AND CousoT, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In Princ. of Prog. Lang.
238-252.

Cousor, P. AND Cousor, R. 1979. Systematic design of program analysis frameworks. In Princ.
of Prog. Lang. 269-282.

Finite Differencing of Logical Formulas : 51

Das, S., DiLL, D., AND PARK, S. 1999. Experience with predicate abstraction. In Computer Aided
Verif. 160-171.

DisTEFANO, D., O’HEARN, P., AND YANG, H. 2006. A local shape analysis based on separation
logic. In Tools and Algs. for the Construct. and Anal. of Syst. 287-302.

Donag, G. AND Su, J. 1995. Incremental and decremental evaluation of transitive closure by
first-order queries. Inf. and Comp. 120, 101-106.

Dong, G. AND Su, J. 2000. Incremental maintenance of recursive views using relational calcu-
lus/SQL. SIGMOD Record 29, 1 (Mar.), 44-51.

Dor, N., RODEH, M., AND SAGIV, M. 2000. Checking cleanness in linked lists. In Static Analysis
Symp. 115-134.

GOLDSTINE, H. 1977. A History of Numerical Analysis. Springer-Verlag.

GopraN, D., DiMaIo, F., Dor, N., REps, T., AND SAGIV, M. 2004. Numeric domains with sum-
marized dimensions. In Tools and Algs. for the Construct. and Anal. of Syst. 512-529.

GoprAN, D., REps, T., AND SAGIV, M. 2005. A framework for numeric analysis of array operations.
In Princ. of Prog. Lang. 338-350.

GRAF, S. AND SAIDI, H. 1997. Construction of abstract state graphs with PVS. In Computer
Aided Verif. 72-83.

GupTA, A. AND MUMICK, 1., Eds. 1999. Materialized Views: Techniques, Implementations, and
Applications. The M.I.T. Press, Cambridge, MA.

HENZINGER, T., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2002. Lazy abstraction. In Princ. of
Prog. Lang. 58-70.

HEesse, W. 2003. Dynamic computational complexity. Ph.D. thesis, Dept. of Computer Science,
University of Massachusetts, Amherst, MA.

IMMERMAN, N., RaBINOVICH, A., REPS, T., SAGIv, M., AND YORSH, G. 2004. Verification via
structure simulation. In Computer Aided Verif. 281-294.

IsHTIAQ, S. AND O’HEARN, P. 2001. BI as an assertion language for mutable data structures. In
Princ. of Prog. Lang. 14-26.

JACKSON, D. 2006. Software Abstractions: Logic, Language, and Analysis. The M.I.T. Press.

JEANNET, B., LocINov, A., REPS, T., AND SAGIV, M. 2004. A relational approach to interproce-
dural shape analysis. In Static Analysis Symp. 246-264.

JEANNET, B., LocINov, A., REPS, T., AND SAGIV, M. 2010. A relational approach to interproce-
dural shape analysis. Trans. on Prog. Lang. and Syst. 32, 2 (Jan.).

KLARLUND, N. AND SCHWARTZBACH, M. 1993. Graph types. In Princ. of Prog. Lang. 196-205.

KURSHAN, R. 1994. Computer-Aided Verification of Coordinating Processes. Princeton Univ.
Press.

LAHIRI, S. AND QADEER, S. 2006. Verifying properties of well-founded linked lists. In Princ. of
Prog. Lang. 115-126.

LEv-Awmi, T., REPS, T., SAGiv, M., AND WILHELM, R. 2000. Putting static analysis to work for
verification: A case study. In Int. Symp. on Softw. Testing and Analysis. 26-38.

LEv-AwMI, T. AND SAaGIv, M. 2000. TVLA: A system for implementing static analyses. In Static
Analysis Symp. 280-301.

Lim, J. AND REPS, T. 2008. A system for generating static analyzers for machine instructions. In
Comp. Construct. 36-52.

Liu, Y., STOLLER, S., AND TEITELBAUM, T. 1996. Discovering auxiliary information for incremental
computation. In Princ. of Prog. Lang. 157-170.

Liu, Y. AND TEITELBAUM, T. 1995. Systematic derivation of incremental programs. Sci. of Comp.
Program. 24, 2 (Feb.), 1-39.

LociNov, A. 2006. Refinement-based program verification via three-valued-logic analysis. Ph.D.
thesis, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI. Tech. Rep. 1574.

