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Abstract

This dissertation explores the use of abstraction in two areas of automated reasoning: verifica-

tion of programs, and decision procedures for logics. Establishing that a program is correct

is undecidable in general. Program-verification tools sidestep this tar-pit of undecidability by

working on an abstraction of a program, which over-approximates the original program’s behav-

ior. The theory underlying this approach is called abstract interpretation. Developing a scalable

and precise abstract interpreter is a challenging problem, especially when analyzing machine

code. Abstraction provides a new language for the description of decision procedures, leading to

new insights. I call such an abstraction-centric view of decision procedures Satisfiability Modulo

Abstraction (SMA).

The unifying theme behind the dissertation is the concept of symbolic abstraction:

Given a formula ϕ in logic L and an abstract domain A, the symbolic abstraction of

ϕ is the strongest consequence of ϕ expressible in A.

This dissertation advances the field of abstract interpretation by presenting two new algorithms

for performing symbolic abstraction, which can be used to synthesize various operations required

by an abstract interpreter. The dissertation presents two new algorithms for computing inductive

invariants for programs. The dissertation shows how the use of symbolic abstraction enables the

design of a new abstract domain capable of representing bit-vector inequality invariants.

The dissertation advances the field of machine-code analysis by showing how symbolic

abstraction can be used to implement machine-code analyses. Furthermore, the dissertation

describes MCVETO, a new model-checking algorithm for machine code.
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The dissertation advances the field of decision procedures by presenting a variety of SMA

solvers. One is based on a generalization of Stålmarck’s method, a decision procedure for

propositional logic. When viewed through the lens of abstraction, Stålmarck’s method can be

lifted from propositional logic to richer logics, such as linear rational arithmetic. Furthermore,

the SMA view shows that the generalized Stålmarck’s method actually performs symbolic

abstraction. Thus, the concept of symbolic abstraction brings forth the connection between

abstract interpretation and decision procedures. The dissertation describes a new distributed

decision procedure for propositional logic, called DiSSolve. Finally, the dissertation presents an

SMA solver for a new fragment of separation logic.
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Chapter 1

Through the Lens of Abstraction

Cubism came about because, in the process of analyzing form, something

that lay in the form, a plane, could be lifted out to float on its own.
— Joseph Plaskett

This thesis explores the use of abstraction in two areas of automated reasoning: verification of

programs, and decision procedures for logics.

Establishing that a program is correct is undecidable in general. Program-verification tools

sidestep this tar-pit of undecidability by working on an abstraction of a program, which over-

approximates the original program’s behavior. The theory underlying this approach is called

abstract interpretation (Cousot and Cousot, 1977), and is around forty years old. However, devel-

oping a scalable and precise abstract interpreter still remains a challenging problem.

This thesis also explores the use of abstraction in the design and implementation of decision

procedures. Abstraction provides a new language for the description of decision procedures,
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leading to new insights and new ways of thinking. I call such an abstraction-centric view of

decision procedures Satisfiability Modulo Abstraction.

The common use of abstraction in this work also brings out a non-trivial and useful relation-

ship between program verification and decision procedures.

The Need for Program Verification

Quis custodiet ipsos custodes?

Who will guard the guards themselves?
— Satires of Juvenal

Software is everywhere. There is an increasing use of computers in our daily lives. More

importantly, safety-critical and security-critical computer systems are becoming ubiquitous.

Computers are an integral part of communication systems, flight systems, financial systems,

power systems, and medical systems. Furthermore, the functionality and complexity of these

computer systems has also increased. With this pervasive use of computers it is becoming

increasingly important to develop formal methods that certify that a given program is correct.

There is an economic argument—faulty software costs the U.S. economy at least $5 billion per

year (Charette, 2005)—as well as a moral argument—errors in safety-critical systems could lead

to loss of life (Bowen, 2000; Abramson and Pike, 2011)—for formal verification of computer

programs.

Ideally, one would like to establish that a computer programP strictly adheres to its functional,

safety, and security specification—that is, P satisfies a given property I for all possible inputs. In

theory, determining whether P satisfies I is undecidable. In practice, the program-verification

problem is often addressed by focusing on a restricted set of properties; however, the complexity

and size of the software makes program verification difficult even when the class of properties

to be verified is restricted. It is the goal of formal methods to make the practice of program

verification feasible for industrial-scale systems. Instead of verifying full functional correctness,

most program-verification tools verify comparatively “shallow”, yet critical, safety properties of
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programs, such as absence of null-pointer dereferences, absence of out-of-bounds array accesses,

absence of division by zero, and verification of data-structure invariants.

In the last two decades, there has been tremendous innovation in formal verification, and a

greater adoption of formal methods, resulting in various industrial-scale tools being developed

(Holzmann, 2004; Ball et al., 2004; Delmas and Souyris, 2007; Jetley et al., 2008; Bessey et al.,

2010; Chapman and Schanda, 2014). However, implementing a correct, precise, and scalable

program-verification tool is an onerous and formidable task. Furthermore, as the analyses

and techniques become more complex, the need for automating the construction of such tools

increases (Cuoq et al., 2012).

The Emergence of a Disruptive Technology

(It is shown that) any recognition problem solved by a polynomial time-bounded

nondeterministic Turing machine can be “reduced” to the problem of determining

whether a given propositional formula is a tautology.
— Stephen A. Cook (1971)

A decision procedure for a logic L is an algorithm that given a formula ϕ ∈ L determines

whether (i) ϕ is satisfiable if there exists an assignment to the variables of ϕ that satisfies ϕ, or (ii) ϕ

is unsatisfiable if no such satisfying assignment exists. A decision procedure for propositional logic

is called a SAT solver. For example, given the propositional-logic formula ψ1 := p1∧p2∧ (p3∨p4),

a SAT solver would determine thatψ1 is satisfiable with the following (Boolean) assignment to the

variables: [p1 7→ true, p2 7→ true, p3 7→ false, p4 7→ true]. Although propositional satisfiability

is an NP-complete problem, the last fifteen years have born witness to a wide range of SAT

solvers that are efficient for deciding satisfiability of formulas with millions of variables arising

in practical applications. Furthermore, decision procedures for richer logics, called Satisfiability

Modulo Theories (SMT) solvers, have been implemented. This tremendous progress in SAT and

SMT solvers has resulted in new, practical solutions to a wide variety of problems, including

planning problems (Kautz and Selman, 1992; Rintanen, 2009), cryptanalysis (Massacci and

Marraro, 2000), bounded model checking (Biere, 2009), program synthesis (Alur et al., 2013),
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and automated test-input generation (Godefroid et al., 2005). The application of SMT solvers to

automated test-input generation leads us to the topic of the next section.

From Paths in Program to Formulas in Logic

Testing shows the presence, not the absence of bugs.

— Edsger W. Dijkstra (1969)

Suppose that we are asked to determine whether the ERROR statement is reachable in the
following C-code snippet:

i f ( x < y ) {
i f (2∗ x+3∗z < w) {

}
e lse {

ERROR:
}

}

It should be clear that the ERROR statement is reachable if and only if the following formula in

quantifier-free bit-vector logic (QFBV) is satisfiable: (x < y) ∧ ¬(2x+ 3z < w). Thus, we already

see a (rather weak) connection between program verification and decision procedures—namely,

the conversion of a particular path in a program to a formula in a logic.

Unfortunately, most programs have loops, procedure calls, and recursion. Consequently,

the number of paths that could reach a particular statement is large (or even infinite). Hence, it

is not possible to check feasibility of each such path using a decision procedure. This simple

observation motivates the use of abstraction in program verification.

1.1 Abstraction in Program Verification

Abstract interpretation (Cousot and Cousot, 1977) provides a way to obtain information about

the possible states that a program reaches during execution, but without actually running the

program on specific inputs. Instead, it explores the program’s behavior for all possible inputs,

thereby accounting for all possible states that the program can reach.
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Before describing the basic concepts of abstract interpretation, I first describe concrete in-

terpretation of programs. A concrete state of a program characterizes the state of the program

at a particular point during program execution, and typically consists of the valuations of the

various program variables. For instance, if x and y are integer program variables, a concrete

state σ would be described as [x 7→ 3, y 7→ 42]. (The similarity between the notation used for

describing concrete states of programs and models of formulas is not coincidental.) The concrete

interpretation of a program gives a concrete transformer that describes, for each program statement,

how a single (input) concrete state is transformed into a single (output) concrete state according

to the semantics of the programming language1. For instance, given the statement S ≡ x := x + 5,

which increments the value of variable x by 5, the concrete state σ would be transformed into

the output concrete state σ′ = [x′ 7→ 8, y′ 7→ 42]; the primes on the variables are merely used to

denote that these variables are in the output state.

In contrast to the situation in concrete interpretation, the abstract states during abstract inter-

pretation are finite-sized descriptors that represent a collection of concrete states. For instance, an

abstract state a =
[
x 7→ [2, 10], y 7→ [20, 200]

]
denotes the set of concrete states in which variable

x takes values from the interval from 2 to 10 (inclusive), and variable y takes values from the

interval from 20 to 200 (inclusive). The collection of abstract states or abstract values form a lattice

called an abstract domain. The collection of concrete states described by an abstract value a is

denoted by γ(a). For example, the abstract value a is a value in the abstract domain of intervals

Interval. Various such abstract domains can be defined, each differing in what aspects of the

collection of concrete states they capture. For example, one can use abstract states that represent

only the sign of a variable’s value: neg, zero, pos, or unknown.

Paralleling the scenario in the concrete world, in abstract interpretation an abstract transformer

describes how, for each program statement, an input abstract state gets transformed into an

output abstract state. The abstract transformer should be sound with respect to the corresponding

concrete transformer; that is, the abstract transformer should be an over-approximation of the

concrete transformer. For example, given the input abstract state a and the statement S, the
1For simplicity of exposition, the discussion here is restricted to deterministic semantics.
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output abstract state is a′ =
[
x′ 7→ [7, 15], y′ 7→ [20, 200]

]
. Because each abstract state represents a

collection of concrete states, operationally, one can think of abstract interpretation as running

the program “in the aggregate.” This seemingly simple concept of abstract interpretation has led

to much beautiful theory that helps reason about the soundness of sophisticated static analyses

of programs. In particular, as long as the abstract transformer is an over-approximation of the

concrete semantics of the program, the program properties inferred by the abstract interpreter

describe a superset of the states that can actually occur, and can be used as invariants.

Abstract Domains as Logic Fragments

An abstract domain A can be seen as a logic fragment, and each abstract value can be expressed

as a formula in this logic fragment. Let LA be some fragment of a general-purpose logic L. We

say that γ̂ is a symbolic-concretization operation if it maps each A ∈ A to ϕA ∈ LA such that the

meaning of ϕA equals the collection of concrete states described by A; that is, JϕAK = γ(A). LA

is often defined by a syntactic restriction on the formulas of L.

Example 1.1. For instance, for abstract states over intervals, LInterval is the set of conjunctions

of one-variable inequalities over the program variables. Our experience is that it is generally

easy to implement the γ̂ operation for an abstract domain. For example, given A ∈ Interval, it is

straightforward to read off the appropriate ϕA ∈ LInterval: each entry x 7→ [clow, chigh] contributes

the conjuncts “clow ≤ x” and “x ≤ chigh.” �

Symbolic Abstraction

Unfortunately, the theory of abstract interpretation does not provide algorithms for computing

the abstract transformers from the concrete transformers. Consequently, in practice, an analysis

writer needs to manually write the abstract transformers for each concrete operation. This task

can be tedious and error-prone, especially for machine code where most instructions involve

bit-wise operations. Thus, abstract interpretation has a well-deserved reputation of being a kind

of “black art”, and consequently difficult to work with.



7

Many of the key operations needed by an abstract interpreter, including computing abstract

transformers, can be reduced to the problem of symbolic abstraction (Reps et al., 2004), which

connects abstract interpretation and logic.

Given a formulaϕ in logicL and an abstract domainA, find the strongest consequence

of ϕ expressible in A.

We use α̂A(ϕ) to denote the symbolic abstraction of ϕ ∈ L with respect to an abstract domain A;

we drop the subscript A from α̂A(·) when the abstract domain is clear from the context.

Let us see how an algorithm for symbolic abstraction can be used to compute abstract

transformers.

Example 1.2. Consider again the statement S ≡ x := x + 5 and the input abstract value a =
[
x 7→

[2, 10], y 7→ [20, 200]
]

in the abstract domain Interval. The semantics of a concrete operation can

be stated as a formula in a logic L that specifies the relation between input and output states.

In this example, the semantics of the statement S can be expressed in quantifier-free bit-vector

logic (QFBV) as the formula ϕS ≡ x′ = x+ 5. The abstract value a ∈ Interval can be expressed as

a formula γ̂(a) ≡ (2 ≤ x ≤ 10 ∧ 20 ≤ y ≤ 200).

The output abstract state a′ can be computed as finding the strongest consequence of the

formula ψ ≡ (ϕs ∧ γ̂(a)) = (2 ≤ x ≤ 10 ∧ 20 ≤ y ≤ 200 ∧ x′ = x+ 5) that can be expressed as an

interval over the variables x′ and y′; that is, α̂(ψ) =
[
x′ 7→ [7, 15], y′ 7→ [20, 200]

]
. �

Example 1.3 illustrates that applying the abstract transformer can be complex even for a

single machine-code instruction.

Example 1.3. Consider the Intel x86 instruction τ ≡ add bh,al, which adds al, the low-order

byte of 32-bit register eax, to bh, the second-to-lowest byte of 32-bit register ebx. No other register

apart from ebx is modified. For simplicity, we only consider the registers eax, ebx, and ecx. The

semantics of τ can be expressed in QFBV logic as the formula ϕτ :

ϕτ
def= ebx′ =

 (ebx & 0xFFFF00FF)

| ((ebx + 256 ∗ (eax & 0xFF)) & 0xFF00)

∧ eax′ = eax

∧ ecx′ = ecx,
(1.1)
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where “&” and “|” denote bitwise-and and bitwise-or, respectively, and a symbol with a prime

denotes the value of the symbol in the post-state. Equation (1.1) shows that the semantics of a

seemingly simple add instruction involves non-linear bit-masking operations.

Now suppose that the abstract domain E232 is the domain of affine equalities over the 32-bit

registers eax, ebx, and ecx, and that we would like to compute the abstract transformer for τ when

the input abstract value a ∈ E232 is ebx = ecx. This task corresponds to finding the strongest

consequence of the formula ψ ≡ (ebx = ecx∧ϕτ ) that can be expressed as affine relation among

eax′, ebx′, and ecx′, which turns out to be α̂(ψ) ≡ (216ebx′ = 216ecx′ + 224eax′) ∧ (224ebx′ =

224ecx′). Multiplying by a power of 2 serves to shift bits to the left; because it is performed in

arithmetic mod 232, bits shifted off the left end are unconstrained. Thus, the first conjunct of

α̂(ψ) captures the relationship between the low-order two bytes of ebx′, the low-order two bytes

of ecx′, and the low-order byte of eax′. �

My Contributions

In this thesis, I have developed various algorithms for symbolic abstraction, which can be used

to synthesize operations needed by an abstract interpreter. Thus, the use of symbolic abstrac-

tion lessens the burden on analysis designers by raising the level of automation in abstraction

interpretation. Moreover, the use of symbolic abstraction provides help along the following four

dimensions:

soundness: Symbolic abstraction provides a way to create analyzers that are correct-by-construction,

while requiring an analysis designer to implement only a small number of operations.

Consequently, each instantiation of the approach only relies on a small “trusted computing

base”.

precision: Unlike most conventional approaches to creating analyzers, the use of symbolic

abstraction achieves the fundamental limits of precision that abstract-interpretation theory

establishes.
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scalability: Algorithms for performing symbolic abstraction can be implemented as “anytime”

algorithms—i.e., the algorithms can be equipped with a monitor, and if too much time

or space is being used, the algorithms can be stopped at any time, and a safe (over-

approximating) answer returned. By this means, when the analyzer is applied to a suite

of programs that require successively more analysis resources to be used, precision can

degrade gracefully.

extensibility: If an additional abstract domain is added to an analyzer to track additional in-

formation, information can be exchanged automatically between domains via symbolic

abstraction to produce the most-precise abstract values in each domain. This feature is

illustrated in greater detail in Section 1.3.1.

Symbolic Abstraction and Quantifier Elimination

I now contrast two approaches to computing abstract transformers: (i) the use of symbolic

abstraction, and (ii) the use of quantifier-elimination techniques (Gulwani and Musuvathi, 2008;

Monniaux, 2009, 2010).

Gulwani and Musuvathi (2008) defined what they termed the “cover problem”, which

addresses approximate existential quantifier elimination:

Given a formulaϕ in logicL, and a set of variables V , find the strongest quantifier-free

formula ϕ in L such that J∃V : ϕK ⊆ JϕK.

I use CoverV (ϕ) to denote the cover of ϕ and the set of variables V .

Gulwani and Musuvathi (2008) presented cover algorithms for the theories of uninterpreted

functions and linear arithmetic, and showed that covers exist in some theories that do not support

quantifier elimination.

The notion of a cover has similarities to the notion of symbolic abstraction, but the latter is

more general. If we think of an abstract domain A as a logic fragment L′, then, in purely logical

terms, symbolic abstraction addresses the following problem of performing an over-approximating

translation to an impoverished fragment:
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Given a formula ϕ in logic L, find the strongest formula ψ in logic-fragment L′ such

that JϕK ⊆ JψK.

Both cover and symbolic abstraction (deliberately) lose information from a given formula ϕ,

and hence both result in over-approximations of JϕK. In general, however, they yield different

over-approximations of JϕK.

1. The information loss from the cover operation only involves the removal of variable set

V from the vocabulary of ϕ. The resulting formula ϕ is still allowed to be an arbitrarily

complex L formula; ϕ can use all of the (interpreted) operators and (interpreted) relation

symbols of L.

2. The information loss from symbolic abstraction involves finding a formulaψ in the fragment

L′: ψ must be a restricted L formula; it can only use the operators and relation symbols of

L′, and must be written using the syntactic restrictions of L′.

One of the uses of information-loss capability 2 is to bridge the gap between the concrete

semantics and an abstract domain. In particular, it may be necessary to use the full power of

logic L to state the concrete semantics of a transformer τ . However, the corresponding abstract

transformer must be expressed in L′. When L′ is something other than the restriction of L to

a sub-vocabulary, cover is not guaranteed to return an answer in L′, and thus does not yield

a suitable abstract transformer. This difference is illustrated using the scenario described in

Example 1.3.

Example 1.4. In Example 1.3, the abstract transformer for τ is obtained by computing α̂(ψ) ∈

E232 , where E232 is the domain of affine equalities over the 32-bit registers eax, ebx, and ecx;

ψ ≡ (ebx = ecx ∧ ϕτ ); and ϕτ is defined in Equation (1.1). In particular, α̂(ψ) ≡ (216ebx′ =

216ecx′ + 224eax′) ∧ (224ebx′ = 224ecx′).
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Let R be the set of registers at the input; that is, R = {eax, ebx, ecx}. The cover of ψ using

the set R is

CoverR′(ψ)≡ ebx′ =

 (ecx′ & 0xFFFF00FF)

| ((ecx′ + 256 ∗ (eax′ & 0xFF)) & 0xFF00)

 (1.2)

Equation (1.2) shows that even though the cover does not contain any of the input (unprimed)

registers, it is not yield an abstract value in the domain E232 . �

Note that, the notion of symbolic abstraction subsumes the notion of cover: if L′ is the logic

L restricted to the variables not contained in V , then α̂L′(ϕ) = CoverV (ϕ), ϕ ∈ L.

1.2 Abstraction in Decision Procedures

In addition to the contributions summarized in Section 1.1, the thesis also describes Satisfiability

Modulo Abstraction (SMA), a new approach that uses abstraction to design and implement

decision procedures.

This work got started with the result presented in Chapter 6. In that work, I demonstrated

the use of abstraction in decision procedures by showing how Stålmarck’s method (Sheeran

and Stålmarck, 2000), an algorithm for satisfiability checking of propositional formulas, can be

explained using abstract-interpretation terminology—in particular, as an instantiation of a more

general algorithm, Stålmarck[A], that is parameterized on a (Boolean) abstract domain A and

operations onA. The algorithm that goes by the name “Stålmarck’s method” is one instantiation

of Stålmarck[A] with a certain abstract domain.

At each step, Stålmarck[A] holds someA ∈ A; each of the proof rules employed in Stålmarck’s

method improves A by finding a semantic reduction of A with respect to ϕ. The advantage of

viewing Stålmarck’s method using abstract-interpretation terminology is that it brings out a new

connection between Stålmarck’s method and symbolic abstraction. In essence, to check whether

a formula ϕ is unsatisfiable, Stålmarck[A] computes α̂A(ϕ) and performs the test “α̂A(ϕ) = ⊥A?”