LociNov, A., REps, T., AND SAGIV, M. 2005. Abstraction refinement via inductive learning. In
Computer Aided Verif. 519-533.

Locinov, A., REPs, T., AND SAGIV, M. 2006. Automated verification of the Deutsch-Schorr-Waite
tree-traversal algorithm. In Static Analysis Symp. 261-279.

52 : T. Reps et al.

LociNov, A., REps, T., AND SAGIV, M. 2007. Refinement-based verification for possibly-cyclic
lists. In Program Analysis and Compilation, Theory and Practice: Essays Dedicated to Reinhard
Wilhelm. 247-272.

MALMKJZER, K. 1993. Abstract interpretation of partial-evaluation algorithms. Ph.D. thesis, Dept.
of Comp. and Inf. Sci., Kansas State Univ., Manhattan, KS.

MANEVICH, R., YaHAV, E., RAMALINGAM, G., AND SAGIV, M. 2005. Predicate abstraction and
canonical abstraction for singly-linked lists. In Verif., Model Checking, and Abs. Interp. 181—
198.

McMILLAN, K. 1999. Verification of infinite state systems by compositional model checking. In
Correct Hardware Design and Verification Methods (CHARME). 219-234.

MicHIE, D. 1968. Memo functions and machine learning. Nature 218, 19-22.

M@LLER, A. AND SCHWARTZBACH, M. 2001. The pointer assertion logic engine. In Prog. Lang.
Design and Impl. 221-231.

MYCROFT, A. AND JONES, N. 1985. A relational framework for abstract interpretation. In Programs
as Data Objects. 156-171.

MYCROFT, A. AND JONES, N. 1986. Data flow analysis of applicative programs using minimal
function graphs. In Princ. of Prog. Lang. 296-306.

NELSON, G. 1983. Verifying reachability invariants of linked structures. In Princ. of Prog. Lang.
38-47.

NIELSON, F. 1989. Two-level semantics and abstract interpretation. Theor. Comp. Sci. 69, 2
(Dec.), 117-242.

PaiGE, R. AND KOENIG, S. 1982. Finite differencing of computable expressions. Trans. on Prog.
Lang. and Syst. 4, 3 (July), 402-454.

PATNAIK, S. AND IMMERMAN, N. 1997. Dyn-FO: A parallel, dynamic complexity class. J. Comput.
Syst. Sci. 55, 2 (Oct.), 199-209.

REPs, T., LoGINOV, A., AND SAGIV, M. 2002. Semantic minimization of 3-valued propositional
formulae. In Logic in Comp. Sci. 40-54.

REPS, T., SAGIv, M., AND LoGINOV, A. 2003. Finite differencing of logical formulas for static
analysis. In European Symp. On Programming. 380—-398.

REpPs, T., Saciv, M., AND WILHELM, R. 2004. Static program analysis via 3-valued logic. In
Computer Aided Verif. 15-30.

REPs, T., SAGIv, M., AND YORSH, G. 2004. Symbolic implementation of the best transformer. In
Verif., Model Checking, and Abs. Interp. 252—266.

REYNOLDS, J. 2002. Separation Logic: A logic for shared mutable data structures. In Logic in
Comp. Sci. 55-74.

RINETZKY, N., BAUER, J., REPS, T., SAGIV, M., AND WILHELM, R. 2005. A semantics for procedure
local heaps and its abstractions. In Princ. of Prog. Lang. 296—309.

RINETZKY, N. AND SAGIvV, M. 2001. Interprocedural shape analysis for recursive programs. In
Comp. Construct. 133-149.

Saciv, M., Reps, T., AND WILHELM, R. 2002. Parametric shape analysis via 3-valued logic. Trans.
on Prog. Lang. and Syst. 24, 3, 217-298.

SCHERPELZ, E., LERNER, S., AND CHAMBERS, C. 2007. Automatic inference of optimizer flow
functions from semantics meanings. In Prog. Lang. Design and Impl. 135-145.

SHARIR, M. 1982. Some observations concerning formal differentiation of set theoretic expressions.
Trans. on Prog. Lang. and Syst. 4, 2 (April), 196-225.

TVLA. TVLA system. “www.cs.tau.ac.il/~tvla/”.

VAN FRAASSEN, B. 1966. Singular terms, truth-value gaps, and free logic. J. Phil. 63, 17 (Sept.),
481-495.

YorsH, G., REps, T., AND SAGIV, M. 2004. Symbolically computing most-precise abstract oper-
ations for shape analysis. In Tools and Algs. for the Construct. and Anal. of Syst. 530—-545.
YorsH, G., REps, T., Saciv, M., AND WILHELM, R. 2007. Logical characterizations of heap

abstractions. Trans. on Comp. Logic 8, 1 (Jan.).

Finite Differencing of Logical Formulas : 53

A. CORRECTNESS OF THE FINITE-DIFFERENCING SCHEME OF §5

The proofs in this section are by induction, using a size measure for formulas based
on the process of putting ¢ in core normal form. Because of the assumption of
no circular dependences among the definitions of instrumentation relations, ¢ can
always be put in core normal form by repeated substitution until only core relations
remain. The size measure is basically the size of ¢ when put in core normal form,
except that each occurrence of an instrumentation relation p(wsi,...,wy), p € Z,
encountered during the process is counted as being 1 larger than the size measure
of Yp{wr,...,ws}, the defining formula for relation p with ws, ..., wy substituted
for 1,’s formal parameters. The proofs, therefore, look like standard structural-
induction proofs, except that in the case for p(wy, ..., wg), p € Z, we are permitted
to assume that the induction hypothesis holds for 1, {w1, ..., ws}.

Recall from §5 that our results are couched in terms of 2-valued logic, but by the
Embedding Theorem (Theorem 2.6, [Sagiv et al. 2002, Theorem 4.9]), the relation-
maintenance formulas that we define provide sound results when interpreted in
3-valued logic.

We only consider first-order formulas because the correctness of the extension of
the finite-differencing scheme for reachability and transitive closure has been argued
in §6.

LEMMA 5.2. For every formula ¢, p1, pa and structure transformer st, the fol-
lowing properties hold:??
1), Alle] £ Falo] Ap
(i) AGle] 5 ¢ A-Fuly]
(). Fa[=p] &= —Fyt[p1]
(b). Falpr V p2] = Folp1] V Folps]
(). Fulor A pa] &= Fulo1] A Fyy[ips)]
(meta
(

d). Fy[3v: p1] <= Fv: Fyfe]
e). FylVv: ¢1] £33 Vu: Fylei]

Atomic. For the cases ¢ = I, where I € {0,1}, and ¢ = (v1 = v2), Al[p] =
ALlp] =0, and (i) and (ii) follow immediately.

For ¢ = p(w1,...,wk), p € C, and 7, & is of the form p? =d,, , 5;“

(i) Aklp(wr, ... wk)] € (65 o A—p){w, ... wi}
. p(wl,...,wk)
= ? =0, s AP{wr, .. we} | Aplwe, ... wi)
: (@Ist A _'p){wlv s ,'lUk}
éi_t% (Fst[p] A ﬁp){ujla e awk}
(by the definitions of Fy[-], AL[], and AL[])

22Ty simplify the presentation, we use lhs&=3rhs and lhs==>rhs as shorthands for [hs]5 (Z) =
[rhs]5(Z) and [lhs]$(Z) < [rhs]5(Z), respectively, for any S € S2 and assignment Z that is
complete for lhs and rhs.

54 : T. Reps et al.

meta

(i) Aglp(wi, ..., wr)] <= (6, AP{wr, ... wi}
. plwy, ..., wg)
< pl{w, ..., wi} A ? (0, s AP {wr, ... wi}
: ﬁ(5;_,515/\ﬁp){wla-'-7’wk}

plwy, ..., wg)
meta —
< p{wy,...,wp} A ? =(0, st AP){wr, .. Wk}

: (5;St/\ =p){ws, ..., wi}
ES (pA=Fylp){ws, ... wy}
(by the definitions of F[-], Af[-], and A[])

For ¢ = p(w1,...,wg), p € C, and 7, 5 is of the form pV §, s or 0p st VD

(©) Adlp(wr,. .. wi)] £ (Fp,se Ap){wr, .. wi}

meta (p(wi,...,wg) 720 (8p,se Ap){wi, ..., we})
A _'p(wlv s ,'lUk)

meta

<> (Fa[p] A—p){ws,...,wk}
(by the definitions of Fy[-], Af[-], and AL[])