If the test succeeds, it establishes that JϕK ⊆ γ(⊥A) = ∅, and hence that ϕ is unsatisfiable.
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Using this abstraction-based view, Stålmarck’s method can be lifted from propositional logic

to richer logics, such as quantifier-free linear rational arithmetic (LRA): to obtain a method for

richer logics, instantiate the parameterized version of Stålmarck’s method with richer abstract

domains, such as the polyhedral domain (Cousot and Halbwachs, 1978). By this means, we

obtained algorithms for computing α̂ for these richer abstract domains. The bottom line is that

our algorithm is “dual-use”:

• it can be used by an abstract interpreter to compute α̂ (and perform other symbolic abstract

operations), and

• it can be used in an SMT solver to determine whether a formula is satisfiable.

One of the main advantages of the SMA approach is that it is able to reuse abstract-interpretation

machinery to implement decision procedures. For instance, in in Chapter 6, the polyhedral

abstract domain—implemented in PPL (Bagnara et al., 2008)—is used to implement an SMA

solver for the logic of linear rational arithmetic. Similarly in Chapter 11, the abstract domain

of shapes—implemented in TVLA (Sagiv et al., 2002)—is used in a novel way to implement an

SMA solver for a new fragment of separation logic for which existing approaches do not apply.

1.3 The different hats of α̂

In this section, I present some other applications of symbolic abstraction, and draw connections

between symbolic abstraction and concepts used in Machine Learning and Artificial Intelligence.

1.3.1 Communication of Information Between Abstract Domains

Apart from computing abstract transformers, symbolic abstraction also provides a way to combine

the results from multiple analyses automatically—thereby enabling the construction of new,

more-precise analyzers that use multiple abstract domains simultaneously.

Figures 1.1(a) and 1.1(b) show what happens if we want to communicate information between

abstract domains without symbolic abstraction. Because it is necessary to create explicit conversion
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Figure 1.1: Conversion between abstract domains with the clique approach ((a) and (b)) versus
the symbolic-abstraction approach ((c) and (d)). In particular, (b) and (d) show what is required
under the two approaches when one starts to work with a new abstract domain A.

γ1(A1)∧∧∧∧γ2(A2)

A2L

A1

A1
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∧∧∧∧

α2

∧∧∧∧

γ1
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γ2

A’1 A’2

Figure 1.2: Combining information from multiple abstract domains via symbolic abstraction.

routines for each pair of abstract domains, we call this approach the “clique approach”. As shown

in Figure 1.1(b), when a new abstract domainA is introduced, the clique approach requires that a

conversion method be developed for each prior domainAi. In contrast, as shown in Figure 1.1(d),

the symbolic-abstraction approach only requires that we have α̂ and γ̂ methods that relate A

and L.

Moreover, if each analysis i is sound, each result Ai represents an over-approximation of the
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Figure 1.3: An example of how information from the Parity and Interval domains can be used to
improve each other via symbolic abstraction.

actual set of concrete states. Consequently, the collection of analysis results {Ai} implicitly tells

us that only the states in
⋂
i γ(Ai) can actually occur. However, this information is only implicit,

and it can be hard to determine what the intersection value really is.

One way to address this issue is to perform a semantic reduction (Cousot and Cousot, 1979)

of each of the Ai with respect to the set of abstract values {Aj | i 6= j}. Fortunately, symbolic

abstraction provides a way to carry out such semantic reductions without the need to develop

pair-wise or clique-wise reduction operators. The principle is illustrated in Figure 1.2 for the case

of two abstract domains, A1 and A2. Given A1 ∈ A1 and A2 ∈ A2, we can improve the pair

〈A1, A2〉 by first creating the formula ϕ def= γ̂1(A1) ∧ γ̂2(A2), and then applying α̂1 and α̂2 to ϕ

to obtain A′1 = α̂1(ϕ) and A′2 = α̂2(ϕ), respectively. A′1 and A′2 can be smaller than the original

values A1 and A2, respectively. We then use the pair 〈A′1, A′2〉 instead of 〈A1, A2〉. Figure 1.3

shows a specific example of how information from the Parity and Interval domains can be used

to improve each other via the symbolic-abstraction approach to semantic reduction. Note that in

this example

• the Parity value is improved from (a 7→ even, b 7→ odd, c 7→ >) to (a 7→ even, b 7→ odd, c 7→

odd).

• the Interval value is improved from (a 7→ [3, 12], b 7→ [5, 10], c 7→ [7, 7]) to (a 7→ [4, 12], b 7→

[5, 9], c 7→ [7, 7]).
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When there are more than two abstract domains, we form the conjunction ϕ def=
∧
i γ̂i(Ai), and

then apply each α̂i to obtain A′i = α̂i(ϕ).

1.3.2 Symbolic Abstraction and Interpolation in Logic

Symbolic abstraction also leads to a generalization of interpolation (Craig, 1957), a concept in

mathematical logic. Interpolation has many uses in program verification (Henzinger et al., 2004;

McMillan, 2010).

Definition 1.5. Given ϕ1, ϕ2 ∈ L such that ϕ1⇒ϕ2, I ∈ L is said be an interpolant of ϕ1 and

ϕ2 if and only if (i) ϕ1⇒ I , (ii) I⇒ϕ2, and (iii) I uses only symbols in the shared vocabulary of

ϕ1 and ϕ2. �

A logic L supports interpolation if for all ϕ1, ϕ2 ∈ L, there exists an interpolant I . Many

logics used in verification support interpolation.

In many applications, interpolant I is used as a heuristic for obtaining a simple explanation

of why ϕ1⇒ϕ2. The fact that the interpolant is expressed in terms of the common vocabulary is

what supports the claim that the result is a simple explanation.

Extending our mantra of connecting concepts in logic to those in abstract interpretation, I

introduce the notion of abstract interpolation:

Definition 1.6. Given ϕ1, ϕ2 ∈ L such that ϕ1⇒ϕ2, and an abstract domain A, ι ∈ A is said be

an abstract interpolant of ϕ1 and ϕ2 if and only if (i) ϕ1⇒ γ̂(ι), and (ii) γ̂(ι)⇒ϕ2. �

Here there is no common-vocabulary restriction à la Definition 1.5(iii); however, the fact

that ι must be an element of abstract domain A serves as an alternative heuristic for obtaining a

simple explanation.

Note that even if the logic L supports interpolation, it may not necessarily support abstract

interpolation for a given abstract domain A. The existence of an abstract interpolant depends on

the expressiveness of A. When A is defined as the logic L restricted to the symbols common

to ϕ1 and ϕ2, abstract interpolation reduces to standard interpolation. Abstract interpolation
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generalizes uniform interpolation (Visser, 1996), which is a strengthening of the notion of Craig

interpolation. In uniform interpolation, the interpolant has to be expressed in a given vocabulary

Σ. Thus, uniform interpolation concerns the problem of keeping the vocabulary Σ, and dropping

the rest, which is similar to the cover problem discussed in Section 1.1. Jhala and McMillan

(2006) present an algorithm for computing a uniform interpolant for a limited theory consisting

of restricted use of array operators and rational constraints.

Symbolic abstraction can be used to compute an abstract interpolant. In particular, to compute

an abstract interpolant of ϕ1 and ϕ2, compute ι = α̂(ϕ1), and verify whether γ̂(ι)⇒ϕ2. In fact,

this method is guaranteed to compute the strongest abstract interpolant if any abstract interpolant

exists. Thus, the method is sound and complete for abstract domains for which α̂ is computable,

and logics for which validity of implication is decidable. Though I introduce the notion of

abstract interpolation, the rest of the thesis does not further explore this concept.

1.3.3 Symbolic Abstraction in Other Areas of Computer Science

The concept of symbolic abstraction can also be found in the literature on Machine Learning and

Artificial Intelligence.

In (Reps et al., 2004), a connection was made between symbolic abstraction and the problem

of concept learning in (classical) machine learning. In machine-learning terms, an abstract domain

A is a hypothesis space; each domain element corresponds to a concept. A hypothesis space has

an inductive bias, which means that it has a limited ability to express sets of concrete objects.

In abstract-interpretation terms, inductive bias corresponds to the image of γ on A not being

the full power set of the concrete objects—or, equivalently, the image of γ̂ on A being only a

fragment of L. Given a formula ϕ, the symbolic-abstraction problem is to find the most specific

concept that explains the meaning of ϕ.

There are, however, some differences between the problems of symbolic abstraction and

concept learning. These differences mostly stem from the fact that an algorithm for performing

symbolic abstraction already starts with a precise statement of the concept in hand, namely,

the formula ϕ. In the machine-learning context, usually no such finite description of the con-
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cept exists, which imposes limitations on the types of queries that the learning algorithm can

make to an oracle (or teacher); see, for instance, (Angluin, 1987, Section 1.2). The power of

the oracle also affects the guarantees that a learning algorithm can provide. In particular, in

the machine-learning context, the learned concept is not guaranteed or even required to be

an overapproximation of the underlying concrete concept. During the past three decades, the

machine-learning theory community has shifted their focus to learning algorithms that only

provide probabilistic guarantees. This approach to learning is called probably approximately cor-

rect learning (PAC learning) (Valiant, 1984; Kearns and Vazirani, 1994). The PAC guarantee also

enables a learning algorithm to be applicable to concept lattices that are not complete lattices

(Definition 3.1).

These differences between symbolic abstraction and concept learning serve to highlight the

novelty of the algorithms and applications discussed in the thesis. Furthermore, they also open

up the opportunity for a richer exchange of ideas between the two areas. In particular, one can

imagine situations in which it is appropriate for the overapproximation requirement for abstract

transformers to be relaxed to a PAC guarantee—for example, if abstract interpretation is being

used only to find errors in programs, instead of proving programs correct (Bush et al., 2000), or

if we are analyzing programs with a probabilistic concrete semantics (Kozen, 1981; Monniaux,

2000; Cousot and Monerau, 2012).

The problem of symbolic abstraction is closely related to the problems of restricted consequence

finding (RCF) (McIlraith and Amir, 2001) and approximate knowledge compilation in Artificial

Intelligence (Selman and Kautz, 1996; Del Val, 1999; Simon and Del Val, 2001). Both of these

problems involve translating a formula in a source logic to one in a given (less expressive) target

logic. In the context of knowledge compilation, translating to the target logic allows for efficient

queries to the knowledge base. Most existing techniques for RCF are applicable to propositional

logic or relational first-order logic. Symbolic abstraction also has a connection to another related

problem of forgetting in Artificial Intelligence (Lin and Reiter, 1994, 1997; Eiter and Wang, 2008;

Konev et al., 2009; Wang et al., 2010), which has applications in reuse and combination of

ontologies in Semantic Web applications, cognitive robotics, and logic programming.
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There has been some work already in connecting some of these problems in Artificial Intelli-

gence to problems in program verification. Jhala and McMillan (2006) apply RCF techniques

to compute interpolants to be used for predicate abstraction. I believe it would be fruitful to

continue exploring this connection between problems in Artificial Intelligence and symbolic

abstraction.

1.4 Thesis Outline

This section provides an outline for each of the chapters in this thesis. Section 1.5 lists the

dependencies the various chapters, and suggests several possible orders in which the chapters

of the thesis can be read. A Chapter Notes section can be found at the end of most chapters.

Those sections provide technical and non-technical background on the research described in the

respective chapter. Chapters 5–12 contain the results developed during my dissertation research,

and present my contributions to advancing the field. Chapter 13 concludes by summarizing the

results in the three research threads discussed in this thesis: abstract interpretation, machine-code

verification, and decision procedures.

Chapter 2: There’s Plenty of Room at the Bottom

In this chapter, I introduce the reader to the unique opportunities and challenges involved in

analyzing machine code. Consequently, this chapter puts into context the tools and techniques

for machine-code analysis and verification developed in this thesis. I also give an overview of

the design space of tools and techniques for machine-code analysis.

Chapter 3: Preliminaries

This chapter introduces and defines concepts in (classical) abstract interpretation and symbolic

abstract interpretation, introduces terminology related to decision procedures, and describes

Stålmarck’s method.
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Chapter 4: Symbolic Abstraction from Below

In this chapter, I review two prior algorithms for performing symbolic abstraction:

• The RSY algorithm: a framework for computing α̂ that applies to any logic and abstract

domain that satisfies certain conditions (Reps et al., 2004).

• The KS algorithm: an algorithm for computing α̂ that applies to QFBV logic and the domain

E2w of affine equalities (Elder et al., 2011).

I also present the results of an experiment I carried out to compare the performance of the two

algorithms.

Chapter 5: A Bilateral Algorithm for Symbolic Abstraction

This chapter uses the insights gained from the algorithms presented in Chapter 4 to design

a new Bilateral framework for symbolic abstraction that combines the best features of the KS

and RSY algorithms, but also has benefits that none of these previous algorithms have. The

Bilateral framework maintains sound under- and over-approximations of the answer, and hence

the procedure can return the over-approximation if it is stopped at any point (unlike the RSY

and KS algorithms). I compare the performance of the KS algorithm and an instantiation of the

Bilateral framework.

Chapter 6: A Generalization of Stålmarck’s Method

In this chapter, I give a new account of Stålmarck’s method by explaining each of the key

components in terms of concepts from the field of abstract interpretation. In particular, I show

that Stålmarck’s method can be viewed as a general framework, which I call, Stålmarck[A], that

is parameterized by an abstract domain A and operations on A. This abstraction-based view

allows Stålmarck’s method to be lifted from propositional logic to richer logics, such as LRA.

Furthermore, the generalized Stålmarck’s method falls into the Satisfiability Modulo Abstraction
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(SMA) paradigm: an SMA solver is designed and implemented using concepts from abstract

interpretation.

I also present a connection between symbolic abstraction and Stålmarck’s method for checking

satisfiability, which leads to a new algorithm for symbolic abstraction. I present experimental

results that illustrate the dual-use nature of this Stålmarck-based framework. One experiment

uses it to compute abstract transformers, which are then used to generate invariants; another

experiment uses it for checking satisfiability.

Chapter 7: Computing Best Inductive Invariants

In this chapter, I show how symbolic abstraction can be used to compute best inductive invariants for

an entire program. This chapter provides insight on fundamental limits in abstract interpretation,

because the best inductive invariant represents the limit of obtainable precision for a given abstract

domain.

Chapter 8: Bit-Vector Inequality Domain

In this chapter, I describe how symbolic abstraction enables us to define a new abstract domain,

called the BVI domain, that addresses the following challenges: (1) identifying affine-inequality

invariants while handling overflow in arithmetic operations over bit-vector data-types, and

(2) holding onto invariants about values in memory during machine-code analysis.

Chapter 9: Symbolic Abstraction for Machine-Code Verification

This chapter describes a model-checking algorithm for stripped machine-code called MCVETO

(Machine-Code VErification TOol). I describe how MCVETO adapts directed proof generation (DPG)

(Gulavani et al., 2006) for model checking stripped machine-code. MCVETO implements a new

technique called trace-based generalization, which enables MCVETO to handle instruction aliasing

and self-modifying code. I describe how MCVETO uses speculative trace refinement to use candidate

invariants to speed up the convergence of DPG and to refine the abstraction of the program.
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Chapter 10: A Distributed SAT Solver

In this chapter, I describe a new distributed SAT algorithm, called DiSSolve, that combines

concepts from Stålmarck’s method with those found in modern SAT solvers. I evaluate the

performance of DiSSolve when deployed on a multi-core machine and on the cloud.

Chapter 11: Satisfiability Modulo Abstraction for Separation Logic with Linked Lists

This chapter describes a procedure for checking the unsatisfiability of formulas in a fragment of

separation logic. Separation logic (Reynolds, 2002) is an expressive logic for reasoning about

heap-allocated data structures in programs. The unsatisfiability checker described in this chapter

is designed using concepts from abstract interpretation, and is thus an SMA solver. I present an

experimental evaluation of the procedure, and show that it is able to establish the unsatisfiability

of formulas that cannot be handled by previous approaches.

Chapter 12: Property-Directed Symbolic Abstraction

This chapter presents a new framework for computing inductive invariants for a program that

are sufficient to prove that a given pre/post-condition holds, which I call the property-directed

inductive-invariant (PDII) framework. The PDII framework computes an inductive invariant that

might not be the best (or most precise), but is sufficient to prove a given program property.

1.5 Suggested Order of Reading

This thesis touches on a variety of topics related to automated reasoning, and the reader is

encouraged to read the thesis in its entirety in the order presented to fully appreciate the

connections among the topics. The reader, however, is welcome to pick the chapters and topics

in which they have a greater interest.

Dependencies between chapters are illustrated in the directed graph in Figure 1.4: each node

is annotated with a chapter number, and an edge from node i to node j denotes that Chapter i

should be read before Chapter j; solid arrows denote strong dependencies, and dashed arrows
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Figure 1.4: Dependencies among chapters

denote weak dependencies. Chapter 13, which is not shown in Figure 1.4, summarizes the results

developed during my dissertation research.

The thesis can also read in orders that follow (individually) three different threads: abstract

interpretation, decision procedures, and machine-code verification. The chapters relevant to

these three topics are listed in Table 1.1. (The results of the thesis in each of these three topics

are also summarized in Chapter 13 at a more technical level than is appropriate for the present

chapter.)

Topic Relevant chapters

Abstract Interpretation Chapters 3, 4, 5, 6, 7, 8, and 12
Decision Procedures Chapters 3, 6, 10, and 11
Machine-Code Verification Chapters 2, 8, and 9

Table 1.1: Chapters relevant to a particular topic



23

1.6 Chapter Notes

The beginning is always the hardest. When I started writing this thesis, I was stuck with the

question of what the first chapter should actually “introduce.” This thesis covers a wide range of

topics in automated reasoning that include theoretical results in abstract interpretation, practical

techniques for machine-code verification, decision procedures for propositional logic, and an

unsatisfiability checker for separation logic. Introducing all the problems and solution spaces

relevant to this thesis in a single chapter appeared daunting and near impossible.

I then came across an article by Karp (2011) that explores the changing relationship between

computer science and the natural and social sciences. This new relationship, referred to as the

computational lens, sees computation as a kind of lens through which to view the world of science.

This computational view enables the use of concepts of computer science to give new insights

and new ways of thinking about the physical and social sciences. Though the specific research

goals described in that article have little to do with this thesis, the title and message of the article

resonated with me: the use and benefits of viewing the physical and social sciences though the

computational lens paralleled the use and benefits of viewing program verification and decision

procedures through the abstraction lens, albeit on a more modest scale. This thought process

led to the title of this first chapter.
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Chapter 2

There’s Plenty of Room at the Bottom

Now the name of this talk is “There is Plenty of Room at

the Bottom”—not just “There is Room at the Bottom.”
— Richard Feynmann, There is Plenty of Room at the Bottom

This chapter introduces the reader to the unique opportunities and challenges involved in

analyzing machine code. Consequently, this chapter puts into context the tools and techniques

for machine-code analysis and verification developed in this thesis, especially MCVETO, the

Machine-Code VErification TOol (Chapter 9).

The purpose and contributions of the chapter can be summarized as follows:

1. I state the need for and advantages of machine-code analysis and verification (Section 2.1).

2. I state the challenges in analyzing machine code, as compared to source-code analysis

(Section 2.2).

3. I give an overview of the design space of tools and techniques for machine-code analysis

(Section 2.3).

Though applicable to a wide-range of instruction sets, the examples and instantiations used

in this thesis use the the 32-bit Intel x86 instruction set (also called IA32). For readers who
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need a brief introduction to IA32, it has six 32-bit general-purpose registers (eax, ebx, ecx,

edx, esi, and edi), plus two additional registers: ebp, the frame pointer, and esp, the stack

pointer. By convention, register eax is used to pass back the return value from a function call.

In Intel assembly syntax, the movement of data is from right to left (e.g., mov eax,ecx sets the

value of eax to the value of ecx). Arithmetic and logical instructions are primarily two-address

instructions (e.g., add eax,ecx performs eax := eax + ecx). An operand in square brackets

denotes a dereference (e.g., if v is a local variable stored at offset -12 off the frame pointer,

mov [ebp-12],ecx performs v := ecx). Branching is carried out according to the values of

condition codes (“flags”) set by an earlier instruction. For instance, to branch to L1 when eax and

ebx are equal, one performs cmp eax,ebx, which sets ZF (the zero flag) to 1 iff eax− ebx = 0. At

a subsequent jump instruction jz L1, control is transferred to L1 if ZF = 1; otherwise, control

falls through.

2.1 The Need for Machine-Code Analysis

Traditionally, verification efforts have focused on analyzing source code. The need for investigat-

ing new techniques for performing machine-code analysis and verification can be summarized

as follows:

• In certain situations, source code is not available, and the only available artifact for analysis

is machine code.

• Machine code is an artifact that is closer to what actually executes on the machine; models

derived from machine code can be more accurate than models derived from source code.

• Analysis and verification techniques that have typically been applied to source code would

be unsound if applied to machine code.