(i) Aglp(wi,...,wr)] £ 0
meta

< p{wi, ..., we b A—plwr, ..., weF A(2p st VD) {wn, ..., wi}

meta p{w1, e 7wk;}
A =(p{wr, ..., wk} V(s Ap){wi, ..., wE})
meta p{w1, ceey wk}

A =(plwy, ..., wg) 720 (Op s A p){wr, ..., wE})
ES (pA=Fylp){ws, ... wy}
(by the definitions of Fg[-], Af[-], and AL[])

For ¢ = p(w1,...,wg), p € C, and 7, 5 is of the form p A d, s or dp ot AP

(1) ALp(wr,. .., w)] E50

meta

> p{wi, .., we } A(0p,st VD) w1, .., wi } Ap{w, ..., wi}

ety (p(wi, ..., wg) ? (Op,st Vp){wr,...,wg} :0)
A —p{wy, ..., wi}
ety (p(wi, ..., wg) ?=(=0p,a AP){wi, ..., wg}:0)

N —lp{wl, ceey wk}
meta

<> (Fa[p] A—p){w1,...,wir}
(by the definitions of F[-], Af[-], and A[])

Finite Differencing of Logical Formulas : 55

(i) Aglp(wr,. .., w)] &= (2dpa Ap){wr,. .. wi}
meta p{wl, “en ,wk}
A (p(wla"'awk)?(_' p,st/\p){wlv"'vwk}:l)

meta plwy, ..., wi}
<

A —(plwy,...,wg) ? (20 o Ap){wi, ..., wg}:0)
meta

< (p/\ _‘Fst[p]){wlu cee 7wl€}
(by the definitions of Fy[-], Af[-], and AL[])

For ¢ = p(w1,...,wg), p € C, but 7, & is not of the above forms

(1) ALlp(wr, ... wy)] & (Tp,st A p){wr, ..., wk}
) p(wi, ..., w)
= ?alp AT s){wr, .., wk} | Ap(we, ... wy)
: (Tp,st A _‘p){wla cee 7wk:}
EL (Fylp] A—p){w, ..., wy}
(by the definitions of F[-], AL[], and AL[])

(i) Aglp(wy, ..., wg)] PN (p A =7p st){wi, ..., wi}

) p(wi, ..., wg)
< p{w1,...,wp} A ? (pAmpe){wr, ..., wi}
: _‘(Tp,st/\ _'p){wlu .- '7wk}
. p(wla"'vwk)
— p{wy,...,wxg} A ? a(p Ay s){wi, ..., we}
2 (Tp,st A p){wr, .o wi}
ES (pA-Fylp){wi,. .., wi}
(by the definitions of F[-], Af[-], and AZ[])

For p(w1,...,wg), p € Z,

(1) Adlp(w, ..., wy)] & Afwp{ws, ..., wi}]

meta

< Fa[vp{wr, ..., we) A p{wr, ..., wi}
(by inductive hypothesis (i) for)

EL (Fulp) A—p){wi, ..., wi}
(1p is the defining formula for p)

(i) Aglp(wi,. .., wp)] € AL {ws, ..., wi}]

meta

~— 1/}P{w17 s ,'lUk} A _'Fst[q/}p{wla) wk}]
(by inductive hypothesis (ii) for 1)

meta

— (PA=Falp){wr, ... wi}
(¢p is the defining formula for p)

56 : T. Reps et al.

Not. ¢ = 1.

(i) A1) & Agen]

meta

<= p1 A Fgp1] (by inductive hypothesis (ii) for 1)

meta

<> Fy[—1] A—(—e1) (by inductive hypothesis (iii) for ¢1)

(i) Agler] & Aden]

< Falpi] A= (by inductive hypothesis (i) for 1)

meta

= (mp1) A =F 1]

meta

& (mp1) AFg[—en] (by inductive hypothesis (iii) for ¢1)

(ill) Fo[no1] €= (m1) 7 AL [me1] A1)
423 ng 7 A:;[—Kpl] : —|A;[—|Qp1]

meta

ES 01 74501 mALe] (by the definitions of A% [] and AG[])
EXL (g1 2 A1) - ALfer])

meta

< _'Fst[@l]

Or. ¢ = p1 V.