Source code is not available when analyzing malware and viruses, or third-party libraries and

drivers. Thus, when trying to understand the behavior of malware, or trying to vet third-party

binaries for security vulnerabilities, the only option is to analyze machine code.
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Computers do not execute source-code programs, they execute machine-code programs.

Consequently, there is a mismatch between what the programmer sees in the source code and

what is executed. Furthermore, analyses that are performed on source code can fail to detect

certain bugs and security vulnerabilities (particularly because compilation, optimization, and

link-time transformation can change how the code behaves). Balakrishnan et al. (2007) call this

phenomenon WYSINWYX for “What You See Is Not What You eXecute”.

When source code is compiled, the compiler and optimizer make certain choices that eliminate

some possible behaviors—hence there is sometimes the opportunity to obtain more precise

answers from machine-code analysis than from source-code analysis. For instance, security

exploits, such as buffer-overflow vulnerabilities, can depend on the layout of variables in memory,

which in turn depends on the idiosyncrasies of the compiler and optimizer used to generate

the machine code from the source code (Howard, 2002); security exploits could depend on the

specific libraries that are statically and dynamically linked to the program; security exploits

could depend on the (possibly malicious) instrumentation code inserted in programs subsequent

to compilation.

Often it is challenging for the programmer to understand how the compiler transforms the

source code. For instance, compilers perform optimizations that exploit undefined behavior in

programs; though perfectly sound with respect to the language semantics, such optimizations

have unexpected consequences, such as incorrect functionality and deleting security checks

(Wang et al., 2013).

The previous paragraph assumes that the compiler itself does not contain bugs. But compilers

do have bugs (Yang et al., 2011). In fact, so does the CPU (Cipra, 1995; AMD, 2012). How far

down do we go? There is plenty of room at the bottom.

2.2 The Challenges in Machine-Code Analysis

Machine-code analysis presents many new challenges. For instance, at the machine-code level,

memory is one large byte-addressable array, and an analyzer must handle computed—and
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possibly non-aligned—addresses. It is crucial to track array accesses and updates accurately;

however, the task is complicated by the fact that arithmetic and dereferencing operations are

both pervasive and inextricably intermingled. For instance, consider the load of a local variable v,

located at offset -12 in the current activation record, into register eax: mov eax,[ebp-12]. This

instruction involves a numeric operation (ebp-12) to calculate an address whose value is then

dereferenced ([ebp-12]) to fetch the value of v, after which the value is placed in eax. Source-code

analysis tools often use separate phases of (i) points-to/alias analysis (analysis of addresses) and

(ii) analysis of arithmetic operations. Because numeric and address-dereference operations are

inextricably intertwined, as discussed above, only very imprecise information would result with

the same organization of analysis phases.

Compared with analysis of source code, the challenge is to drop all assumptions about

having certain kinds of information available (variables, control-flow graph, call-graph, etc.)

In particular, standard approaches to source-code analysis assume that certain information is

available—or at least obtainable by separate analysis phases with limited interactions between

phases—e.g.,

• a control-flow graph (CFG), or interprocedural CFG (ICFG)

• a call-graph

• a set of variables, split into disjoint sets of local and global variables

• a set of non-overlapping procedures

• type information

• points-to information or alias information

The availability of such information permits the use of techniques that can greatly aid the analysis

task. For instance, when one can assume that (i) the program’s variables can be split into (a) global

variables and (b) local variables that are encapsulated in a conceptually protected environment,
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and (ii) a procedure’s return address is never corrupted, analyzers often tabulate and reuse

explicit summaries that characterize a procedure’s behavior.

Source-code-analysis tools sometimes also use questionable techniques, such as interpreting

operations in integer arithmetic, rather than bit-vector arithmetic. They also usually make

assumptions about the semantics that are not true at the machine-code level—for instance, they

usually assume that the area of memory beyond the top-of-stack is not part of the execution state

at all (i.e., they adopt the fiction that such memory does not exist).

Machine-code analyzers also need to address new kinds of behaviors that are not seen at the

source-code level, such as jumps to “hidden” instructions starting at positions that are out of

registration with the instruction boundaries of a given reading of an instruction stream (Linn

and Debray, 2003), and self-modifying code.

To summarize, the challenges that analysis of machine code presents include:

absence of information about variables: In stripped executables, no information is provided

about the program’s global and local variables.

a semantics based on a flat memory model: With machine code, there is no notion of separate

“protected” storage areas for the local variables of different procedure invocations, nor

any notion of protected fields of an activation record. For instance, a procedure’s return

address is stored on the stack; an analyzer must prove that it is not corrupted, or discover

what new values it could have.

absence of type information: In particular, int-valued and address-valued quantities are indis-

tinguishable at runtime.

arithmetic on addresses is used extensively: Moreover, numeric and address-dereference oper-

ations are inextricably intertwined, even during simple operations.

instruction aliasing: Programs written in instruction sets with varying-length instructions, such

as x86, can have “hidden” instructions starting at positions that are out of registration with
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the instruction boundaries of a given reading of an instruction stream (Linn and Debray,

2003).

self-modifying code: With self-modifying code there is no fixed association between an address

and the instruction at that address.

2.3 The Design Space for Machine-Code Analysis

Machine-code-analysis problems come in at least three varieties:

1. In addition to the executable, the program’s source code is also available.

2. The source code is unavailable, but the executable includes symbol-table/debugging

information (“unstripped executables”).

3. The executable has no symbol-table/debugging information (“stripped executables”).

The appropriate variant to work with depends on the intended application. Some analysis

techniques apply to multiple variants, but other techniques are severely hampered when symbol-

table/debugging information is absent. In this thesis, I have primarily been concerned with the

analysis of stripped executables, both because it is the most challenging situation, and because

it is what is needed in the common situation where one needs to install a device driver or

commercial off-the-shelf application delivered as stripped machine code. If an individual or

company wishes to vet such programs for bugs, security vulnerabilities, or malicious code (e.g.,

back doors, time bombs, or logic bombs) analysis tools for stripped executables are required.

In this section, I describe the design space for machine-code analysis by contrasting two previ-

ous machine-code-analysis tools—CodeSurfer/x86 (Balakrishnan et al., 2005; Balakrishnan and

Reps, 2010) and DDA/x86 (Balakrishnan and Reps, 2008)—with the machine-code-verification

tool MCVETO developed in this thesis (Chapter 9). Those three tools represent several firsts:

• CodeSurfer/x86 is the first program-slicing tool for machine code that is able to track

the flow of values through memory, and thus help with understanding dependences

transmitted via memory loads and stores.
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void foo() {
int arr[2], n;
void (*addr_bar)() = bar;
if(MakeChoice() == 7) n = 4; // (*)
else n = 2;
for(int i = 0; i < n; i++)

arr[i] = (int)addr_bar; // (**)
return; // can return to the entry of

bar
}

void bar() {
ERR:

return;
}

int main() {
foo();
return 0;

}

Figure 2.1: A program that, on some executions, can modify the return address of foo so that foo
returns to the beginning of bar, thereby reaching ERR. (MakeChoice is a primitive that returns a
random 32-bit number.)

• DDA/x86 is the first automatic program-verification tool that is able to check whether a

stripped executable—such as a device driver—conforms to an API-usage rule (specified as

a finite-state machine).

• MCVETO is the first automatic program-verification tool capable of verifying (or detecting

flaws in) self-modifying code.

Figure 2.1 is an example that will be used to illustrate two points in the design space of

machine-code-analysis tools with respect to the question of corruption of a procedure’s return

address. When the program shown in Figure 2.1 is compiled with Visual Studio 2005, the return

address is located two 4-byte words beyond arr—in essence, at arr[3]. When MakeChoice

returns 7 at line (*), n is set to 4, and thus in the loop arr[3] is set to the starting address of

procedure bar. Consequently, the execution of foo can modify foo’s return address so that foo

returns to the beginning of bar.

In general, tools that represent different points in the design space have different answers to

the question
What properties are checked, and what is expected of the analyzer after the first anomalous action is

detected?
First, consider the actions of a typical source-code analyzer, which would propagate abstract

states through an interprocedural control-flow graph (ICFG). The call on foo in main causes

it to begin analyzing foo. Once it is finished analyzing foo, it would follow the “return-edge”
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exit

addr_bar = bar

enter
foo exit

enter
main

return 0call foo

if M
akeC

hoice==7if 
M

ak
eC

ho
ic

e≠
7

n = 2 n = 4

i = 0

arr[i] = (int)addr_bar

if i < n
if  

i ≥
n

return

i++

exit
enter
bar

ERR:
return

Figure 2.2: Conventional ICFG for the program shown in Figure 2.1. Note that the CFG for bar
is disconnected from the rest of the ICFG.

in the ICFG back to the point in main after the call on foo. However, a typical source-code

analyzer does not represent the return address explicitly in the abstract state and relies on an

unsound assumption that the return address cannot be modified. The analyzer would never

analyze the path from main to foo to bar, and would thus miss one of the program’s possible

behaviors—although the analyzer might report an array-out-of-bounds error at line (**).

The analysis problems in CodeSurfer/x861 resemble standard source-code analysis problems,

to a considerable degree. CodeSurfer/x86 only follows behaviors expected from a standard com-

pilation model. By a “standard compilation model”, I mean that the executable has procedures,

activation records (ARs), a global data region, and a free-storage pool; might use virtual functions

and DLLs; maintains a runtime stack; each global variable resides at a fixed offset in memory;

each local variable of a procedure f resides at a fixed offset in the ARs for f ; actual parameters

of f are pushed onto the stack by the caller so that the corresponding formal parameters reside

at fixed offsets in the ARs for f ; the program’s instructions occupy a fixed area of memory, and

are not self-modifying.
1Henceforth, I will not refer to DDA/x86 explicitly. Essentially all of the observations made about CodeSurfer/x86

apply to DDA/x86 as well.
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CodeSurfer/x86 is, however, prepared to detect and report deviations from behaviors ex-

pected from a standard compilation model, but it is not prepared to explore the consequences of

deviant behavior. When such deviations are detected, an error report is issued, and the analysis

proceeds by continuing to explore behaviors that stay within those of the desired execution

model. For instance, when the analysis discovers that the return address might be modified

within the procedure foo in Figure 2.1, CodeSurfer/x86 reports the potential violation, but

proceeds according to the original return address—i.e., by returning from foo to main. Similar

to source-code analyzers, they would not analyze the path from main to foo to bar. Although it

could miss one of the program’s possible behaviors, it reports that there is possibly an anomalous

overwrite of the return address. In the case of self-modifying code, either a write into the code

will be reported or a jump or call to data will be reported.

In contrast, MCVETO uses some techniques that permit it not only to detect the presence

of “deviant behaviors”, but also to explore them as well. The state-space-exploration method

used in MCVETO discovers that the execution of foo can modify foo’s return address. It uses

the modified return address to discover that foo actually returns to the beginning of bar, and

correctly reports that ERR is reachable. The reader is referred to Chapter 9 for more details

regarding the internals of MCVETO.

2.4 Chapter Notes

I came up with the idea for the title of this chapter when thinking of a title for an invited paper

for CAV 2010. I was rather excited about it, until Tom Reps, my adviser, mentioned that Richard

Feynman has a (famous) talk with the same title (Feynman, 1960), which I was unaware of at

the time. Tom believes I must have seen a reference to Feynman’s talk, and subconsciously

remembered it.
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Chapter 3

Preliminaries

The advanced reader who skips parts that appear to him

too elementary may miss more than the less advanced

reader who skips parts that appear to him too complex.
— G. Polya

This chapter introduces and defines concepts in (classical) abstract interpretation (Sections 3.1

and 3.1.2) and symbolic abstract interpretation (Sections 3.2.3 and 3.2.4), introduces terminology

related to decision procedures (Section 3.3), and describes Stålmarck’s method (Section 3.4).

3.1 Abstract Interpretation

Abstract interpretation (Cousot and Cousot, 1977) is a powerful framework for specifying static

program analyses. In this section, I formalize the abstract-interpretation concepts introduced in

Section 1.1. I assume familiarity with the basic concepts of abstract interpretation; a detailed

description can be found in (Nielson et al., 1999, chapter 4).

Definition 3.1. A partially ordered set (L,≤) is said to be a complete lattice if every subset M of

L has both a greatest lower bound (also called meet, denoted by M ) and a least upper bound

(also called join, denoted by
⊔
M ) in (L,≤). A complete lattice has a greatest element, denoted

by >, and a least element, denoted by ⊥, such that ⊥ ≤ m ≤ >, for each m ∈ L. �
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Let (C,vC) be a complete lattice representing the concrete collecting semantics of the program.

Usually calculations using C may be too costly or even uncomputable. This situation motivates

using a simpler lattice (A,vA). The abstraction function α : C → A and the concretization function

γ : A → C are used to express the relationship between C and A. In particular, α expresses what

element of A is used to represent an element of C, and γ expresses the meaning of an element of

A in terms of an element of C.

Definition 3.2. We define G = C −−→←−−α
γ
A to be a Galois connection between complete lattices

(C,vC) and (A,vA) if and only if α : C → A and γ : A → C are total functions that satisfy

α(c) vA a⇔ c vC γ(a) (3.1)

�

Intuitively, Equation (3.1) expresses that α and γ “respect” the orderings of the two lattices:

If an element c ∈ C is described by the element α(c) ∈ A, then all elements a ∈ A that are higher

than α(c) in the A-lattice order—α(c) vA a—should be mapped to elements γ(a) ∈ C that are

higher that c in the C-lattice order—c vC γ(a).

The next example illustrates the concepts of abstraction and concretization functions using

the abstract domain of intervals introduced in Section 1.1.

Example 3.3. Let C be the the powerset of states over integer variables x and y, and A could be

the lattice of states over intervals.

c1 =
{
[x 7→ 2, y 7→ 200], [x 7→ 5, y 7→ 120], [x 7→ 10, y 7→ 20]

}
α(c1) = a1 =

[
x 7→ [2, 10], y 7→ [20, 200]

]
γ(a1) = c2 =

{
[x 7→ 2, y 7→ 20], [x 7→ 2, y 7→ 21], [x 7→ 2, y 7→ 200], . . .

[x 7→ 10, y 7→ 20], [x 7→ 10, y 7→ 21], [x 7→ 10, y 7→ 200], . . .
}

The abstract value a1 = α(c1) is the interval representation of concrete states in c1 ∈ C. Notice

that there is a loss of precision when moving from C to A; however, the abstract value a1 is a
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more succinct representation of c1. Applying the concretization function γ to the abstract value

a1 results in the set of concrete states c2. Note that c1 vC c2. �

I will make use of the following properties of a Galois connection G = C −−→←−−α
γ
A (Nielson

et al., 1999, section 4.3.1):

• γ uniquely determines α by

α(c) =
{
a
∣∣ c vC γ(a)

}
(3.2)

• α is completely additive; that is, given C ⊆ C,

α
(⊔

C
)

=
⊔{

α(c)
∣∣ c ∈ C} (3.3)

Definition 3.4. The representation function β maps a singleton concrete state σ such that {σ} ∈ C

to the least value in A that over-approximates {σ}. �

In other words, β returns the abstraction of a singleton concrete state; i.e.,

β(σ) = α ({σ}) . (3.4)

Experience shows that, for most abstract domains, it is easy to implement a β function. Note

that implementing the α function can still be challenging, especially when a formula is used to

specify an infinite (or large) state set.

If C is the powerset of some set of states and c ∈ C, then using Equations (3.4) and (3.3) we

have that

α(c) =
⊔
σ∈c

β(σ) (3.5)

3.1.1 Conjunctive Abstract Domains

Many common abstract domains, and all the domains used in this thesis, fall into the category

of conjunctive domains.
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Domain Φ

Integer Interval domain inequalities of the form c1 ≤ v
and v ≤ c2 over integers

Polyhedral domain linear inequalities over reals or rationals
Bit-Vector Interval domain I2w inequalities of the form c1 ≤ v

and v ≤ c2 integers mod 2w
Affine-equalities domain E2w affine equalities over integers mod 2w

Table 3.1: Examples of conjunctive domains. v, vi represent program variables and c, ci represent
constants

Definition 3.5. Let Φ be a given set of formulas expressed in L. A conjunctive domain over Φ is

an abstract domain A such that:

• For any a ∈ A, there exists a finite subset Ψ ⊆ Φ such that γ(a) = J
∧

ΨK.

• For any finite Ψ ⊆ Φ, there exists an a ∈ A such that γ(a) = J
∧

ΨK.

• There is an algorithm that, for all a1, a2 ∈ A, checks whether a1 v a2 holds. �

Table 3.1 lists the conjunctive domains used in this thesis.

The polyhedral domain and its associated abstract operations are defined in (Cousot and Halb-

wachs, 1978). An element of the polyhedral domain (Cousot and Halbwachs, 1978) is a convex

polyhedron, bounded by hyperplanes; that is, each polyhedron can be expressed as some conjunc-

tion of linear inequalities (“half-spaces”) from the set F = {
∑
v∈V cvv ≥ c | c, cv are constants},

where V is the set of program variables.

The affine-equalities domain E2w and its associated abstract operations are defined in Elder

et al. (2011). An element of the affine-equalities domain E2w is a set of affine equalities, where

each equality Ci is of the form Σjaijvj + bi = 0, aij , bi ∈ Z2w , vj ∈ V . In this thesis, we are

mainly interested in versions of the E2w that are based on machine arithmetic, e.g., arithmetic

modulo 28, 216, 232, or 264, and are able to take care of arithmetic overflow. The domain of

affine-equalities over integers EZ was first studied by Karr (1976). The abstract domain EZ does not

take into account overflow; consequently, the analysis results of an EZ analysis can be unsound.

Furthermore, E2w is more expressive than EZ. For instance, it is possible to express the parity of
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a variable in E2w , but not in EZ. In arithmetic mod 2w, multiplying by a power of 2 serves to shift

bits to the left, with the effect that bits shifted off the left end are unconstrained. For example,

in E232 the affine relation 231x = 231 places a constraint solely on the least-significant bit of x;

consequently, 231x = 231 is satisfied by all states in which x is odd. Similarly, 231x = 0 is satisfied

by all states in which x is even.

3.1.2 Abstract Operations

Abstract Transformer

Suppose that G = C −−→←−−α
γ
A is a Galois connection between concrete domain C and abstract

domainA. Then the “best transformer” (Cousot and Cousot, 1979), or best abstract post operator

for transition τ , denoted by P̂ost[τ ] : A → A, is the most-precise abstract operator possible, given

A, for the concrete post operator for τ , Post[τ ] : C → C. P̂ost[τ ] can be expressed in terms of α, γ,

and Post[τ ], as follows (Cousot and Cousot, 1979):

P̂ost[τ ] = α ◦ Post[τ ] ◦ γ (3.6)

Equation (3.6) defines the limit of precision obtainable using abstraction A. However, it is

non-constructive; it does not provide an algorithm, either for applying P̂ost[τ ] or for finding a

representation of the function P̂ost[τ ]. In particular, in many cases, the application of γ to an

abstract value would yield an intermediate result—a set of concrete states—that is either infinite

or too large to fit in computer memory.

In practice, analysis designers typically give up on Equation (3.6) and manually write, for

each concrete operation, an abstract transformer that satisfies the weaker condition

Post][τ ] w α ◦ Post[τ ] ◦ γ. (3.7)

Furthermore, an analysis designer needs to prove that Equation (3.7) holds for the abstract

transformers that he has defined.



38

One common approach for implementing abstract transformers is via operator-by-operator

reinterpretation. The analysis developer writes a sound abstract operator—&], +], ∗], |], and

=]—for each concrete operator—&, +, ∗, |, and =, respectively. These abstract operators are used

in place of the concrete operators occurring in the term used to express the concrete transformer.

Abstract Transformers via Reinterpretation

TSL (for “ Transformer Specification Language”) (Lim and Reps, 2008, 2013), is a language and

system that uses the reinterpretation approach to automate the creation of abstract-interpretation

systems (primarily for machine-code analysis). With TSL, one specifies an instruction set’s con-

crete operational semantics by writing an interpreter using a first-order functional language.

The interpreter specifies how each instruction transforms a concrete state. To define an ab-

stract interpretation for an abstract domain A, one defines “replacement” datatypes for TSL’s

numeric/bit-vector and map datatypes, along with 42 replacement numeric/bit-vector opera-

tions, 12 replacement map-access/update operations, plus a few additional operations, such

as t, u, and widen. From such a reinterpretation of the TSL meta-language, which is extended

automatically to TSL expressions and functions, TSL creates sound over-approximating trans-

formers.

In general, such an operator-by-operator reinterpretation approach is sound, but is not

guaranteed to compute P̂ost. Furthermore, the task of manually defining the abstract operations

can be tedious and error-prone, especially for machine code where most instructions involve

bit-wise operations. Example 1.3 illustrated that applying P̂ost can be complex even for a single

instruction. For this example, P̂ost[τ ](a) def= (216ebx′ = 216ecx′ + 224eax′) ∧ (224ebx′ = 224ecx′),

while the reinterpretation approach results in Post][τ ] def= 224ebx′ = 224ecx′, which is a strict

over-approximation of P̂ost[τ ](a).

Example 3.6, given below, motivates why a technique for applying P̂ost for a sequence of

instructions is desirable.
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Example 3.6. Consider the two Intel x86 instructions τ1
def= push 42 and τ1

def= pop eax. The

instruction τ1 pushes the value 42 onto the stack, and τ2 pops the value on top of the stack into

the register eax.

As in Example 1.3, we consider the abstract domain E232 of relational affine equalities among

32-bit registers. We would like to compute P̂ost[τ1; τ2](a), where a = >; that is, we want to

apply the abstract transformer for the sequential composition of τ1 and τ2. One approach is

to compute the value P̂ost[τ2](P̂ost[τ1](a)). P̂ost[τ1](a) def= >, because A is able to only capture

relations between registers, and is incapable of holding onto properties of values on the stack.

Consequently,

P̂ost[τ2](P̂ost[τ1](a)) = P̂ost[τ2](>) = >.

In contrast,

P̂ost[τ1; τ2](A) def= eax′ = 42. �

Examples 1.3 and 3.6 illustrate the fact that an abstract domain can be expressive enough to

capture invariants before and after a sequence of operations or instructions, but not capable of

capturing invariants at some intermediate point. As illustrated in Example 1.3, the application

of a sequence of sound abstract operations can lose precision because it is necessary to express

the intermediate result in the limited language supported by the abstract domain. Example 3.6

illustrates that a similar phenomenon holds at the level of a sequence of instructions: again, the

need to express an intermediate result in the limited language supported by the abstract domain

can cause a loss of precision.

Semantic Reduction

The semantic reduction of an abstract value A ∈ A is the lowest value, according to the lattice

order of A, that has the same concretization as that of A (Cousot and Cousot, 1979).
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Definition 3.7. Given an abstract value A ∈ A, the semantic reduction of A, denoted by ρ(A), is

defined as:

ρ(A) def=
{
A′ | γ(A′) = γ(A)

}
�

Working with semantic reductions of abstract values often improves the overall precision of

the abstract interpretation. The use of semantic reduction in computing the reduced product

(Section 1.3.1) is one such example. Furthermore, when inferring whether a program point is

unreachable, an abstract interpreter checks whether the abstract value A at that program point

is ⊥. It is possible that A is not ⊥, but ρ(A) is ⊥.

This thesis also uses the following variant of the notion of semantic reduction, which provides

a way to refine an abstract value with respect to a formula.

Definition 3.8. Abstract value A′ is a semantic reduction of A with respect to ϕ if (i) γ(A′) ∩ JϕK =

γ(A) ∩ JϕK, and (ii) A′ v A. �

Example 3.9. Let I ≡
[
x 7→ [4, 100]

]
be an element of the interval domain I232 , andϕ ≡ (x&1 = 1).

The semantic reduction of I with respect to ϕ is I ′ ≡
[
x 7→ [5, 99]

]
, because ϕ restricts x to be an

odd number. �

The relation between Definitions 3.7 and 3.8 is explained in Section 3.2.3.

Communication Among Abstract Domains

It is often beneficial to perform analysis using multiple abstract domains (Cousot et al., 2006).

Section 1.3.1 illustrated the concepts and issues associated with combining the results from

multiple analyses automatically.

3.2 Symbolic Abstract Interpretation

The aforementioned problems with applying γ can be side-stepped by working with symbolic

representations of sets of states (i.e., using formulas in some logic L). The use of L formulas to
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represent sets of states is convenient because logic can also be used for specifying a language’s

concrete semantics; i.e., the concrete semantics of a transformer Post[τ ] can be stated as a formula

ϕτ ∈ L that specifies the relation between input states and output states. However, the symbolic

approach introduces a new challenge: how to bridge the gap between L and A. In particular,

we need to develop (i) concepts and algorithms to handle interconversion between formulas

of L and abstract values in A, and (ii) symbolic versions of the operations that form the core

repertoire at the heart of an abstract interpreter.

3.2.1 Moving from A to L

Definition 3.10. Given an abstract value A ∈ A, the symbolic concretization of A, denoted by γ̂(A),

maps A to a formula γ̂(A) such that A and γ̂(A) represent the same set of concrete states (i.e.,

γ(A) = Jγ̂(A)K). �

Experience shows that, for most abstract domains, it is easy to write a γ̂ function, as illustrated

in Example 1.1.

3.2.2 Moving from L to A

Definition 3.11. Given ϕ ∈ L, the symbolic abstraction of ϕ, denoted by α̂(ϕ), maps ϕ to the

best value in A that over-approximates JϕK (i.e., α̂(ϕ) = α(JϕK)). �

In other words, α̂(ϕ) is the strongest consequence of ϕ expressible inA. Examples 1.2 and 1.3

illustrate the concept of α̂.

3.2.3 Symbolic Versions of Abstract Operations

The symbolic operations of γ̂ and α̂ can be used to implement the abstract operations of Sec-

tion 3.1.2.
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Abstract Transformer

Given an abstract value a ∈ A, computing P̂ost[τ ](a) corresponds to computing α̂(γ̂(a) ∧ ϕτ ),

where ϕτ is a formula in logic L that expresses the semantics of τ . Examples 1.2 and 1.3 illustrate

this concept.

Apart from being able to compute P̂ost[τ ](a), it is sometimes useful to create a representation

of P̂ost[τ ]. Some intraprocedural (Graham and Wegman, 1976) and many interprocedural (Sharir

and Pnueli, 1981; Knoop and Steffen, 1992) dataflow-analysis algorithms operate on instances

of an abstract datatype T that (i) represents a family of abstract functions (or relations), and

(ii) is closed under composition and join. By “creation of a representation of P̂ost[τ ]”, we mean

finding the best instance in T that over-approximates Post[τ ]. α̂(ϕτ ) computes the best instance

in T that over-approximates Post[τ ].

Example 3.12. Consider the Intel x86 instruction τ ≡ add bh,al, which was used in Example 1.3.

The formula ϕτ (Equation (1.1)) expresses the semantics of τ . Let E232 be the abstract domain of

affine equalities over the 32-bit registers eax, ebx, ecx, eax′, ebx′, and ecx′. α̂(ϕτ ) computes the

representation of P̂ost[τ ]; in particular,

α̂(ϕτ ) ≡ (216ebx′ = 216ebx + 224eax) ∧ (eax′ = eax) ∧ (ecx′ = ecx). �

Semantic Reduction

In symbolic abstract interpretation, Âssume plays the role of the semantic-reduction operation

(Definition 3.8). Given ϕ ∈ L and A ∈ A, Âssume[ϕ](A) returns the best value in A that over-

approximates the meaning of ϕ in concrete states described by A. That is, Âssume[ϕ](A) equals

α(JϕK ∩ γ(A)), and can be computed as α̂
(
ϕ ∧ γ̂(A)

)
.
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Example 3.13. Consider the scenario discussed in Example 3.9. The semantic reduction of I

with respect to ϕ is

I ′ ≡ Âssume[ϕ](I)

≡ α̂
(
(x&1 = 1) ∧ 4 ≤ x ∧ x ≤ 100

)
≡
[
x 7→ [5, 99]

]
�

The semantic-reduction operator ρ (Definition 3.7) can be computed using Âssume: ρ(A) =

Âssume[γ̂(A)](A).

Communication Among Abstract Domains

Suppose that there are two Galois connections G1 = C −−−→←−−−α1

γ1 A1 and G2 = C −−−→←−−−α2

γ2 A2, and one

wants to work with the reduced product of A1 and A2 (Cousot and Cousot, 1979, Section 10.1),

which I denote byA1 ?A2. The semantic reduction of a pair 〈A1, A2〉 can be performed by letting

ψ be the formula γ̂1(A1) ∧ γ̂2(A2), and creating the pair 〈α̂1(ψ), α̂2(ψ)〉. Section 1.3.1 illustrates

how symbolic abstraction can be used to compute the reduced product.

Symbolic abstraction can also be used to translate an abstract value in one abstract domain

to the best abstract value in another abstract domain. This capability would allow an abstract

interpreter to use different abstract domains for different portions of a program being analyzed.

Given A1 ∈ A1, one can find the most-precise value A2 ∈ A2 that over-approximates A1 in A2 as

follows: A2 = α̂2(γ̂1(A1)).

Notation for Over-Approximating Operators

We replace “̂” with “˜” to denote over-approximating operators—e.g., α̃(ϕ), As̃sume[ϕ](A),

and P̃ost[τ ](A).
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3.2.4 Properties of Symbolic Abstraction

In this section, I give two theorems that characterize α̂(ϕ) in terms of underapproximating

elements (Theorem 3.14) and in terms of overapproximating elements (Theorem 3.15). These

theorems will be used later to justify algorithms that, given ϕ, find α̂(ϕ) from below (Chapter 4),

from above (Chapter 6), or both (Chapter 5).

Theorem 3.14. α̂(ϕ) =
⊔{
β(S)

∣∣S |= ϕ
}

Proof. By definition,

α̂(ϕ) = α(JϕK) (3.8)

S |= ϕ if and only if {S} ⊆ JϕK (3.9)

From Equation (3.9), we have that

JϕK =
⋃{

S
∣∣S |= ϕ

}
(3.10)

Using Equation (3.10) in Equation (3.8), we have that

α̂(ϕ) = α
(⋃{

S
∣∣S |= ϕ

})
(3.11)

Using Equation (3.5) in Equation (3.11), we have that

α̂(ϕ) =
⊔{

β(S)
∣∣S |= ϕ

}

Theorem 3.15. α̂(ϕ) =
{
a
∣∣ϕ⇒ γ̂(a)

}
Proof. By definition,

α̂(ϕ) = α(JϕK) (3.12)

By Equation (3.2), we have that

α(JϕK) =
{
a
∣∣ JϕK vC γ(a)

}
(3.13)
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Using Equations (3.12) and (3.13), we have that

α̂(ϕ) =
{
a
∣∣ JϕK vC γ(a)

}
(3.14)

From the definition of γ̂, we have that

γ(a) = Jγ̂(a)K (3.15)

Using Equation (3.15) and from the relation between vC and⇒, we have that

JϕK vC γ(a) if and only if ϕ⇒ γ̂(a) (3.16)

Using Equation (3.16) in Equation (3.14), we have that

α̂(ϕ) =
{
a
∣∣ϕ⇒ γ̂(a)

}

3.3 Decision Procedures

This section introduces basic terminology related to decision procedures.

A formula ψ is satisfiable if and only if there exists an interpretation S that makes ψ true. S is

called a model of ψ, and this fact is denoted by S |= ψ. Conversely, a formula is unsatisfiable if all

interpretations make the formula false. A formula is valid if all models make the formula true. ψ

is valid if and only if ¬ψ is unsatisfiable. A valid formula is also called a tautology.

A theory T for a signature of predicate and function symbols is a set of sentences. A formula

ψ is satisfiable modulo theory T if and only if there exists a interpretation S of the theory T such

that S |= ψ. In essence, T restricts the possible meanings of the predicate and function symbols.

Unless otherwise stated, “valid” means T -valid and “satisfiable” means T -satisfiable.

A decision procedure for a logic L is an algorithm that can determine in finite time whether or

not a given formula ψ ∈ L is satisfiable. A decision procedure for Boolean or propositional logic

is called a SAT solver. A decision procedure determining satisfiability modulo a theory is called
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a Satisfiability Modulo Theory (SMT) solver. Note that if L is closed under negation, a decision

procedure for L-satisfiability can be used for deciding L-validity.

Most modern implementations of SAT and SMT solvers compute a satisfying model, if one

exists, when given a formula ψ. They also typically take a timeout parameter that bounds the

amount of time the implementation is allowed to spend on determining the answer. Given a

formula ψ ∈ L, we use “Model(ψ)” to denote a function that returns (i) a satisfying model S if

a decision procedure is able to determine that ψ is satisfiable (typically in a given time limit),

(ii) “None” if a decision procedure is able to determine that ψ is unsatisfiable in the given time

limit, and (iii) “TimeOut” otherwise. This terminology is used in the algorithms presented in

Chapters 4 and 5.

3.4 Stålmarck’s Method for Propositional Logic

This section describes Stålmarck’s method (Sheeran and Stålmarck, 2000), a fast validity checker

(and hence a fast SAT solver) for propositional logic.

We use 0 and 1 to denote the propositional constants false and true, respectively. Propositional

variables, negations of propositional variables, and propositional constants are referred to

collectively as literals. Stålmarck’s method manipulates formula relations, which are equivalence

relations over literals. A formula relation R will be denoted by ≡R, although we generally omit

the subscript when R is understood. We use 0 ≡ 1 to denote the universal (and contradictory)

equivalence relation {li ≡ lj | li, lj ∈ Literals}.

In this section, we review the two types of proof rules used in Stålmarck’s method with the

help of examples: (i) Example 3.16 describes the simple deductive rules, called propagation rules,

used in Stålmarck’s method, and (ii) Example 3.17 describes the Dilemma rule, a branching and

merging proof rule employed by Stålmarck’s method. The algorithm is described in Section 3.4.2.
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u1⇔(u2 ∨ u3) (3.17)
u2⇔(a ∧ b) (3.18)
u3⇔(¬a ∨ ¬b) (3.19)

Figure 3.1: Integrity constraints corresponding
to the formula ϕ = (a ∧ b) ∨ (¬a ∨ ¬b). The root
variable of ϕ is u1.

p⇔(q ∨ r) p ≡ 0
q ≡ 0 r ≡ 0

Or1

p⇔(q ∧ r) q ≡ 1 r ≡ 1
p ≡ 1

And1

Figure 3.2: Propagation rules.

3.4.1 Examples

Example 3.16. Consider the tautology ϕ = (a ∧ b) ∨ (¬a ∨ ¬b). It expresses the pigeonhole

principle for two pigeons (a ∧ b) and one hole (¬a ∨ ¬b). This example shows that the simpler

component of the two components of Stålmarck’s method (application of “simple deductive

rules”) is sufficient to establish that ϕ is valid.

Stålmarck’s method first assigns to every subformula of ϕ a unique Boolean variable in a set

of propositional variables U , and generates a list of integrity constraints as shown in Figure 3.1.

An assignment is a function in U → {0, 1}. The integrity constraints limit the set of assignments

in which we are interested. Here the integrity constraints encode the structure of the formula.

Stålmarck’s method establishes the validity of the formula ϕ by showing that ¬ϕ leads to

a contradiction (which means that ¬ϕ is unsatisfiable). Thus, the second step of Stålmarck’s

method is to create a formula relation that contains the assumption u1 ≡ 0. Figure 3.2 lists some

propagation rules that enable Stålmarck’s method to refine a formula relation by inferring new

equivalences. For instance, rule Or1 says that if p⇔(q ∨ r) is an integrity constraint and p ≡ 0 is

in the formula relation, then q ≡ 0 and r ≡ 0 can be added to the formula relation.

Figure 3.3 shows how, starting with the assumption u1 ≡ 0, the propagation rules derive the

explicit contradiction 0 ≡ 1, thus proving that ϕ is valid. �

The process of repeatedly using the propagation rules until no new information is deduced

is called 0-saturation, and is described in Algorithm 2 (Figure 3.6). As demonstrated by the

following example, 0-saturation is not sufficient to prove all tautologies.
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u1 ≡ 0 . . . by assumption
u2 ≡ 0, u3 ≡ 0 . . . by rule Or1 using Equation (3.17)
¬a ≡ 0, ¬b ≡ 0 . . . by rule Or1 using Equation (3.19)
a ≡ 1, b ≡ 1 . . . interpretation of logical negation
u2 ≡ 1 . . . by rule And1 using Equation (3.18)
0 ≡ 1 . . . u2 ≡ 0, u2 ≡ 1

Figure 3.3: Proof that ϕ is valid.

Example 3.17. Consider the tautology ψ =
(
a∧ (b∨ c)

)
⇔
(
(a∧ b)∨ (a∧ c)

)
, which expresses the

distributivity of ∧ over ∨. The integrity constraints for ψ are:

u1 ⇔ (u2⇔u3) u2 ⇔ (a ∧ u4) u3 ⇔ (u5 ∨ u6)

u4 ⇔ (b ∨ c) u5 ⇔ (a ∧ b) u6 ⇔ (a ∧ c)
The root variable of ψ is u1. Assuming u1 ≡ 0 and then performing 0-saturation does not result

in a contradiction; all we can infer is u2 ≡ ¬u3.

To prove that ψ is a tautology, we need to use the Dilemma Rule, which is a special type

of branching and merging rule. It is shown schematically in Figure 3.4. After two literals ui

and uj are chosen, the current formula relation R is split into two formula relations, based on

whether we assume ui ≡ uj or ui ≡ ¬uj , and transitive closure is performed on each variant of

R. Next, the two relations are 0-saturated, which produces the two formula relations R′1 and R′2.

Finally, the two proof branches are merged by intersecting the set of tuples in R′1 and R′2. The

correctness of the Dilemma Rule follows from the fact that equivalences derived from both of the

R

R1 = Close
(
R ∪ {ui ≡ uj}

)
R2 = Close

(
R ∪ {ui ≡ ¬uj}

)
R′

1 R′
2

R′ = R′1 ∩R′2

Figure 3.4: The Dilemma Rule.
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{
[u1,0], [u2,¬u3]

}
{

[u1, b,0], [u2,¬u3]
} {

[u1,0][u2,¬u3], [b,1]
}

{
[b, u1, u5,0], [u2,¬u3,¬u6], [u4, c]

} {
[u1,0], [u2, a, u5,¬u3], [b, u4,1]

}
{

[u1,0], [u2,¬u3]
}

{
[u1, a,0][u2,¬u3]

} {
[u1,0], [u2,¬u3], [a,1]

}
0 ≡ 1

{
[u1,0][u5, b], [u2, u4,¬u3][u6, c], [a,1]

}
{

[u1,0][u5, b], [u2, u4,¬u3], [u6, c], [a,1]
}

{
[u1, c,0][u5, b], [u2, u4,¬u3], [u6, c], [a,1]

} {
[u1,0][u5, b], [u2, u4,¬u3], [u6, c], [a, c,1]

}
{

[u1, c, u6,0], [u5, b, u2, u4,¬u3], [a,1]
}

0 ≡ 1

{
[u1, c, u6,0], [u5, b, u2, u4,¬u3], [a,1]

}
{

[u1, c, u6, b,0], [u4, b, u5, u3, u2,¬u4], [a,1]
}{

[u1, c, u6,0], [u5, b, u2, u4,¬u3], [a, b,1]
}

0 ≡ 1 0 ≡ 1

0 ≡ 1

Figure 3.5: Sequence of Dilemma Rules in a proof that ψ is valid. (Details of 0-saturation steps
are omitted. For brevity, singleton equivalence-classes are not shown.)

(individual) assumptions ui ≡ uj and ui ≡ ¬uj hold irrespective of whether ui ≡ uj holds or

whether ui ≡ ¬uj holds.

The formulaψ in Example 3.17 can be proved valid using repeated application of the Dilemma

rule, as shown in Figure 3.5. The first application of the Dilemma Rule, which splits on the value

of b, does not make any progress; i.e., no new information is obtained after the intersection. The

next two applications of the Dilemma Rule, which split on the values of a and c, respectively, each

deduce a contradiction on one of their branches. The (universal) relation 0 ≡ 1 is the identity

element for intersection, and hence the intersection result is the equivalence relation from the
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Algorithm 1: propagate(J,R1, R, I)
1 R2 = ApplyRule[I](J,R1)
2 return Close(R ∪R2)

Algorithm 2: 0-saturation(R, I)
1 repeat
2 R′ ← R
3 foreach J ∈ I,R1 ⊆ R do
4 R← propagate(J,R1, R, I)
5 until (R = R′) ‖ contradiction(R)
6 return R

Algorithm 3: 1-saturation(R, I)
1 repeat
2 R′ ← R
3 foreach vi, vj such that vi ≡ vj 6∈ R and
vi ≡ ¬vj 6∈ R do

4 R1 ← Close(R ∪ {vi ≡ vj})
5 R2 ← Close(R ∪ {vi ≡ ¬vj})
6 R′1 ← 0-saturation(R1)
7 R′2 ← 0-saturation(R2)
8 R← R′1 ∩R′2
9 until (R = R′) ‖ contradiction(R)

10 return R

Algorithm 4: k-saturation(R, I)
1 repeat
2 R′ ← R
3 foreach vi, vj such that vi ≡ vj 6∈ R and
vi ≡ ¬vj 6∈ R do

4 R1 ← Close(R ∪ {vi ≡ vj})
5 R2 ← Close(R ∪ {vi ≡ ¬vj})
6 R′1 ← (k–1)-saturation(R1, I)
7 R′2 ← (k–1)-saturation(R2, I)
8 R← R′1 ∩R′2
9 until (R = R′) ‖ contradiction(R)

10 return R

Algorithm 5: k-Staalmarck(ϕ)
1 (vϕ, I)← integrity(ϕ)
2 R← {vϕ ≡ 0}
3 R′ ← k-saturation(R, I)
4 if R′ = 0 ≡ 1 then return valid
5 else return unknown

Figure 3.6: Stålmarck’s method. The operation Close performs transitive closure on a formula
relation after new tuples are added to the relation.

non-contradictory branch. Finally, splitting on the variable b leads to a contradiction on both

branches. �

Repeatedly applying the Dilemma rule until no new information is deduced is called 1-

saturation, and is described in Algorithm 3 (Figure 3.6). Unfortunately, 1-saturation may not

be sufficient to prove certain tautologies. The 1-saturation procedure can be generalized to the

k-saturation procedure shown in Algorithm 4 (Figure 3.6).