(1) Adler V p2] E5 (A%pa] A—p2) V(mpr A AT p2])

meta

= (Falpr1] A o1 A o) V(@1 AFgi[pa] A ma)
(by inductive hypothesis (i) for ¢; and ¢3)

meta

< (Fstlo1] V Ffwa]) A(mp1 A =)

meta

< (Falp1 Ve2]) A=(p1 V)
(by part (iii) for ;1 V @2, proved independently below)

meta

(i) Agler Vo] <= (Agle] A=Fsilpa]) V(mFsilpr] A A lpal)
&= (01 AFalp1] A =Fa[a]) V(2Fsi[01] A =Ftlpz] A)
(by inductive hypothesis (ii) for 1 and ¢3)

meta

< (91 V p2) A(2F si[p1] A =Fi[pa])

meta

< (1 V p2) A (Fg[p1] V Fsfpa])

meta

< (1 V2) A=Fafpo1 Voo
(by part (iii) for 1 V @2, proved independently below)

Finite Differencing of Logical Formulas : 57

meta

(i) Falor V2] €= (01 V 02) 7 0AL (01 V @a] : Adlo1 Vo]

(p1Vp2)
? 2 [(ALle1] A=Ffea]) V(mF o] A Aglpa))]
D (ALl Amp2) V(mer A AT o))

(by the definitions of Af,[-] and AL[])

meta

((¢1V p2))
o A = [(AGIe1] A =Fafps]) V(mF go1] A AL [ea])]
v (=(p1 V2)
A (A% Le] A =pa) V(o1 A A wa])]

. ((¢1V p2))
= A = [(Aglpi] A =Fgifpa]) V(mF 1] A Aglpa])]
V (mo1 AAEe1] A —p2) V(mpr A AL [pe] A —ipr)

(p1V p2)
meta A (mAG[e1] V Fgpa])
= -
A (Fst[@l] \ _'Ast[@Q])
(mp1 A AL 1] A=) V(mpr A AT [pa] A —ipa)

01 A =AG[e1] AFsi[ipr]
o1 A AG[p1] A AL [p2]
01 AF [0a] AF [01]

o1 AF i) A=A o]
P2 A AL [p1] AFsifipr]
2 A A1) A AL [p2]
02 AF [02] AF [01]

2 AFgi[pa] A=A o]
=01 A AT 1] Ao

=1 A AT [pa] Ao

<

meta

<LK KLKLKLKCLKKLKL

meta

We consider the direction Fglp1 V @a] = Fu[e1] V Fafps] first. We consider
the ten cases that correspond to the cases that (at least) one of the ten disjuncts
of Formula (24) holds. Each case that concerns a disjunct that contains F[p1] or
F:[p2] as a conjunct trivially implies that Fg[¢1] V Fgip2] holds. We consider the
remaining four cases.

1 A=AG 1] A=A [pe] Z o1 A-A e

meta

= o1 AAG 1]V oer A AT]

meta

< Flpi1] (by the definition of Fgl-])

meta

P2 A =AG[p1] A AL [pa] = 02 A A [p2]

meta

= 02 A AL [p2] V mipa A AT o]

meta

<= F[p2] (by the definition of Fy[-])

58 : T. Reps et al.

=1 AAF 1] A2 Z= —pr A AT 1]

meta

= 01 ADAG 1] V mor A AT 1]

meta

< Flpi1] (by the definition of Fgl-])

=1 AAT 2] A=pr Z= —pn A AT o]

meta

= 02 A AL [p2] V mpa A AT o]

meta

<= F[p2] (by the definition of Fy[-])

meta

We consider the direction Fg[p1] V Fylpe] = Fglp1 V ¢2] next. Without loss of
generality, assume that Fg[p1] holds. We consider two cases: ¢1 A 7A[¢1] holds;
—¢1 A AL[p1] holds. We show that both cases imply that a disjunct of Formula (24)
holds. If a disjunct of Formula (24) holds, then F[¢1 V ¢2] must hold because the
latter holds if and only if Formula (24) holds. First, assume that 1 A=A [p1]
holds.

meta

1 A AL [p1] = o1 A A1 AF g [en] (by inductive hypothesis (ii) for 1)

meta

= Fyo1 Vo] (the RHS above is a disjunct of Formula (24))

Now, assume that =3 A Af;[p1] holds. We consider two subcases: o holds; =2
holds. Assume that @2 holds.

meta

w2 A =1 AAG 1] €5 02 A=AG[p] A —pr A A1
(mp1 Z2 A [p1] by inductive hypothesis (ii))

meta

2U% 00 A AL [01] A Fayfir] (by the definition of F[-])

meta

= Fylp1 Vo] (the RHS above is a disjunct of Formula (24))

If =y holds (the second subcase), the result is immediate; it implies that the
following disjunct of Formula (24) holds: =1 A A [01] A —¢a.