51

3.4.2 Pseudo-Code for Stålmarck’s Method

Algorithm 1 (Figure 3.6) implements the propagation rules of Figure 3.2. Given an integrity

constraint J ∈ I and a set of equivalences R1 ⊆ R, line 1 calls the function ApplyRule, which

instantiates and applies the derivation rules of Figure 3.2 and returns the deduced equivalences in

R2. The new equivalences inR2 are incorporated intoR and the transitive closure of the resulting

equivalence relation is returned. We implicitly assume that if Close derives a contradiction then

it returns 0 ≡ 1.

Algorithm 2 (Figure 3.6) describes 0-saturation, which calls propagate repeatedly until no

new information is deduced, or a contradiction is derived. If a contradiction is derived, then the

given formula is proved to be valid.

The Dilemma Rule is applied repeatedly until no new information is deduced by a process

called 1-saturation, shown in Algorithm 3 (Figure 3.6). 1-saturation uses two literals vi and vj ,

and splits the formula relation with respect to vi ≡ vj and vi ≡ ¬vj (lines 4 and 5). 1-saturation

finds a contradiction when both 0-saturation branches identify contradictions (in which case

R = R′1 ∩R′2 equals 0 ≡ 1).

The 1-saturation procedure can be generalized to the k-saturation procedure shown in

Algorithm 4. Stålmarck’s method (Algorithm 5) is structured as a procedure for validity checking.

The actions of the algorithm are parameterized by a certain parameter k that is fixed by the user.

For a given tautology, if k is large enough Stålmarck’s method can prove validity, but if k is too

small the answer returned is “unknown”. In the latter case, one can increment k and try again.

However, for each k, (k + 1)-saturation is significantly more expensive than k-saturation: the

running time of Algorithm 5 as a function of k is O(|ϕ|k) (Sheeran and Stålmarck, 2000).

3.5 Chapter Notes

This chapter omits discussion of algorithms to compute fixpoints; the reader if referred to sections

2.4 and 4.2 of Nielson et al. (1999). Reps et al. (2007) discuss the use of weighted pushdown

systems (WPDSs) to perform inter-procedural analysis of programs. The WALi library (Kidd
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et al., 2007) implements such a WPDS-based framework. The various analyses described in this

thesis are implemented using the WALi library.

Stålmarck’s method was protected by Swedish, European, and U.S. patents (Stålmarck, 1989),

which may have discouraged experimentation by researchers. Indeed, one finds relatively few

publications that concern Stålmarck’s method—some of the exceptions being Harrison (1996);

Cook and Gonthier (2005); Björk (2009). Kunz and Pradhan (1994) discuss an algorithm closely

related to Stålmarck’s method.

More information on SAT solvers can be found in (Harrison, 2009, Chapter 2); (Kroening and

Strichman, 2008, Chapter 2); Darwiche and Pipatsrisawat (2009); and Marques-Silva et al. (2009).

More information on SMT solvers can be found in (Kroening and Strichman, 2008, Chapters 3–7);

and Barrett et al. (2009).
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Chapter 4

Symbolic Abstraction from Below

Started from the bottom, now we are here,

Started from the bottom, now the whole team here.
— Drake

In this chapter, I review two prior algorithms for performing symbolic abstraction:

• The RSY algorithm: a framework for computing α̂ that applies to any logic and abstract

domain that satisfies certain conditions (Reps et al., 2004).

• The KS algorithm: an algorithm for computing α̂ that applies to QFBV logic and the

domain E2w of affine equalities. King and Søndergaard (2010) gave a specific α̂ algorithm

for an abstract domain of Boolean affine relations. Elder et al. (2011) extended the King

and Søndergaard algorithm to the affine-equalities domain E2w . Because the generalized

algorithm is similar to the Boolean one, we refer to it as KS.

I also present the results of an experiment I carried out to compare the performance of the

two algorithms. Both algorithms compute α̂(ϕ) via successive approximation from “below”,

computing a sequence of successively “larger” approximations to the set of states described by ϕ.
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Algorithm 6: α̃↑RSY〈L,A〉(ϕ)
1 lower← ⊥
2

3 while true do
4

5 S ← Model(ϕ ∧ ¬γ̂( lower))
6 if S is TimeOut then
7 return >
8 else if S is None then
9 break // ϕ⇒ γ̂(lower)

10 else // S 6|= γ̂(lower)
11 lower← lower t β(S)
12 ans← lower
13 return ans

Algorithm 7: α̃↑KS(ϕ)
1 lower← ⊥
2 i← 1
3 while i ≤ rows(lower) do
4 p← Row(lower,−i) // p w lower
5 S ← Model(ϕ ∧ ¬γ̂(p))
6 if S is TimeOut then
7 return >
8 else if S is None then
9 i← i+ 1 // ϕ⇒ γ̂(p)

10 else // S 6|= γ̂(p)
11 lower← lower t β(S)
12 ans← lower
13 return ans

The purpose and contributions of this chapter can be summarized as follows:

1. To present algorithms for performing symbolic abstraction that are representative of the

state-of-the-art prior to this thesis (Sections 4.1 and 4.2).

2. To present the RSY and KS algorithms in a common setting (Algorithms 6 and 7).

3. To present an empirical comparison of the RSY and KS algorithms (Section 4.3).

The results of item 3 served as motivation for the new algorithms that I developed, described

in Chapters 5 and 6.

4.1 RSY Algorithm

Reps et al. (2004) presented a framework for computing α̂—which we call the RSY algorithm—

that applies to any logic L and abstract domain A that satisfy certain conditions. The key insight

of the algorithm is the use an SMT solver for L as a black-box to query for models of ϕ. Recall

the following property of α̂ (Theorem 3.14):

α̂(ϕ) =
⊔{

β(S)
∣∣S |= ϕ

}
(4.1)
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Equation (4.1) states that α̂(ϕ) is the result of performing a join of the abstraction of models

of ϕ. Unfortunately, Equation (4.1) does not directly lead to an algorithm for computing α̂(ϕ),

because, as stated, it involves finding all models of ϕ, which would be impractical. The RSY

algorithm does not find all models of ϕ; instead the algorithm queries the SMT solver to compute

a finite sequence S1, S2, . . . , Sk−1, Sk of models of ϕ. This sequence of models is used to compute

a sequence of abstract values A0, A1, A2, . . . , Ak−1, Ak in the following way:

A0 = ⊥ (4.2)

Ai = Ai−1 t β(Si), Si |= ϕ, 1 ≤ i ≤ k (4.3)

Merely sampling k arbitrary models of ϕ would not work. In particular, it is possible that

Ai−1 = Ai in Equation (4.3) in which case step i has not made progress. Thus, to ensure progress

we require Si to be a model of ϕ such that Si /∈ γ(Ai−1) in Equation (4.3). In other words, Si

should be a model satisfying ϕ ∧ ¬γ̂(Ai−1). Computing Si in such a way ensures that Ai−1 � Ai

in Equation (4.3). Equations (4.2) and (4.3) can be restated as:

A0 = ⊥ (4.4)

Ai = Ai−1 t β(Si), Si |= ϕ ∧ ¬γ̂(Ai−1), 1 ≤ i ≤ k (4.5)

Furthermore, provided the abstract domain A has no infinite ascending chains, there exists a k

such that Ak = α̂(ϕ), because each step is guaranteed to make progress up the lattice. That is,

using Equations (4.4) and (4.5), we can construct a finite sequence of abstract values that form an

ascending chain that converges to α̂(ϕ):

⊥ = A0 @ A1 @ A2 @ . . . @ Ak−1 @ Ak = α̂(ϕ). (4.6)

Algorithm 6 shows the general RSY algorithm: α̃↑RSY〈L,A〉 is parameterized on logic L and

abstract domain A. The algorithm assumes there is a decision procedure for logic L, and uses

notation introduced in Section 3.3.
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The algorithm implements Equations (4.4) and (4.5): the algorithm maintains an under-

approximation of the final answer in the variable lower, which is initialized to ⊥ on line 1, and

updated by performing a join (line 11). γ̂(lower) is used as a “blocking clause”, and thus the

model S of ϕ returned on line 5 is one that is not already represented by lower (i.e., S is not in

the concretization of lower). Consequently, lower � lower t β(S), and the updated value of lower

on line 11 is a strictly larger approximation to the set of states described by ϕ. Thus, provided

the abstract domainA has no infinite ascending chains, Algorithm 6 eventually terminates when

the call to Model on line 5 returns None. In this case, lower = α̂(ϕ).

Note that if the call to Model returns TimeOut, then Algorithm 6 returns > (line 6), which is a

trivial, but sound, over-approximation of α̂(ϕ). In other words, the RSY algorithm implements

α̃(ϕ); however, if in a given run of the algorithm there is no timeout, the value returned equals

α̂(ϕ). In this sense, all of the algorithms described in the thesis are implementations of α̂.

By looking at the pseudo-code in Algorithm 6, we can determine the assumptions on the

logic and the abstract domain made by the RSY algorithm:

1. There is a Galois connection C −−→←−−α
γ
A between A and concrete domain C, and an imple-

mentation of the corresponding representation function β (see line 11).

2. There is an algorithm to evaluate a1 t a2 for all a1, a2 ∈ A (see line 11).

3. There is a symbolic-concretization operation γ̂ that maps an abstract value a ∈ A to a

formula γ̂(a) in L (see line 5).

4. A has no infinite ascending chains.

5. There is a decision procedure for the logic L that is also capable of returning a model

satisfying a formula in L (see line 5).

6. The logic L is closed under conjunction and negation (see line 5).

I omit the formal proof of the correctness of the algorithm. The proof can be found in Reps

et al. (2004). Furthermore, the correctness of Bilateral algorithm, which is a generalization of the

RSY algorithm, will be given in Chapter 5.



57

Algorithm 8: P̂ost
↑
[τ ](v)

1 lower′ ← ⊥
2 while true do
3 〈S, S′〉 ← Model(γ̂(v) ∧ ϕτ ∧ ¬γ̂(lower′))
4 if 〈S, S′〉 is TimeOut then
5 return >
6 else if 〈S, S′〉 is None then
7 break // P̂ost[τ ](v) = lower′

8 else // S′ 6|= γ̂(lower′)
9 lower′ ← lower′ t β(S′)

10 v′ ← lower′
11 return v’

4.1.1 Computing P̂ost

Algorithm 6, which computes the symbolic abstraction of a formula, can be adapted to compute

P̂ost for a concrete transformer τ and input abstract value a ∈ AbsDomain. Recall that P̂ost

satisfies P̂ost[τ ](a) = (α ◦ Post[τ ] ◦ γ)(a). Algorithm 8 shows the algorithm that computes P̂ost.

ϕτ represents the formula in logic L that captures the input-output relation for the concrete

transformer τ . The main difference between Algorithm 6 and Algorithm 8 is call to Model on

line 3. Algorithm 8 will be used in Chapter 7.

4.2 KS Algorithm

Algorithm 7 presents the α̃↑KS algorithm for computing α̂ that applies to the QFBV logic and

affine-equalities domain E2w . King and Søndergaard (2010) first presented the algorithm for

abstract domain for Boolean affine relations, which was generalized to the domain of affine

equalities by Elder et al. (2011).

An abstract value in the E2w domain is a conjunction of affine equalities, which can be

represented in a normal form as a matrix in which each row expresses a non-redundant affine

equality (Elder et al., 2011). (Rows are 0-indexed.) Given a matrixm, rows(m) returns the number

of rows of m (as in line 3 in Algorithm 7 ), and Row(m,−i), for 1 ≤ i ≤ rows(m), returns row

(rows(m)− i) of m (as in line 4 in Algorithm 7).



58

The presentation in Algorithm 7 differs significantly from that in (King and Søndergaard,

2010, figure 2); in particular, Algorithm 7 is stated using the terminology of symbolic abstract

interpretation (Section 3.2.3). The similarities between the RSY algorithm (Algorithm 6) and the

KS algorithm are easier to see in this presentation. Both algorithms have a similar overall structure.

Both are successive approximation algorithms: they compute a sequence of successively “larger”

approximations to the set of states described by ϕ. Both maintain an under-approximation of

the final answer in the variable lower, which is initialized to ⊥ on line 1. Both call a decision

procedure (line 5), and if a model S is found that satisfies the query, the under-approximation is

updated by performing a join (line 11).

The RSY and KS algorithms have a similar overall structures (Algorithms 6 and 7). The

differences between Algorithms 6 and 7 are highlighted in gray. The key difference is the nature

of the decision-procedure query on line 5. α̃↑RSY uses all of lower to construct the query, while

α̃↑KS uses only a single row from lower (line 4)—i.e., just a single affine equality, which has two

consequences. First, α̃↑KS should issue a larger number of queries than α̃↑RSY, for the following

reason. Suppose that the value of lower has converged to the final answer via a sequence of joins

performed by the algorithm. To discover that convergence has occurred, α̃↑RSY has to issue just a

single decision-procedure query, whereas α̃↑KS has to confirm it by issuing rows(lower)−i number

of queries, proceeding row-by-row. Second, each individual query issued by α̃↑KS is simpler than

the ones issued by α̃↑RSY. Thus, a priori, it is not clear which algorithm will perform better in

practice; an empirical comparison of the RSY and KS algorithms is provided in Section 4.3.

I omit the formal proof of the correctness of the KS algorithm. The proof can be found in

Elder et al. (2014). Furthermore, the correctness of Bilateral algorithm, which is a generalization

of the KS algorithm, will be given in Chapter 5.

4.3 Empirical Comparison of the RSY and KS Algorithms

In this section, I provide an quantitative comparison of the performance of the KS algorithm

and the RSY framework instantiated for the affine-equalities domain E232 . We use RSY[E232 ] to



59

name instrs procs BBs brs

finger 532 18 298 48
subst 1093 16 609 74
label 1167 16 573 103
chkdsk 1468 18 787 119
convert 1927 38 1013 161
route 1982 40 931 243
logoff 2470 46 1145 306
setup 4751 67 1862 589

Table 4.1: The characteristics of the x86 binaries of Windows utilities used in the experiments.
The columns show the number of instructions (instrs); the number of procedures (procs); the
number of basic blocks (BBs); the number of branch instructions (brs).

Figure 4.1: Total time taken by all invocations of α̃↑RSY[E232 ] compared to that taken by α̃↑KS for
each of the benchmark executables. The running time is normalized to the corresponding time
taken by α̃↑RSY[E232 ]; lower numbers are better.

denote the RSY framework instantiated for the affine-equalities domain E232 .

The experiments in this section were designed to answer the following questions:

1. How does the speed of α̃↑KS compare with that of α̃↑RSY[E232 ]?

2. What are the reasons for the differences between the running times of α̃↑KS and α̃↑RSY[E232 ]?

To address these questions, we performed affine-relations analysis (ARA) on x86 machine

code, computing affine relations over the x86 registers. Our experiments were run on a single
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(a) (b)

Figure 4.2: (a) Scatter plot showing of the number of decision-procedure queries during each
pair of invocations of α̃↑RSY and α̃↑KS, when neither invocation had a decision-procedure timeout.
(b) Log-log scatter plot showing the times taken by each pair of invocations of α̃↑RSY and α̃↑KS,
when neither invocation had a decision-procedure timeout.

core of a quad-core 3.0 GHz Xeon computer running 64-bit Windows XP (SP2), configured so

that a user process has 4GB of memory. We analyzed a corpus of Windows utilities (Table 4.1)

using the WALi (Kidd et al., 2007) system for weighted pushdown systems (WPDSs). 1 For the

α̃↑KS-based (α̃↑RSY-based) analysis we used a weight domain of α̃↑KS-generated (α̃↑RSY-generated)

ARA transformers. The weight on each WPDS rule encodes the ARA transformer for a basic block

B of the program, including a jump or branch to a successor block. A formula ϕB is created that

captures the concrete semantics of B, and then the ARA weight for B is obtained by performing

α̂(ϕB). We compared the time for α̃↑RSY[E232 ] and α̃↑KS to compute basic-block transformers for this

set of x86 executables. There was no overall timeout imposed on the invocation of the procedures,

but each invocation of the decision procedure (line 5 in Algorithms 6 and 7) had a timeout of 3
1Due to the high cost of the ARA-based WPDS construction, all analyses excluded the code for libraries. Because

register eax holds the return value from a call, library functions were modeled approximately (albeit unsoundly, in
general) by “havoc(eax)”.
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seconds (as in Elder et al. (2011)).

Figure 4.1 shows the total time taken by all invocations of α̃↑RSY compared to that taken by α̃↑KS

for each of the benchmark executables. The running time is normalized to the corresponding

time taken by α̃↑RSY; lower numbers are better. Overall, α̃↑KS is about ten times faster compared to

α̃↑RSY; this answers the question posed in item 1 above.

Figure 4.2(a) shows a scatter-plot of the number of decision-procedure calls in each invocation of

α̃↑RSY versus the corresponding invocation of α̃↑KS, when neither of the procedures had a decision-

procedure timeout. α̃↑RSY issues fewer decision-procedure queries: on average (computed as an

arithmetic mean), α̃↑KS invokes 42% more calls to the decision procedure. Figure 4.2(b) shows a

log-log scatter-plot of the total time taken by each invocation of α̃↑RSY versus the time taken by

α̃↑KS. α̃↑KS is much faster than α̃↑RSY: overall, computed as the geometric mean of the speedups on

each of the x86 executables, α̃↑KS is about ten times faster compared to α̃↑RSY[E232 ].

The order-of-magnitude speedup can be attributed to the fact that each of the α̃↑KS decision-

procedure queries is less expensive than the ones issued by α̃↑RSY even though α̃↑KS issues more

decision-procedure calls. At line 4 in α̃↑KS, p is a single constraint; consequently, the decision-

procedure query contains the single conjunct ¬γ̂(p) (line 5). In contrast, at line 5 in α̃↑RSY, lower is

a conjunction of constraints, and consequently the decision-procedure query contains ¬γ̂(lower),

which is a disjunction of constraints.
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Chapter 5

A Bilateral Algorithm for Symbolic

Abstraction

Great results can be achieved with small forces.

— Sun Tzu, The Art of War

In this chapter, I use the insights gained from the algorithms presented in Chapter 4 to design

a new framework for symbolic abstraction that

• is parametric and is applicable to any abstract domain that satisfies certain conditions

(similar to the RSY algorithm)

• uses a successive-approximation algorithm that is parsimonious in its use of the decision

procedure (similar to the KS algorithm)

• is bilateral; that is, it maintains both an under-approximation and a (non-trivial) over-

approximation of the desired answer, and hence is resilient to timeouts: the procedure

can return the over-approximation if it is stopped at any point (unlike the RSY and KS

algorithms).

In contrast, neither the RSY algorithm nor KS algorithm is resilient to timeouts. A decision-

procedure query—or the cumulative time for α̃↑—might take too long, in which case the only

safe answer that can be returned is > (line 6 in Algorithms 6 and 7).
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Algorithm Parametric Resilient Parsimonious

RSY (Section 4.1) 3 7 7

KS (Section 4.2) 7 7 3

Bilateral (Section 5.2) 3 3 3

Table 5.1: Qualitative comparison of symbolic-abstraction algorithms. A 3 indicates that the
algorithm has a property described by a column, and a 7 indicates that the algorithm does not
have the property.

Table 5.1 compares the features of the various algorithms for symbolic abstraction. Thus,

the Bilateral algorithm combines the best features of the KS and RSY algorithms, but also has

benefits that none of these previous algorithms have.

The contributions of this chapter can be summarized as follows:

• I show how the KS algorithm can be modified into the KS+ algorithm, which maintains

sound under- and over-approximations of the answer (Section 5.1).

• I present a framework for symbolic abstraction based on a bilateral algorithm for computing

α̂ (Section 5.2).

• I extend the bilateral algorithm to handle abstract domains with infinite descending chains

(Section 5.3).

• I give several instantiations of the bilateral framework (Section 5.4).

• I compare the performance of the KS algorithm and an instantiation of the Bilateral frame-

work (Section 5.5).

Section 5.6 describes a Bilateral algorithm for computing P̂ost. Section 5.7 presents related work.