And. ¢ = o1 A pa. The entries for Al o1 A 2] and AL [p1 A 2] can be derived
from those for A[p1 V @a], AL lp1 V wa], AL [—e1], and A [—e].

meta

At Apa] = Af-(me1 V —gs))]

meta

= Ay 01 Vs (by the definition of AZ[])

ES (A1) A Falmp2]) V(mFs[ne1] A AG[-po))
(by the definition of A[])

ES (AL AFu02)) V(Falpr] A AL[p2])

(by the definition of A_[] and inductive hypothesis (iii))

Finite Differencing of Logical Formulas : 59

Aglpr Apa] €5 AL (=01 V)]

meta

E2 AL [p1 Vi) (by the definition of A_[])
& (A 0] A=(92)) V(= (=01) A AT [mp2])
(by the definition of A%,[-])

2% (AL 1] A 2) V(o1 A AL[ps]) (by the definition of A}[])

Ezists. ¢ = 3Jvy: 1.

(1) ALBvi: 1] E2 3o AL[p1]) A3 ¢1) (by the definition of AJ;[])

E2 Jor: AL) A =3 1) A= (3w 1)

. (3’1}11 (,01)
&2 [7= [Fv: Aglp) A=@vr: Fulo])] | A=@vr: 1)
D (P Aflp) A (B 1)

P [(EI v1: 1) ? AL 1) ALy 901)]] A=(Fvr: 1)
(by the definitions of A;[-] and A%[])
ER Fy[Fu: o1 A-(3o1: ¢1) (by the definition of Fy[-])

meta

(il) Ag[Tvi: 1] <= (Fvr: Agle1]) A (Fvr: Fyfer]) (by the definition of A[])

meta

<= (Fur: p1) A(Fvr: Agler]) A (For: Fefer])

meta

((Quvy: Aghlp1]) = (Fvi: ¢1) by inductive hypothesis (ii))

N (3’01. (pl)
< (Fv1: 1) A ? (o1 Agle1]) A (For: Faler])
c = [(For: Afe]) Am(For:)]

N (Fovr: 1)
< (Fv1: 1) A ? = [(EI v1: Aylpi]) Ao Fst[<p1])}
c (3o Aflpl) A—(3vr: 1)

E28 (For: 1) A[(Boi: 1) 7 =AL[(For: 1)) s ALIFoi:)]
(by the definitions of Aj;[-] and AJ[])
meta (3 vy S01) A _|Fst[3 7 901] (by the deﬁnition Of Fst[])

60 : T. Reps et al.

(iii) We consider the direction Fg [T vy: 1] = Fu;: Fyfp:] first.

Fst[EI (O (pl] 4% (El [(pl) ? ﬁA;[(H (O ng)] : A;@[(EI (S ng)]

(Fvr: p1)
g& 7 | [(3’012 A;t[cpl])/\—‘(Elvl: Fst[@l])}
: (3 (A A;[g@l]) N —|(3 (A ng)
(by the definitions of Aj;[-] and A%[])

(v p1) A=(For: Aglen])
g& Vv (3 (O (pl) /\(3 (O Fst[‘Pl]) (25)
\Y% —|(3 (% ng) /\(3 (% A;[g@l])

We consider the three cases that correspond to the cases that (at least) one of
the three disjuncts of Formula (25) holds. The case that concerns the middle
disjunct, which contains (Fv1: Fe1]) as a conjunct, is immediate. We consider
the remaining two cases. First, assume that (Fvy: ¢1) A =(Fv1: Agfpr]) holds.