5.1 Towards a Bilateral Algorithm

In this section, I describe how the KS algorithm (Algorithm 7) can be made resilient to timeouts.

In particular, I show how α̃↑KS can be modified to maintain a non-trivial over-approximation
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Algorithm 9: α̃↑KS(ϕ)
1

2 lower← ⊥
3 i← 1
4 while i ≤ rows(lower) do
5 p← Row(lower,−i)

// p w lower
6 S ← Model(ϕ ∧ ¬γ̂(p))
7 if S is TimeOut then
8 return >
9 else if S is None then

// ϕ⇒ γ̂(p)
10 i← i+ 1
11 else // S 6|= γ̂(p)
12 lower← lower t β(S)
13 ans← lower
14 return ans

Algorithm 10: α̃lKS+(ϕ)

1 upper← >
2 lower← ⊥
3 i← 1
4 while i ≤ rows(lower) do
5 p← Row(lower,−i)

// p w lower, p 6w upper
6 S ← Model(ϕ ∧ ¬γ̂(p))
7 if S is TimeOut then
8 return upper
9 else if S is None then

10 upper← upper u p // ϕ⇒ γ̂(p) i← i+ 1
11 else // S 6|= γ̂(p)
12 lower← lower t β(S)
13 ans← lower
14 return ans

of the desired answer. Algorithm 10 is thus a bilateral algorithm: it maintains both an under-

approximation and over-approximation of α̂(ϕ). The original α̃↑KS is shown in Algorithm 9 for

comparison; the differences in the algorithms are highlighted in gray. (Note that line numbers

are different in Algorithms 7 and 9.)

The α̃lKS+ algorithm (Algorithm 10) initializes the over-approximation (upper) to > on line 1.

At any stage in the algorithm ϕ⇒ γ̂(upper). On line 10, it is sound to update upper by performing

a meet with p because ϕ⇒ γ̂(p). Progress is guaranteed because p 6w upper. In case of a decision-

procedure timeout (line 7), Algorithm 10 returns upper as the answer (line 8). Thus, α̃lKS+(ϕ) can

return a non-trivial over-approximation of α̂(ϕ) in case of a timeout. However, if the loop exits

without a timeout, then α̃lKS+(ϕ) returns α̂(ϕ).

5.2 A Parametric Bilateral Algorithm

Like the original KS algorithm, α̃lKS+ applies only to the affine-equalities domain E2w . The results

presented in Section 4.3 provide motivation to generalize α̃lKS+ so that we can take advantage

of its benefits with domains other than E2w . In this section, I present the bilateral framework,
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which applies to any abstract domain that satisfies the interface defined below. (Note that the

interface for the Bilateral framework is slightly different than the interface for the RSY framework

presented in Section 4.1.)

I first introduce the abstract-consequence operation, which is the key operation in our general-

ized algorithm:

Definition 5.1. An operation AbstractConsequence(·, ·) is an acceptable abstract-consequence oper-

ation iff for all a1, a2 ∈ A such that a1 � a2,

a = AbstractConsequence(a1, a2) implies a1 v a and a 6w a2. �

Figure 5.1 illustrates Definition 5.1 graphically, using the concretizations of a1, a2, and a.

Algorithm 11 presents the parametric bilateral algorithm α̃l〈L,A〉(ϕ), which performs sym-

bolic abstraction of ϕ ∈ L for abstract domain A. The differences between Algorithms 11 and 10

are highlighted in gray.

The assumptions placed on the logic and the abstract domain are as follows:

1. There is a Galois connection C −−→←−−α
γ
A between A and concrete domain C, and an imple-

mentation of the corresponding representation function β.

2. Given a1, a2 ∈ A, there are algorithms to evaluate a1 t a2 and a1 u a2, and to check a1 = a2.

3. There is a symbolic-concretization operation γ̂ that maps an abstract value a ∈ A to a

formula γ̂(a) in L.

Figure 5.1: Abstract Consequence: For all a1, a2 ∈ A where γ(a1) ( γ(a2), if a =
AbstractConsequence(a1, a2), then γ(a1) ⊆ γ(a) and γ(a) 6⊇ γ(a2).
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Algorithm 11: α̃l〈L,A〉(ϕ)
1 upper← >
2 lower← ⊥
3 while lower 6= upper ∧ ResourcesLeft do
// lower � upper

4 p← AbstractConsequence(lower,upper)
// p w lower, p 6w upper

5 S ← Model(ϕ ∧ ¬γ̂(p))
6 if S is TimeOut then
7 return upper
8 else if S is None then // ϕ⇒ γ̂(p)
9 upper← upper u p

10 else // S 6|= γ̂(p)
11 lower← lower t β(S)
12 ans← upper
13 return ans

S

(b)(a)

Figure 5.2: The two cases arising in Algorithm 11: ϕ ∧ ¬γ̂(p) is either (a) unsatisfiable, or
(b) satisfiable with S |= ϕ and S 6|= γ̂(p). (Note that although lower v α̂(ϕ) v upper and
JϕK ⊆ γ(upper) are invariants of Algorithm 11, γ(lower) ⊆ JϕK does not necessarily hold, as
depicted above.)

4. There is a decision procedure for the logic L that is also capable of returning a model

satisfying a formula in L.

5. The logic L is closed under conjunction and negation.

6. There is an acceptable abstract-consequence operation for A (Definition 5.1).

The abstract value p returned by AbstractConsequence (line 4 of Algorithm 11) is used to

generate the decision-procedure query (line 5); Figure 5.2 illustrates the two cases arising based

on whether ϕ ∧ ¬γ̂(p) is satisfiable or unsatisfiable.
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If a model S is found satisfying the query, the Bilateral algorithm updates the under-

approximation by performing a join (line 11). The correctness of this update of lower via join is

based on Theorem 3.14.

The Bilateral algorithm also maintains an over-approximation of the final answer in the

variable upper, which is initialized to > (line 1). When the decision procedure determines

that the query on line 5 is unsatisfiable the Bilateral algorithm refines the value of upper by

performing a meet, as shown on line 9. The correctness of this update of upper via a meet is

based on Theorem 3.15.

The overall resources used by Algorithm 11, such as time, can be controlled via the ResourcesLeft

flag (line 3). If resources run out, the Bilateral algorithm returns the over-approximation com-

puted in upper (line 7).

Theorem 5.2. Suppose that L and A satisfy requirements 1–6, and ϕ ∈ L. Let a ∈ A be the value

returned by α̃l〈L,A〉(ϕ). Then

1. a over-approximates α̂(ϕ); i.e., α̂(ϕ) v a.

2. If A has neither infinite ascending nor infinite descending chains and the run of α̃l〈L,A〉(ϕ)

returns without ever having a timeout, then a = α̂(ϕ).

Proof. To prove part 1, we show that at each stage of Algorithm 11 lower v α̂(ϕ) v upper holds.

This invariant is trivially true after upper and lower are initialized in lines 1 and 2, respectively.

If control reaches line 4, then lower 6= upper and timeout is false. Hence, at line 4, lower � upper.

Thus, the precondition for the call to AbstractConsequence(lower,upper) is satisfied, and the

abstract value p returned is such that lower v p and p 6w upper (by Definition 5.1).

A Galois connection C −−→←−−α
γ
A obeys the adjointness condition

for all c ∈ C, a ∈ A : c v γ(a) iff α(c) v a. (5.1)
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The counterpart of Equation (5.1) for symbolic abstraction is

for all ϕ ∈ L, a ∈ A : ϕ⇒ γ̂(a) iff α̂(ϕ) v a. (5.2)

If control reaches line 9, then ϕ∧¬γ̂(p) is unsatisfiable (Figure 5.2(a)), which means that ϕ⇒ γ̂(p)

holds. Consequently, by Equation (5.2), we know that α̂(ϕ) v p holds. By properties of meet (u),

we can combine the latter inequality with the invariant α̂(ϕ) v upper to obtain α̂(ϕ) v upper u p.

Hence it is safe to update upper by performing a meet with p; that is, after the assignment

upper← upper u p on line 9, the invariant α̂(ϕ) v upper still holds.

On the other hand, if ϕ ∧ ¬γ̂(p) is satisfiable (Figure 5.2(b)), then at line 11 S |= ϕ. Thus,

β(S) v α̂(ϕ). By properties of join (t), we can combine the latter inequality with the invariant

lower v α̂(ϕ) to obtain lowert β(S) v α̂(ϕ). Hence it is safe to update lower by performing a join

with β(S); that is, after the assignment lower← lowertβ(S) on line 11, the invariant lower v α̂(ϕ)

still holds.

In both cases, lower v α̂(ϕ) v upper holds, and thus lower v α̂(ϕ) v upper holds throughout

the loop on lines 3–11.

On exiting the loop, we have α̂(ϕ) v upper. At line 12, ans is assigned the value of upper,

which is the value returned by Algorithm 11 at line 13. This finishes the proof of part 1.

We now prove part 2 of the theorem.

• At line 9, because p 6w upper, upper u p does not equal upper; that is, upper u p � upper.

• At line 11, S 6|= γ̂(p). Because p w lower, S 6|= γ̂(p) implies that S 6|= γ̂(lower), and hence

β(S) 6v lower. Therefore, lower t β(S) is not equal to lower; that is, lower t β(S) � lower.

Consequently, progress is made no matter which branch of the if-then-else on lines 8–11 is taken,

and hence Algorithm 11 makes progress during each iteration of the while-loop.

By part 1, lower v α̂(ϕ) v upper. Consequently, ifA has neither infinite ascending nor infinite

descending chains, then eventually lower will be equal to upper, and both lower and upper will
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Algorithm 12: AbstractConsequence(a1, a2) for conjunctive domains
1 if a1 = ⊥ then return ⊥
2 Let Ψ ⊆ Φ be the set of formulas such that γ̂(a1) =

∧
Ψ

3 foreach ψ ∈ Ψ do
4 a← µα̂(ψ)
5 if a 6w a2 then return a

have the value α̂(ϕ) (provided the loop exits without a timeout). Thus, for a run of Algorithm 11

on which the loop exits without a timeout, the answer returned is α̂(ϕ).

5.2.1 Relation Between RSY and Bilateral Algorithms

Definition 5.1 allows AbstractConsequence(a1, a2) to return any a ∈ A as long as a satisfies

a1 v a and a 6w a2. Thus, for a given abstract domainA there could be multiple implementations

of the AbstractConsequence operation. In particular, AbstractConsequence(a1, a2) can return

a1, because a1 v a1 and a1 6w a2. If this particular implementation of AbstractConsequence is

used, then Algorithm 11 reduces to the RSY algorithm (Algorithm 6). However, as illustrated in

Section 4.3, the decision-procedure queries issued by the RSY algorithm can be very expensive.

5.2.2 Abstract Consequence for Conjunctive Domains

Algorithm 12 presents an implementation of AbstractConsequence for conjunctive domains (Def-

inition 3.5). The benefit of Algorithm 12 is that it causes Algorithm 11 to issue the kind of

inexpensive queries that we see in α̃↑KS. Note that a1ta2 = a2 iff a1 v a2 iff a1ua2 = a1, so by As-

sumption 2 of the bilateral framework, a comparison test for use in line 5 of Algorithm 12 is always

available in a conjunctive domain that satisfies the requirements of the bilateral framework.

Theorem 5.3. WhenA is a conjunctive domain over Φ, Algorithm 12 is an acceptable abstract-consequence

operation.

Proof. Suppose that a1 � a2, and let γ̂(a1) =
∧

Ψ, where Ψ ⊆ Φ. If for each ψ ∈ Ψ we have

γ̂(a2)⇒ ψ, then γ̂(a2)⇒
∧
{ψ}, or equivalently γ̂(a2)⇒

∧
Ψ; i.e., γ̂(a2)⇒ γ̂(a1), or equivalently

a2 v a1, which contradicts a1 � a2. Thus, there must exist some ψ ∈ Ψ such that γ̂(a2) ; ψ. The
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latter is equivalent to ψ : γ̂(a2), which can be written as a 6w a2 (where a = µα̂(ψ)). Therefore,

Algorithm 12 will return some a ∈ A such that a1 v a and a 6w a2.

If there are also algorithms for join and meet in conjunctive domain A, and a decision

procedure for the logic L that supplies models for satisfiable formulas, then A satisfies the

bilateral framework, and therefore supports the α̃l algorithm.

5.2.3 Increasing Resilience to Timeouts

As presented, Algorithm 11 exits and returns the value of upper the first time the decision

procedure times out. We can improve the precision of Algorithm 11 by not exiting after the first

timeout, and instead trying other abstract consequences. The algorithm will exit and return

upper only if it cannot find an abstract consequence for which the decision-procedure terminates

within the time bound. For conjunctive domains, Algorithm 11 can be modified to enumerate

all conjuncts of lower that are abstract consequences; to implement this strategy, lines 4–7 of

Algorithm 11 are replaced with

progress← false // Initialize progress

foreach p such that p = AbstractConsequence(lower,upper) do

S ← Model(ϕ ∧ ¬γ̂(p))

if S is not TimeOut then

progress← true // Can make progress

break

if ¬progress then return upper // Could not make progress

Henceforth, when we refer to α̃l, we mean Algorithm 11 with the above two changes.

5.2.4 Relationship of Abstract Consequence to Interpolation

To avoid the potential for confusion, we now discuss how the notion of abstract consequence

differs from the well-known concept of interpolation (Craig, 1957):
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A logic L supports interpolation if for all ϕ1, ϕ2 ∈ L such that ϕ1⇒ϕ2, there exists a

formula I such that (i) ϕ1⇒ I , (ii) I⇒ϕ2, and (iii) I uses only symbols in the shared

vocabulary of ϕ1 and ϕ2.

Although condition (i) is part of Definition 5.1, the restrictions imposed by conditions (ii) and

(iii) are not part of Definition 5.1. To highlight the differences, we restate Definition 5.1 in terms

of formulas.

An operation AbstractConsequence(·, ·) is an acceptable abstract-consequence oper-

ation iff for all a1, a2 ∈ A such that γ̂(a1)⇒ γ̂(a2) and γ̂(a1) : γ̂(a2),

a = AbstractConsequence(a1, a2) implies γ̂(a1)⇒ γ̂(a) and γ̂(a) : γ̂(a2).

From an operational standpoint, condition (iii) in the definition of interpolation serves as a

heuristic that generally allows interpolants to be expressed as small formulas. In the context of

α̃l, we are interested in obtaining small formulas to use in the decision-procedure query (line 5

of Algorithm 11). Thus, given a1, a2 ∈ A, it might appear plausible to use an interpolant I of

γ̂(a1) and γ̂(a2) in α̃l instead of the abstract consequence of a1 and a2. However, there are a few

problems with such an approach:

• There is no guarantee that I will indeed be simple; for instance, if the vocabulary of γ̂(a1) is

a subset of the vocabulary of γ̂(a2), then I could be γ̂(a1) itself, in which case Algorithm 11

performs the more expensive RSY iteration step.

• Converting the formula I into an abstract value p ∈ A for use in line 9 of Algorithm 11

itself requires performing α̂ on I .

As discussed above, many domains are conjunctive domains, and for conjunctive domains is

it always possible to find a single conjunct that is an abstract consequence (see Theorem 5.3).

Moreover, such a conjunct is not necessarily an interpolant.
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Algorithm 13: α̃l+〈L,A〉(ϕ)
1 upper← >
2 lower← ⊥
3 k ← 0 // initialize k
4 while lower 6= upper do
// lower � upper
5 if k < N then
6 p← AbstractConsequence(lower,upper)
7 else
8 p← lower
// p w lower, p 6w upper
9 S ← Model(ϕ ∧ ¬γ̂(p))

10 if S is TimeOut then
11 return upper
12 else if S is None then // ϕ⇒ γ̂(p)
13 upper← upper u p
14 k ← k + 1 // increment k

15 else // S 6|= γ̂(p)
16 lower← lower t β(S)
17 k ← 0 // reset k

18 ans← upper
19 return ans

5.3 Abstract Domains with Infinite Descending Chains

We can weaken part 2 of Theorem 5.2 to allowA to have infinite descending chains by modifying

Algorithm 11 slightly. The modified algorithm has to ensure that it does not get trapped updating

upper along an infinite descending chain, and that it exits when lower has converged to α̂(ϕ).

Suppose that, for some fixed N , N consecutive iterations of the loop on lines 3–11 update upper

(line 9) without updating lower (line 11). If this situation occurs, in the next iteration the algorithm

can set p to lower so that the decision-procedure query at line 5 becomes Model(ϕ ∧ ¬γ̂(lower))—

i.e., we force the algorithm to perform the basic iteration-step from the RSY algorithm. In this

way, we force lower to be updated at least once every N iterations. Moreover, if on such an

RSY-step the model S returned from the decision procedure is None, then we know that lower

has converged to α̂(ϕ) and the algorithm can return. A version of Algorithm 11 that implements

this strategy is presented as Algorithm 13.
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Theorem 5.4. If abstract domain A does not have infinite ascending chains, and Algorithm 13 does not

timeout, then α̃l+〈L,A〉(ϕ) terminates and returns α̂(ϕ).

Proof. The proof of Theorem 5.2 carries over, except that we must additionally argue that if A

has infinite descending chains, α̃l+ (Algorithm 13) does not get trapped refining upper along an

infinite descending chain, and that the algorithm returns α̂(ϕ) after lower has converged to α̂(ϕ).

Suppose that N consecutive iterations of the loop on lines 3–11 update upper (line 13) without

updating lower (line 16). In the next iteration, the algorithm can set p to lower (line 8 so that the

decision-procedure query at line 9 becomes Model(ϕ ∧ ¬γ̂(lower))—i.e., we force the algorithm

to perform the basic iteration-step from the RSY algorithm. In this way, we force lower to be

updated at least once every N iterations.

Consequently, becauseA has no infinite ascending chains, lower must eventually be set to α̂(ϕ).

After that happens, within the next N iterations of the loop body, Algorithm 13 must execute

line 8, which sets p to lower (i.e., p = α̂(ϕ)). The model S returned from calling Model(ϕ∧¬γ̂(p))

in line 9 must be None. As argued in the proof of Theorem 5.2, lower v α̂(ϕ) v upper holds

on every iteration of the loop in lines 4–17. Because α̂(ϕ) v upper and p = α̂(ϕ), the update

upper ← upper u p on line 13 assigns α̂(ϕ) to upper. Because lower is equal to upper, the loop

exits with upper = α̂(ϕ). At line 18, ans is thus assigned α̂(ϕ), which is the value returned by

Algorithm 13 at line 19.

5.3.1 Algorithm Complexity

In this section, I analyze the worst-case time complexity of Algorithm 13. I first state the time

complexity of the algorithm for a generic abstract domain A and logic L. I then talk about the

time complexity for the affine-equalities abstract domain E2w and QFBV logic.

The worst-case time complexity T of Algorithm 13 for abstract domain A and logic L is

T = O(C × (TAC + TDP + TAO)) (5.3)
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where

• C is the maximum length of an ascending chain in A, which is an upper bound for the

number of times the loop in lines 4–17 executes,

• TAC is the time complexity of computing the abstract consequence on line 6,

• TDP is the time complexity of the call to the decision procedure for logic L on line 9,

• TAO is the time complexity of the abstract operations, meet, on line 13, and join, on line 16).

Consider the instantiation of Algorithm 13 with the affine-equalities abstract domain E2w

and QFBV logic. Let k be the number of variables that the abstract domain E2w keeps track of. I

now list the various parameters in Equation (5.3) for this specific instantiation of the bilateral

algorithm:

• The length of the longest ascending chain in E2w is O(wk) (Elder et al., 2014, Theorem 2.7).

• The abstract consequence is computed using Algorithm 12. The loop on lines 3–5 can

execute at most k times. The time complexity of the subsumption check on line 5 is

O(k3) (Elder et al., 2014).Thus, the worst-case time complexity for computing the abstract

consequence is TAC = O(k4).

• The decision procedure for QFBV logic is NEXPTIME-complete (Kovásznai et al., 2012).

• The worst-case time complexity of the meet and join operations for E2w are O(k3) (Elder

et al., 2014).

Note that, technically, the time complexity of subsumption, meet, and join for E2w depends

on an operation that has the same asymptotic complexity as matrix multiplication (Storjohann,

2000). The operation has a straightforward O(k3) implementation that is similar to a standard

Gaussian-elimination algorithm (Elder et al., 2014, Algorithm 1).
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5.4 Instantiations

In this section, we describe instantiations of the bilateral framework for several abstract domains.

5.4.1 Herbrand-Equalities Domain

Herbrand equalities are used in analyses for partial redundancy elimination, loop-invariant

code motion (Steffen et al., 1990), and strength reduction (Steffen et al., 1991). In these analyses,

arithmetic operations (e.g., + and *) are treated as term constructors. Two program variables

are known to hold equal values if the analyzer determines that the variables hold equal terms.

Herbrand equalities can also be used to analyze programs whose types are user-defined algebraic

data-types.

Basic definitions. Let F be a set of function symbols. The function arity : F → N yields the

number of parameters of each function symbol. Terms over F are defined in the usual way; each

function symbol f ∈ F always requires arity(f) parameters. Let T (F , X) denote the set of finite

terms generated by F and variable set X . The Herbrand universe of F is T (F , ∅), the set of ground

terms over F .

A Herbrand state is a mapping from program variables V to ground terms (i.e., a function in

V → T (F , ∅)). The concrete domain consists of all sets of Herbrand states: C def= P (V → T (F , ∅)).

We can apply a Herbrand state σ to a term t ∈ T (F ,V) as follows:

σ[t] def=


σ(t) if t ∈ V

f(σ[t1], . . . , σ[tk]) if t = f(t1, . . . , tk)

The Herbrand-equalities domain. Sets of Herbrand states can be abstracted in several ways. One

way is to use conjunctions of equations among terms (whence the name “Herbrand-equalities

domain”). Such systems of equations can be represented using Equivalence DAGs (Steffen

et al., 1990). A different, but equivalent, approach is to use a representation based on idempotent

substitutions: A = (V → T (F ,V))⊥. Idempotence means that for each σ 6= ⊥ and v ∈ V ,

σ[σ(v)] = σ(v). The meaning of an idempotent substitution σ ∈ A is given by its concretization
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γ(σ), where γ : A → C, γ(⊥) = ∅, and otherwise

γ(σ) = {ρ : V → T (F , ∅) | ∀v ∈ V : ρ(v) = ρ[σ(v)]} . (5.4)

I now show that the Herbrand-equalities domain satisfies the requirements of the bilateral

framework. I will assume that the logical language L has all the function symbols and constant

symbols from F , equality, and a constant symbol for each element from V1. (In a minor abuse of

notation, the set of such constant symbols will also be denoted by V .) The logic’s universe is the

Herbrand universe of F (i.e., T (F , ∅)). An interpretation maps the constants in V to terms in

T (F , ∅). To be able to express γ̂(p) and ¬γ̂(p) (see item 3 below), we assume that L contains at

least the following productions:

F ::= F ∧ F | ¬F | v = T for v ∈ V | false

T ::= v ∈ V | f(T1, . . . , Tk) when arity(f) = k
(5.5)

1. There is a Galois connection C −−→←−−α
γ
A:

• The ordering on C is the subset relation on sets of Herbrand states.

• γ(σ) is given in Equation (5.4).

• α(S) = {a | γ(a) ⊇ S}.

• For a, b ∈ A, a v b iff γ(a) ⊆ γ(b).

2. Meet is most-general unification of substitutions, computed by standard unification tech-

niques (Lassez et al., 1988, Thm. 3.1). Join is most-specific generalization, computed by

“dual unification” or “anti-unification” (Plotkin, 1970; Reynolds, 1970), (Lassez et al., 1988,

Thm. 5.8). Equality checking is described by Lassez et al. (Lassez et al., 1988, Prop. 4.10).

3. γ̂: γ̂(⊥) = false; otherwise, γ̂(σ) is
∧
v∈V v = σ(v).

1Because the set of program variables is finite, V is finite.
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4. A decision procedure for L, with models, is given by Lassez et al. (Lassez et al., 1988,

Thm. 6.12). In practice, one can obtain a decision procedure for L formulas using the

built-in datatype mechanism of, e.g., Z3 (de Moura and Bjørner, 2008) or Yices (Dutertre

and de Moura, 2006), and obtain the necessary decision procedure using an existing SMT

solver.

5. L is closed under conjunction and negation.

6. AbstractConsequence: The domain is a conjunctive domain, as can be seen from the

definition of γ̂.

Theorem 5.2 ensures that Algorithm 11 returns α̂(ϕ) when abstract domain A has neither

infinite ascending nor infinite descending chains. The Herbrand-equalities domain has no infinite

ascending chains (Lassez et al., 1988, Lem. 3.15). The domain described here also has no infinite

descending chains, essentially because every right-hand term in every Herbrand state has no

variables but those in V .2

I now present a pair of worked examples of α̃l (Algorithm 11) for the Herbrand-equalities

domain.

Example 5.5. Consider the following code fragment, which uses two different methods for
checking the parity of i (i&1 and i << 31 == 0):

i n t i ;
cons_ t ree x , y ;
x = ( i &1) ? n i l : cons ( y , x ) ;
i f ( i << 31 == 0 ) { /∗ ( ∗ ) . . . ∗ / }

Suppose that we want an element of the Herbrand-equalities domain that relates the values of

x and y at the fragment’s start to x′ and y′, the values of those variables at program point (*).

A straightforward abstract interpretation of this program in the Herbrand-equalities domain

would yield no information about x′, because {x′ 7→ nil}t {x′ 7→ cons(y, x)} = {x′ 7→ x′}.
2One can instead define a domain of Herbrand equalities in which fresh variables may occur in the terms of

an idempotent substitution’s range. Everything said in this section remains true of this alternative domain, except
that it has infinite descending chains, and so Algorithm 11 is only guaranteed to return an over-approximation of
α̂(ϕ). However, as discussed in Section 5.2, Algorithm 13, presented in Section 5.3, is a version of Algorithm 11 that
converges to α̂(ϕ), even when the abstract domain has infinite descending chains.
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lower upper γ̂(p) model, or unsatisfiable

⊥ > false

i 7→ 0
x 7→ nil
x′ 7→ cons(nil, nil)
y 7→ nil
y′ 7→ nil

x 7→ nil
x′ 7→ cons(nil, nil)
y 7→ nil
y′ 7→ nil

> y = nil

i 7→ 0
x 7→ nil
x′ 7→ cons(cons(nil, nil), nil)
y 7→ cons(nil, nil)
y′ 7→ cons(nil, nil)

x 7→ nil
x′ 7→ cons(y, nil)
y 7→ y′

> y = y′ unsatisfiable

x 7→ nil
x′ 7→ cons(y, nil)
y 7→ y′

y 7→ y′ x = nil

i 7→ 0
x 7→ cons(nil, nil)
x′ 7→ cons(nil, cons(nil, nil))
y 7→ nil
y′ 7→ nil

x′ 7→ cons(y, x)
y 7→ y′

y 7→ y′ x′ = cons(y, x) unsatisfiable

x′ 7→ cons(y, x)
y 7→ y′

x′ 7→ cons(y, x)
y 7→ y′

Figure 5.3: Iterations of Algorithm 11 in Example 5.5. Self-mappings, e.g., y 7→ y, are omitted.

Algorithm 11 can do better because, in essence, it accounts for the correlation between the

conditions “i&1” and “i << 31 == 0”. First, symbolic execution from the beginning of the code

fragment to (*) yields the formula

ϕ
def= (x′ = ite(i&1, nil, cons(y, x))) ∧ (y′ = y) ∧ (i� 31) = 0),

where ite(·, ·, ·) denotes the if-the-else operator. The values obtained just after line 5 during each

iteration of Algorithm 11 are shown in Figure 5.3. Each row of Figure 5.3 displays, for a given

iteration of Algorithm 11,

• the values of lower and upper,

• the value of γ̂(p) computed from AbstractConsequence(lower,upper), and

• the model, if any, of ϕ ∧ ¬γ̂(p) that Z3 returned.
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lower upper γ̂(p) model, or unsatisfiable

⊥ > false
a 7→ true
x 7→ cons(nil, nil) x′ 7→ nil
y 7→ nil y′ 7→ cons(nil, nil)

x 7→ cons(nil, nil)
x′ 7→ nil
y 7→ nil
y′ 7→ cons(nil, nil)

> y = nil
a 7→ true
x 7→ nil x′ 7→ cons(nil, nil)
y 7→ cons(nil, nil) y′ 7→ nil

x′ 7→ y
x 7→ y′

> x′ = y unsatisfiable

x′ 7→ y
x 7→ y′

x′ 7→ y x = y′ unsatisfiable

x′ 7→ y
x 7→ y′

x′ 7→ y
x 7→ y′

Figure 5.4: Iterations of Algorithm 11 in Example 5.6. Self-mappings, e.g., y 7→ y, are omitted.

Iterations that find a model increase the next iteration’s lower, when lower ← lower t β(S).

Iterations that return None decrease the next iteration’s upper, when upper ← upper u p. Each

of the models shown is the model that Z3 returns when asked to satisfy ϕ ∧ ¬γ̂(p), where

p = AbstractConsequence(lower,upper). For example, each call to Z3 finished in 14 milliseconds

or less. The final result is {x 7→ x, y 7→ y, x′ 7→ cons(y, x), y′ 7→ y}. �

The next example shows that one can use the Herbrand-equalities domain without having

to give every function symbol its Herbrand interpretation. This approach allows one to more

faithfully model the language semantics—and still use the Herbrand-equalities domain—thereby

increasing the set of equalities that the analysis is capable of detecting.

Example 5.6. Consider the following program fragment, which is in the same programming
language as the fragment from Example 5.5, extended with selectors car and cdr:

bool a ;
cons_ t ree x , y ;
x = ( a ? cons ( y , x ) : cons ( x , y ) ) ;
y = cdr ( x ) ;
x = car ( x ) ;
i f ( a ) { /∗ (∗∗ ) . . . ∗ / }
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Suppose that we would like an element of the Herbrand-equalities domain that relates the values

of x and y at the fragment’s start to x′ and y′ at program point (**). To reach (**), a must be

true; in this case, the code swaps the values of x and y.

As in Example 5.5, a straightforward abstract interpretation of the path to (**) in the

Herbrand-equalities domain yields >. As shown in Figure 5.4, symbolic abstraction, using

the Herbrand-equalities domain, of the formula obtained from symbolic execution results in an

abstract value that captures the swap effect.

In this example, the set of function symbols F over which we define the Herbrand universe

T (F , ∅) is F def= {nil, cons}, not F def= {nil, cons, car, cdr}. The functions car and cdr are not

given their Herbrand interpretation; instead, they are interpreted as the deconstructors that

select the first and second components, respectively, of a cons-term.

Symbolic execution from the beginning of the code fragment to (**) yields the following

formula:

ϕ
def= x′ = car (ite (a, cons(y, x), cons(x, y)))

∧ y′ = cdr (ite (a, cons(y, x), cons(x, y)))

∧ a

As in Example 5.5, Figure 5.4 shows the values obtained just after line 5 on each iteration of

Algorithm 11, applied to ϕ. Each call to Z3 finished in 10 milliseconds or less The final result is

x′ = y and x = y′, which captures the fact that, when the program reaches (**), it has swapped

the values of x and y. �

5.4.2 Polyhedral Domain

The polyhedral domain is a conjunctive domain (Section 3.1.1). In addition, there are algorithms

for join, meet, and checking equality. The logic QF_LRA (quantifier-free linear real arithmetic)

supported by SMT solvers provides a decision procedure for the fragment of logic that is required

to express negation, conjunction, and γ̂ of a polyhedron. Consequently, the polyhedral domain
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upper
lower

(a) (b) (c)

p

Figure 5.5: Abstract consequence on polyhedra. (a) Two polyhedra: lower v upper. (b) p =
AbstractConsequence(lower,upper). (c) Result of upper← upper u p.

satisfies the bilateral framework, and therefore supports the α̃l algorithm. The polyhedral domain

has both infinite ascending chains and infinite descending chains, and hence Algorithm 13 is

only guaranteed to compute an over-approximation of α̂(ϕ).

Because the polyhedral domain is a conjunctive domain, if lower � upper, then some single

constraint p of lower satisfies p 6w upper. For instance, if lower and upper are the polyhedra shown

in Figure 5.5(a), then the region p above the dotted line in Figure 5.5(b) is an acceptable abstract

consequence. Figure 5.5(c) shows the result after upper ← upper u p is performed at line 9 of

Algorithm 11.

5.5 Empirical Comparison of the KS and Bilateral Algorithms

In this section, I compare two algorithms for performing symbolic abstraction for the affine-

equalities domain E232 :

• the α̃↑KS procedure of Algorithm 7.

• the α̃l〈E232〉 procedure that is the instantiation of Algorithm 11 for the domain of affine-

equalities E232 and QFBV logic.

Although the bilateral algorithm α̃l〈E232〉 benefits from being resilient to timeouts, it maintains

both an over-approximation and an under-approximation. Thus, the experiments were designed

to understand the trade-off between performance and precision.
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Better α̃l

name α̃↑KS t/o α̃l〈E232〉 precision

finger 104.0 4 138.9 6.3%
subst 196.7 4 214.6 0%
label 146.1 2 171.6 0%
chkdsk 377.2 16 417.9 0%
convert 287.1 10 310.5 0%
route 618.4 14 589.9 2.5%
logoff 611.2 16 644.6 15.0%
setup 1499 60 1576 1.0%

Table 5.2: Performance and precision comparison between the KS and Bilateral algorithms. The
columns show the times, in seconds, for α̃↑KS and α̃l〈E232〉WPDS construction; the number of
invocations of α̃↑KS that had a decision procedure timeout (t/o); and the degree of improvement
gained by using α̃l〈E232〉-generated weights rather than α̃↑KS weights (measured as the percentage
of control points whose inferred one-vocabulary affine relation was strictly more precise under
α̃l〈E232〉-based analysis).

In particular, the experiments were designed to answer the following questions:

1. How does the speed of α̃l〈E232〉 compare with that of α̃↑KS?

2. How does the precision of α̃l〈E232〉 compare with that of α̃↑KS?

To address these questions, we performed affine-relations analysis (ARA) on x86 machine

code, computing affine relations over the x86 registers. The experimental setup is the same as

that in Section 4.3.

Columns 2 and 4 of Table 5.2 list the time taken, in seconds, for α̃↑KS and α̃l〈E232〉WPDS

construction. We observe that on average α̃l〈E232〉 is about 10% slower than α̃↑KS (computed as

the geometric mean), which answers question 1.

To answer question 2 we compared the precision of the WPDS analysis when using α̃↑KS with

the precision obtained using α̃l〈E232〉. In particular, we compare the affine-relation invariants

computed by the α̃↑KS-based and α̃l〈E232〉-based analyses for each control point—i.e., the beginning

of a basic block that ends with a branch. The last column of Table 5.2 shows the percentage

of control points for which the α̃l〈E232〉-based analysis computed a strictly more precise affine
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Algorithm 14: P̂ost
↑
[τ ](v)

1

2 lower′ ← ⊥
3 while true do
4

5 〈S, S′〉 ← Model(γ̂(v) ∧ τ ∧ ¬γ̂( lower′ ))
6 if 〈S, S′〉 is TimeOut then
7 return >
8 else if 〈S, S′〉 is None then
9 break // P̂ost[τ ](v)= lower′

10 else // S′ 6|= γ̂(lower′ )
11 lower′ ← lower′ t β(S′)
12 v′ ← lower′

13 return v’

Algorithm 15: P̂ost
l
[τ ](v)

1 upper′ ← >
2 lower′ ← ⊥
3 while lower′ 6= upper′ ∧ ResourcesLeft do
4 p′ ← AbstractConsequence(lower′,upper′)
// p′ w lower′, p′ 6w upper′

5 〈S, S′〉 ← Model(γ̂(v) ∧ τ ∧ ¬γ̂(p′ ))
6 if 〈S, S′〉 is TimeOut then
7 break
8 else if 〈S, S′〉 is None then
9 upper′ ← upper′ u p′ // P̂ost[τ ](v)v p′

10 else // S′ 6|= γ̂(p′ )
11 lower′ ← lower′ t β(S′)
12 v′ ← upper′

13 return v’

relation. Column 3 of Table 5.2 lists the number invocations of α̃↑KS that had a decision-procedure

timeout, and hence returned >. We see that the α̃l〈E232〉-based analysis improves precision at

up to 15% of control points, and, on average, the α̃l〈E232〉-based analysis is more precise for 3.1%

of the control points (computed as the arithmetic mean), which answers question 2.

5.6 Computing P̂ost

Algorithm 15 shows the Bilateral algorithm for computing P̂ost. In the same way Algorithm 6,

which computes symbolic abstraction, was adapted to give Algorithm 8, which computes P̂ost,

Algorithm 11 is adapted to give Algorithm 15. The differences between P̂ost
↑

and P̂ost
l

are

highlighted in gray. Most concern the variables upper′ or p′. Algorithm 8 will be used in Chapter 7.

5.7 Related Work

5.7.1 Related Work on Symbolic Abstraction

Previous work on symbolic abstraction falls into three categories:

1. algorithms for specific domains (Regehr and Reid, 2004; McMillan, 2005; Brauer and King,

2010; Barrett and King, 2010; King and Søndergaard, 2010; Elder et al., 2011; Li et al., 2014)
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2. algorithms for parameterized abstract domains (Graf and Saïdi, 1997; Yorsh et al., 2004;

Sankaranarayanan et al., 2005; Monniaux, 2010)

3. abstract-domain frameworks (Reps et al., 2004).

What distinguishes category 3 from category 2 is that each of the results cited in category 2

applies to a specific family of abstract domains, defined by a parameterized Galois connection (e.g.,

with an abstraction function equipped with a readily identifiable parameter for controlling the

abstraction). In contrast, the results in category 3 are defined by an interface; for any abstract

domain that satisfies the requirements of the interface, one has a method for symbolic abstraction.

The approach presented in this paper falls into category 3.

Algorithms for specific domains. Regehr and Reid (2004) present a method that constructs

abstract transformers for machine instructions, for interval and bitwise abstract domains. Their

method does not call a SAT solver, but instead uses the physical processor (or a simulator of a

processor) as a black box. To compute the abstract post-state for an abstract value a, the approach

recursively divides a until an abstract value is obtained whose concretization is a singleton set.

The concrete semantics are then used to derive the post-state value. The results of each division

are joined as the recursion unwinds to derive the abstract post-state value.

Brauer and King (2010) developed a method that works from below to derive abstract trans-

formers for the interval domain. Their method is based on an approach due to Monniaux (2010)

(see below), but they changed two aspects:

1. They express the concrete semantics with a Boolean formula (via “bit-blasting”), which

allows a formula equivalent to ∀x.ϕ to be obtained from ϕ (in CNF) by removing the x and

¬x literals from all of the clauses of ϕ.

2. Whereas Monniaux’s method performs abstraction and then quantifier elimination, Brauer

and King’s method performs quantifier elimination on the concrete specification, and then

performs abstraction.
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The abstract transformer derived from the Boolean formula that results is a guarded update:

the guard is expressed as an element of the octagon domain (Miné, 2001); the update operation

is expressed as an element of the abstract domain of rational affine equalities (Karr, 1976).

The abstractions performed to create the guard and the update are optimal for their respective

domains. The algorithm they use to create the abstract value for the update operation is essentially

the King-Søndergaard algorithm for α̂ (King and Søndergaard, 2010, Fig. 2), which works from

below (see Algorithm 7). Brauer and King show that optimal evaluation of such transfer functions

requires linear programming. They give an example that demonstrates that an octagon-closure

operation on a combination of the guard’s octagon and the update’s affine equality is sub-optimal.

Barrett and King (2010) describe a method for generating range and set abstractions for bit-

vectors that are constrained by Boolean formulas. For range analysis, the algorithm separately

computes the minimum and maximum value of the range for an n-bit bit-vector using 2n calls to

a SAT solver, with each SAT query determining a single bit of the output. The result is the best

over-approximation of the value that an integer variable can take on (i.e., α̂).

Li et al. (2014) developed a symbolic-abstraction method for LRA, called SYMBA. The scenario

considered by Li et al. (2014) differs from that considered in this thesis. Given a formula ϕ in LRA

logic and a finite set of objectives {t1, t2, . . . , tn}, where ti is a linear-rational expression, SYMBA

computes the lower and upper bounds l1, l2, . . . , ln and u1, u2, . . . , un such that ϕ⇒
(∧

1≤i≤n li ≤

ti ≤ ui
)
. Similar to the Bilateral framework described in this chapter, the SYMBA algorithm

maintains and under-approximation and over-approximation of the final answer.

McMillan (2005) presents an algorithm for performing symbolic abstraction for propositional

logic and the abstract domain of propositional clauses of length up to k. The algorithm can be

viewed as an instance of the RSY algorithm: a SAT solver is used to generate samples and a trie

data structure is used to perform the join of abstract values. The specific application that the

algorithm is used for is to compute don’t-care conditions for logic synthesis.

Algorithms for parameterized abstract domains. Graf and Saïdi (1997) showed that decision

procedures can be used to generate best abstract transformers for predicate-abstraction domains.

Other work has investigated more efficient methods to generate approximate transformers that
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are not best transformers, but approach the precision of best transformers (Ball et al., 2001; Clarke

et al., 2004).

Yorsh et al. (2004) developed a method that works from above to perform α̃(ϕ) for the kind of

abstract domains used in shape analysis (i.e., “canonical abstraction” of logical structures (Sagiv

et al., 2002)).