(For: 1) A=(For: Aglen]) == i (91 A A [p1])
22 oyt (01 2 04[]t Afen])
E2 Juy: Falpd] (by the definition of F/[-])

Now, assume that =(3v1: 1) A(Jvi: Af[p1]) holds.

meta

=(Fvr: 1) Ao Afer]) Fu (oA Al
meta Jo; : ((Pl ? —|A;t[(p1] : A;@[%’l])
ety v1: Fglpr] (by the definition of F y[-])

meta

We consider the direction Jvy: Fglp1] = Fu[3v1: ¢1] next.

Fv1: Fglp] E28 oy (o1 7 AL[01] - Afle1]) (by the definition of Fy[-])

meta

E=2 Jur: (e1 AAG 1] Ve AAT 1))

meta

E (For: e AAG[e1]) V(31— AALer]) (26)

We consider the two cases that correspond to the cases that (at least) one of the two

Finite Differencing of Logical Formulas : 61

disjuncts of Formula (26) holds. First, assume that (Fvy: ¢1 A AL [p1]) holds.

Fu1: o1 ADAG[e1] E (i 1) AB o1 o1 AmA 1))
= T 1) ABwi: 1 7 0AGe] : Aflen])
£ (Fur: 1) A3 Faler)) (by the definition of Fy/[-])
= (Fui: o) A [2@vi: Agle]) V(3o Falpn))]

y (Fvr: 1)
met o [(3 vy A;[%])/\ﬁ(ﬂ (A Fst[@l])]
L (Fu: Aflpi) A=(For)

ES (Buiz 1) 7 0AG[B o)] AL[Bvr: 1))
(by the definitions of A[-] and AL[])
EL Fy[3vi: ¢1] (by the definition of Fy[-])
Now, assume that (3v1: =1 A Af[p1]) holds. We consider two subcases: (Fvy: 1)
holds; =(3v1: 1) holds. Assume that (Jwvy: 1) holds.
For: 1) A1 ~o1 AAf[p1]) = (Foi 1) ABvr: o1 7 A [en] - Adilen])
£ (Fuy: 1) A(Fvr: Fyler))
(by the definition of F y[-])
= (Fvi: o) A [2(Bv1: Aglea]) V(3o Falpn])]

vy 1)
mety o _ [(EIU1: ALle1]) A—=(For: Fst[901])]
- @ Aflea) A= o)

ES (Fui: 1) 708G [F 0 1)) s AL B0k)]
(by the definitions of Aj;[-] and AL[])
EL P[P ¢ (by the definition of Fy[-])

H]Ltd

Assume that —(3v;: ¢1) holds (the second subcase).

=(Fvr: 1) A ot AATp1]) Z== =301 1) AFvr: Afjer])
= —(3v1: 1) ATy Ajt[gol]) A=(Tvr: 1)

y (Fvr: 1)
met o [(3 vy A;[@l]) /\ﬁ(El V1 Fst[@l])}
: Gz Aflp) Ao (For: 1)

ES Tz 1) 7oA 01 1)) AL[F i 1)
(by the definitions of A_;[-] and AL[])

ety Fo[3v1: 1] (by the definition of F 4[]

Forall. ¢ = Vvi: ;1. The entries for AL[Vv;: 1] and AL [Vvi: ¢1] can be

62 : T. Reps et al.

derived from those for A% [Tvy: ¢1], AL[Bv1: 1], AL[—e1], and Ay [—e].
ALV 1] E5 AL (301 —p1)]
£S5 AL[Fvr: —p1] (by the definition of Af[])
£ (Jur: Ay[me]) A=(3vr: Fy—ei)) (by the definition of A[])
ES B Afle) A=(3vi: 2Fyer])
(by the definition of A_[-] and inductive hypothesis (iii))
&5 (For: Aflpa]) AV o1z Faln])

meta

AglVor: 1] <= Ag[=(Fv1: 1))
E2 AL B o] (by the definition of A[])
EZ (Ju: AL]) A(For:) (by the definition of AZ[])
ES (Jur: Aglel]) AV or: 1) (by the definition of A%,[])

O

THEOREM 5.3. Let Si be a structure in Sz, and let Sproto be the proto-structure
obtained from S1 using structure transformer st. Let Sa be the structure obtained
by using Sproto as the first approximation to Sa and then filling in instrumentation
relations in a topological ordering of the dependences among them: for each arity-k
relation p € I, 152 (p) is obtained by evaluating [y (v1, ..., vk)]]§2([v1 = Uy, ., U
uh]) for all tuples (uh,...,u}) € (US2)F. Then for every formula ¢(v1,...,vx) and
complete assignment Z for p(v1, ..., vk),

[Falo(vr, ..ol (2) = [p(vr, .., v)]5%(2).

PROOF: The proof is by induction on the size of ¢. Let Z be [v1 — uy, ..., v —
ug). By Lemma 5.2(iii) and the induction hypothesis, we need only consider the
cases for atomic formulas.

(1) For ¢ =1, wherel € {0,1},
[Fall]5*(2) = L7 ~AL0 : AL (2)
=[1?7-0:0]5"(2)
=13 (2)
=1
= [132(2)
(2) For ¢ = (viy =v4,),
[[Fst[vil :’Uiz]]]gl (Z) = [[Uil =Viy ? _'A;f[vil :Uiz] : A;Lt[vil :Uiz] 251 (Z)
= [[Uil = Uiy 720 0]]51 (Z)
= [[Uil :Uiz]]251 (Z)
= Z(Uil) = Z(Uiz)
= [[Uil :Uiz]]252 (Z)

Finite Differencing of Logical Formulas : 63

(3) For ¢ = p(vyy, ..., vi,,), p € C, and 7, o is of the form p? =6, 6,

[[Fst[p(viw 7vik)] 251 (Z) = [[p(vilv 7Uik) ? _'As_t[p(viw 7vik)] : Ajt[p(viw 7vik)] 251 (Z)
P(Viyy ey Viy,)

S1
= |[7_‘(5;o_,st/\p){viu-"’vik}]] (Z)

2 (64 g A vy, v,))
=[p? _‘5p_,st : 5;,st){viu ooy Uiy, }]]251(2)
= [mp,5(viy - 0,)15 (2)
= [p(viy, -, 0i)]52(Z)

(4) For ¢ = p(wn,...,wk), p € C, and 7, 4 is of the form pV 0y s or 6p ot V p

[Fstlp(viys s v)15 (Z) = [p(viys s vi,) 7 APy s 03,)] - AL P(vi, o v)]]5 (Z)
= [p(vi,, - 03,) 770 2 (8.5t AP {0i, 5 v s 03 5 (Z)
= [0V = ASps){vis, 0, Y5 (2)
= [0V 8pst){virs 03,351 (2)
= [mp5t(Virs > v3,)]53* (2)
= [p(viy, -, 0152 (Z)

(5) For ¢ = p(wn,...,wk), p € C, and 7, 4 is of the form p A dp s Or Op st AP

[Fstlp(viys s v)15 (Z) = [p(viys s vi,) 7 ALy s 03,)] - AL (Vi s v)]]5 (Z)
= [p(viys s i) T (20p st AD){ Vi, o, Vi ()]]251 (2)
= [A =(=8p,50 AD) Vi s s 03, 315" (Z)
= [0 AGp,st V=) {vis 5 03 351 (2)
= [P A Sp) {virs 03,351 (2)
= [p,5t(Vizs > 03,151 (2)
= [p(viy, -, 0i)]5%(Z)

(6) For ¢ = p(viy,..., i), p € C, but 7, 5 is not of the above forms

[[Fst[p(vilv 7vik)]]]251 (Z) = Hp(vi17 7vik) ? _'A;‘,[p(vilv 7vik)] : Ajt[p(vilv ’vik)] 251 (Z)

P(Viy s ov s Vi) &
= ?=a(p AT st){Viy s, Vi b (Z2)
D (st ATV v b
= [((0 A=) V(D ATpst) V(Tp,5t A=) {0y oo 00, 15 (Z)
= [[Tp,st(viw 7Uik)]]§l (Z)
= [[p(vilv 7Uik)]]§2 (Z)

64 : T. Reps et al.

(7) For ¥ Ep(vilv"' 7vik)7 p €T,
[[Fst[p(viw 7Uik)] 251 (Z) = [[p(vilv 7Uik) ? _'As_t[p(viw 7vik)] : Ajt[p(viw 7vik)] 251 (Z)

— p(viw"'avik)]51
R [PG i v} 2 AL v v}, D)

s

= V”ii’st@ffip RS RN (8T (ORI }] 7
= [Faultopl{virs -, 03, 15" (2)

= [Wpfvirs v, Y152 (2)

= Ip(viy, 04)15%(2)

2