Template Constraint Matrices (TCMs) are a parametrized family of linear-inequality domains

for expressing invariants in linear real arithmetic. Sankaranarayanan et al. (2005) gave a meet,

join, and set of abstract transformers for all TCM domains. Monniaux (2010) gave an algorithm

that finds the best transformer in a TCM domain across a straight-line block (assuming that

concrete operations consist of piecewise linear functions), and good transformers across more

complicated control flow. However, the algorithm uses quantifier elimination, and no polynomial-

time elimination algorithm is known for piecewise-linear systems.

Abstract-domain frameworks. As discussed in Section 5.2, the bilateral framework reduces to

the RSY framework when using a particular (trivial) implementation of AbstractConsequence.

Unlike the RSY framework, to compute α̃(ϕ) the bilateral framework does not impose the re-

quirement that the abstract domain have no infinite ascending chains. As shown in part 1 of

Theorem 5.2, even when there are infinite ascending chains, the bilateral framework can return a

non-trivial over-approximation of α̂(ϕ). In contrast, RSY gives no such guarantees. Consequently,

compared to the RSY framework, the bilateral framework is applicable to a larger class of abstract

domains.

5.7.2 Other Related Work

Logical abstract domains. Cousot et al. (2011a) define a method of abstract interpretation based

on using particular sets of logical formulas as abstract-domain elements (so-called logical abstract

domains). They face the problems of (i) performing abstraction from unrestricted formulas to

the elements of a logical abstract domain (Cousot et al., 2011a, §7.1), and (ii) creating abstract

transformers that transform input elements of a logical abstract domain to output elements of
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the domain (Cousot et al., 2011a, §7.2). Their problems are particular cases of α̂(ϕ). They present

heuristic methods for creating over-approximations of α̂(ϕ).

Connections to machine-learning algorithms.

α̃↑RSY (Algorithm 6) is related to the Find-S algorithm (Mitchell, 1997, Section 2.4) for concept

learning. Both algorithms start with the most-specific hypothesis (i.e., ⊥) and work bottom-up

to find the most-specific hypothesis that is consistent with positive examples of the concept.

Both algorithms generalize their current hypothesis each time they process a (positive) training

example that is not explained by the current hypothesis. A major difference is that Find-S receives

a sequence of positive and negative examples of the concept (e.g., from nature). It discards

negative examples, and its generalization steps are based solely on the positive examples. In

contrast, α̃↑RSY already starts with a precise statement of the concept in hand, namely, the formula

ϕ, and on each iteration, calls a decision procedure to generate the next positive example; α̃↑RSY

never sees a negative example.

A similar connection exists between α̃l (Algorithm 11) and the Candidate-Elimination (CE)

algorithm for concept learning (Mitchell, 1997, Section 2.5). Both algorithms maintain two

approximations of the concept, one that is an over-approximation and one that is an under-

approximation. The CE algorithm updates its under-approximation using positive examples in

the same way that the Find-S algorithm updates its under-approximation. Similarly, the Bilateral

algorithm updates its under-approximation (via a join) is the same way that the RSY algorithm

updates its under-approximation. One key difference between the CE algorithm and the Bilateral

algorithm is that the CE algorithm updates its over-approximation using negative examples. Most

conjunctive abstract domains are not closed under negation. Thus, given a negative example,

there usually does not exist an abstract value that only excludes that particular negative example.

5.8 Chapter Notes

The idea for the KS+ algorithm occurred to me during Andy King’s talk at a Dagstuhl seminar

describing the results of (King and Søndergaard, 2010). Though I was familiar with the paper,
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I had never internalized the working of KS algorithm properly. The generalization of the KS+

algorithm to the Bilateral framework followed naturally from the requirement that each iteration

of the Bilateral algorithm is required to make progress.

The concept of Abstract Consequence was concealed inside the KS algorithm, and had to

be gleaned out. The concept of abstract consequence was used implicitly, and an acceptable

abstract consequence was computed by reading a single row of a matrix in Howell form (line 5

of Algorithm 9).

The main surprise was that the Howell form, a normal form using for the E2w abstract domain,

stressed in Elder et al. (2011) was not of central importance in generalizing the KS algorithm;

instead the Abstract Consequence operation was the key.
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Chapter 6

A Generalization of Stålmarck’s

Method

In building a statue, a sculptor doesn’t keep adding clay to his

subject. Actually, he keeps chiselling away at the inessentials

until the truth of its creation is revealed without obstructions.
— Bruce Lee

As explained in Section 3.4, Stålmarck’s method (Sheeran and Stålmarck, 2000) is an algo-

rithm for checking satisfiability of a formula in propositional logic. In this chapter, I give a new

account of Stålmarck’s method by explaining each of the key components in terms of concepts

from the field of abstract interpretation. In particular, I show that Stålmarck’s method can be

viewed as a general framework, which I call Stålmarck[A], that is parameterized on an abstract

domain A and operations on A. This abstraction-based view allows Stålmarck’s method to

be lifted from propositional logic to richer logics, such as LRA. Furthermore, the generalized

Stålmarck’s method falls into the Satisfiability Modulo Abstraction (SMA) paradigm: the gener-

alized Stålmarck’s-method solver we created is designed and implemented using concepts from

abstract interpretation.
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In this chapter, I use the vantage point of abstract interpretation to describe the elements of

the Dilemma Rule as follows:

Branch of a Proof: In Stålmarck’s method, each proof-tree branch is associated with a so-called

formula relation (Sheeran and Stålmarck, 2000). In abstract-interpretation terms, each branch

is associated with an abstract-domain element.

Splitting: The step of splitting the current goal into sub-goals can be expressed in terms of

meet (u).

Application of simple deductive rules: Stålmarck’s method applies a set of simple deductive

rules after each split. In abstract-interpretation terms, the rules perform a semantic reduction

(Cousot and Cousot, 1979).

“Intersecting” results: The step of combining the results obtained from an earlier split are

described as an “intersection” in Stålmarck’s papers. In the abstract-interpretation-based

framework, the combining step is the join (t) of two abstract-domain values.

This more general view of Stålmarck’s method furnishes insight on when an invocation of the

Dilemma Rule fails to make progress in a proof. In particular, both branches of a Dilemma may

each succeed (locally) in advancing the proof, but the abstract domain used to represent proof

states may not be precise enough to represent the common information when the join of the two

branches is performed; consequently, the global state of the proof is not advanced.

As mentioned in Section 1.2, the other advantage of the abstraction-based view of Stålmarck’s

method is that it brings out a connection between Stålmarck’s method and symbolic abstrac-

tion; in particular, Stålmarck[A] computes α̂A(ϕ). This new algorithm for symbolic abstraction

approaches its result from “above”, and is denoted by α̃↓. Because the method approaches its

result from “above”, if the computation takes too much time, it can be stopped to yield a safe

result—i.e., an over-approximation to the best abstract operation—at any stage, similar to the

Bilateral framework (Chapter 5).
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The α̃↓ framework, however, is based on much different principles from the RSY and Bilateral

frameworks. The latter frameworks use an inductive-learning approach to learn from examples,

while the α̃↓ framework uses a deductive approach by using inference rules to deduce the answer.

Thus, they represent two different classes of frameworks, with different requirements for the

abstract domain. In contrast to the RSY and Bilateral framework, which uses a decision procedure

as a black box, the α̃↓ framework adopts (and adapts) some principles from Stålmarck’s decision

procedure.

The contributions of this chapter can be summarized as follows:

• I present a connection between symbolic abstraction and Stålmarck’s method for checking

satisfiability (Section 6.1).

• I present a generalization of Stålmarck’s method that lifts the algorithm from propositional

logic to richer logics (Section 6.2).

• I present a new parametric framework that, for some abstract domains, is capable of

performing most-precise abstract operations in the limit, including α̂(ϕ) and Âssume[ϕ](A),

as well as creating a representation of P̂ost[τ ]. Because the method approaches most-precise

values from “above”, if the computation takes too much time it can be stopped to yield a

sound result (Section 6.2).

• I present instantiations of our framework for two logic/abstract-domain pairs: QFBV/E2w

and LRA/Polyhedra, and discuss completeness (Section 6.3).

• I present experimental results that illustrate the dual-use nature of our framework. One

experiment uses it to compute abstract transformers, which are then used to generate

invariants; another experiment uses it for checking satisfiability (Section 6.4).

Section 6.5 presents related work.
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6.1 Overview

I now illustrate the key points of the generalized Stålmarck’s method using three examples:

• Section 6.1.1 illustrates how using inequality relations instead of equivalence relations in

Stålmarck’s method gives us a more powerful decision procedure for propositional logic.

• Section 6.1.2 shows how the generalized Stålmarck’s method applies to computing repre-

sentations of abstract transformers.

• Section 6.1.3 describes the application of the generalized Stålmarck’s method to checking

unsatisfiability of formulas in the LRA logic.

The top-level, overall goal of Stålmarck’s method can be understood in terms of the operation

α̃(ψ). However, Stålmarck’s method is recursive (counting down on a parameter k), and the

operation performed at each recursive level is the slightly more general operation As̃sume[ψ](A).

Thus, we will discuss As̃sume in Sections 6.1.2 and 6.1.3.

6.1.1 An Improvement of Stålmarck’s Method Replacing Equivalence Relations

with Inequality Relations for Propositional Logic

Instead of computing an equivalence relation ≡ on literals as done in Section 3.4, let us compute

an inequality relation ≤ between literals. Figure 6.1 shows a few of the propagation rules that

deduce inequalities. Because (i) an equivalence a ≡ b can be represented using two inequality

constraints, a ≤ b and b ≤ a, (ii) an inequivalence a 6≡ b can be treated as an equivalence a ≡ ¬b,

and (iii) a ≤ b cannot be represented with any number of equivalences, inequality relations are

a strictly more expressive method than equivalence relations for abstracting a set of variable

assignments. Moreover, Example 6.1 shows that, for some tautologies, replacing equivalence

relations with inequality relations enables Stålmarck’s method to be able to find a k-saturation

proof with a strictly lower value of k.
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a⇔(b⇒ c)
c ≤ a ¬a ≤ b

Imp1
a⇔(b⇔ c) a ≤ 0
b ≤ ¬c ¬c ≤ b

Iff1
a⇔(b⇒ c) 1 ≤ b c ≤ 0

a ≤ 0
Imp2

Figure 6.1: Examples of propagation rules for inequality relations on literals.

w1 ≤ 0 . . . by assumption
w2 ≤ ¬w3, ¬w3 ≤ w2 . . . Rule Iff1 on w1⇔(w2⇔w3)
q ≤ w2, ¬w2 ≤ p . . . Rule Imp1 on w2⇔(p⇒ q)
q ≤ ¬w3 . . . q ≤ w2, w2 ≤ ¬w3
w3 ≤ p . . . w2 ≤ ¬w3 implies w3 ≤ ¬w2,¬w2 ≤ p
¬p ≤ w3, ¬w3 ≤ ¬q . . . Rule Imp1 on w3⇔(¬q⇒¬p)
q ≤ 0 . . . ¬w3 ≤ ¬q implies q ≤ w3, q ≤ ¬w3
1 ≤ p . . . w3 ≤ p,¬p ≤ w3 implies ¬w3 ≤ p
w2 ≤ 0, . . . Rule Imp2 on w2⇔(p⇒ q)
w3 ≤ 0 . . . Rule Imp2 on w3⇔(¬q⇒¬p)
1 ≤ 0 . . . w2 ≤ ¬w3,¬w3 ≤ w2, w2 ≤ 0, w3 ≤ 0

Figure 6.2: 0-saturation proof that χ is valid, using inequality relations on literals.

Example 6.1. Consider the propositional-logic formula χ ≡ (p⇒ q)⇔(¬q⇒¬p). The corre-

sponding integrity constraints are w1⇔(w2⇔w3), w2⇔(p⇒ q), and w3⇔(¬q⇒¬p). The root

variable of χ is w1. Using formula relations (i.e., equivalence relations over literals), Stålmarck’s

method finds a 1-saturation proof that χ is valid. In contrast, using inequality relations, a Stål-

marck-like algorithm finds a 0-saturation proof. The proof starts by assuming that w1 ≤ 0.

0-saturation using the propagation rules of Figure 6.1 results in the contradiction 1 ≤ 0, as

shown in Figure 6.2. �

Because it can find a k-saturation proof with a strictly lower value of k than the standard

Stålmarck’s method, we say that the instantiation of Stålmarck’s method with inequality relations

is more powerful than the instantiation with equivalence relations. In general, Stålmarck’s method

can be made more and more powerful by using a more and more expressive abstraction: each

time you plug in a successively more expressive abstraction, a proof may be possible with a

lower value of k.
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6.1.2 Computing Representations of Abstract Transformers

Example 6.2. Consider the following x86 assembly code

L1: cmp eax, 2 L2: jz L4 L3: … L4: …

The instruction at L1 sets the zero flag (zf) to true if the value of register eax equals 2. At

instruction L2, if zf is true the program jumps to location L4 by updating the value of the program

counter (pc) to L4; otherwise, control falls through to program location L3. The transition formula

that expresses the state transformation from the beginning of L1 to the beginning of L4 is thus

ϕ ≡ (zf⇔(eax = 2)) ∧ (pc′ = ITE(zf, L4, L3)) ∧ (pc′ = L4) ∧ (eax′ = eax),

where ϕ is a QFBV formula, and ITE(b, t1, t2) is an if-then-else term, which evaluates to term t1 if

the Boolean condition b is true, and to term t2 if b is false.

Let E232 be the abstract domain of affine-equalities over the 32-bit x86 registers. Let A0 =

>E232 , the empty set of affine constraints over input-state and output-state variables. We now

describe how our algorithm creates a representation of the E232 transformer for ϕ by computing

As̃sume[ϕ](A0).

First, the ITE term in ϕ is rewritten as (zf⇒(pc′ = L4)) ∧ (¬zf⇒(pc′ = L3)). Thus, the

transition formula becomesϕ = (zf⇔(eax = 2))∧(zf⇒(pc′ = L4))∧(¬zf⇒(pc′ = L3))∧(pc′ =

L4) ∧ (eax′ = eax).

Next, propagation rules are used to compute a semantic reduction with respect to ϕ, starting

from A0. The main feature of the propagation rules is that they are “local”; that is, they make

use of only a small part of formula ϕ to compute the semantic reduction.

1. Because ϕ has to be true, we can conclude that each of the conjuncts of ϕ are also true; that

is, zf⇔(eax = 2), zf⇒(pc′ = L4), ¬zf⇒(pc′ = L3), pc′ = L4, and eax′ = eax are all true.

2. Suppose that we have a function µα̃E232 such that for a literal l ∈ L, A′ = µα̃E232 (l) is a

sound overapproximation of α̂(l). Because the literal pc′ = L4 is true, we conclude that



95

a0 c0

b0
a1 c1

b1
a2

∨∨∨∨ ∨∨∨∨

(a)

(P0,A0)

(P1,A1)' ' (P2,A2)' '

(P0,A0) 6 (B,º) = (P2,A2)(P1,A1) = (P0,A0) 6 (B,º)

(P3,A3) (P1,A1)' ' (P2,A2)' '7=

b t

b

b

t

t

b

(b)

Figure 6.3: (a) Inconsistent inequalities in the (unsatisfiable) formula used in Example 6.3. (b)
Application of the Dilemma Rule to abstract value (P0, A0). The dashed arrows from (Pi, Ai) to
(P ′i , A′i) indicate that (P ′i , A′i) is a semantic reduction of (Pi, Ai).

A′ = µα̃E232 (pc′ = L4) = {pc′ − L4 = 0} holds, and thus A1 = A0 u A′ = {pc′ − L4 = 0},

which is a semantic reduction of A0.

3. Similarly, because the literal eax′ = eax is true, we obtain A2 = A1 u µα̃E232 (eax′ = eax) =

{pc′ − L4 = 0, eax′ − eax = 0}.

4. We know that ¬zf⇒(pc′ = L3). Furthermore, µα̃E232 (pc′ = L3) = {pc′ − L3 = 0}. Now

{pc′ − L3 = 0} u A2 is ⊥, which implies that Jpc′ = L3K ∩ γ({pc′ − L4 = 0, eax′ − eax =

0}) = ∅. Thus, we can conclude that ¬zf is false, and hence that zf is true. This value

of zf, along with the fact that zf⇔(eax = 2) is true, enables us to determine that A′′ =

µα̃E232 (eax = 2) = {eax − 2 = 0} must hold. Thus, our final semantic-reduction step

produces A3 = A2 uA′′ = {pc′ − L4 = 0, eax′ − eax = 0, eax− 2 = 0}.

Abstract value A3 is a set of affine constraints over the registers at L1 (input-state variables) and

those at L4 (output-state variables). �

The above example illustrates how our technique propagates truth values to various subfor-

mulas of ϕ. The process of repeatedly applying propagation rules to compute As̃sume is called

0-assume. The next example illustrates the Dilemma Rule, a more powerful rule for computing

semantic reductions.
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6.1.3 Checking Unsatisfiability of LRA formulas

Example 6.3. Let L be LRA, and letA be the polyhedral abstract domain (Cousot and Halbwachs,

1978). Consider the formula

ψ ≡ (a0 < b0)∧(a0 < c0)∧(b0 < a1∨c0 < a1)∧(a1 < b1)∧(a1 < c1)∧(b1 < a2∨c2 < a2)∧(a2 < a0)

The structure of ψ ∈ L is illustrated in Figure 6.3(a). Suppose that we want to compute

As̃sume[ψ](>A).

To make the communication between the truth values of subformulas and the abstract

value explicit, we associate a fresh Boolean variable with each subformula of ψ to give a set of

integrity constraints I. In this case, Iψ = {u1⇔
∧8
i=2 ui, u2⇔(a0 < b0), u3⇔(a0 < c0), u4⇔(u9 ∨

u10), u5⇔(a1 < b1), u6⇔(a1 < c1), u7⇔(u11 ∨ u12), u8⇔(a2 < a0), u9⇔(b0 < a1), u10⇔(c0 <

a1), u11⇔(b1 < a2), u12⇔(c1 < a2)}. The integrity constraints encode the structure of ψ via

the set of Boolean variables U = {u1, u2, . . . , u12}. When I is used as a formula, it denotes the

conjunction of the individual integrity constraints.

We now introduce an abstraction over U ; in particular, we use the Cartesian domain P =

(U → {0, 1, ∗})⊥ in which ∗ denotes “unknown”, and each element in P represents a set of

assignments in P(U → {0, 1}). We denote an element of the Cartesian domain as a mapping,

e.g., [u1 7→ 0, u2 7→ 1, u3 7→ ∗], or [0, 1, ∗] if u1, u2, and u3 are understood. >P is the element λu.∗.

The “single-point” partial assignment in which variable v is set to b is denoted by >P [v 7→ b].

The variable u1 ∈ U represents the root ofψ; consequently, the single-point partial assignment

>P [u1 7→ 1] corresponds to the assertion that ψ is satisfiable. In fact, the models of ψ are

closely related to the concrete values in JIK ∩ γ(>P [u1 7→ 1]). For every concrete value in

JIK ∩ γ(>P [u1 7→ 1]), its projection onto {ai, bi, ci | 0 ≤ i ≤ 1} ∪ {a2} gives us a model of

ψ; that is, JψK = (JIK ∩ γ(>P [u1 7→ 1]))|({ai,bi,ci|0≤i≤1}∪{a2}). By this means, the problem of

computing As̃sume[ψ](>A) is reduced to that of computing As̃sume[I]((>P [u1 7→ 1],>A)),

where (>P [u1 7→ 1],>A) is an element of the reduced product of P and A.



97

Because u1 is true in >P [u1 7→ 1], the integrity constraint u1⇔
∧8
i=2 ui implies that u2 . . . u8

are also true, which refines>P [u1 7→ 1] toP0 = [1, 1, 1, 1, 1, 1, 1, 1, ∗, ∗, ∗, ∗]. Because u2 is true and

u2⇔(a0 < b0) ∈ I, >A can be refined using µα̃A(a0 < b0) = {a0 − b0 < 0}. Doing the same for

u3, u5, u6, and u8, refines>A toA0 = {a0−b0 < 0, a0−c0 < 0, a1−b1 < 0, a1−c1 < 0, a2−a0 < 0}.

These steps refine (>P [u1 7→ 1],>A) to (P0, A0) via 0-assume.

To increase precision, we need to use the Dilemma Rule, a branch-and-merge rule, in which

the current abstract state is split into two (disjoint) abstract states, 0-assume is applied to both

abstract values, and the resulting abstract values are merged by performing a join. The steps of

the Dilemma Rule are shown schematically in Figure 6.3(b) and described below.

In our example, the value of u9 is unknown in P0. Let B ∈ P be >P [u9 7→ 0]; then B, the

abstract complement1 of B, is >P [u9 7→ 1]. The current abstract value (P0, A0) is split into

(P1, A1) = (P0, A0) u (B,>) and (P2, A2) = (P0, A0) u (B,>).

Now consider 0-assume on (P1, A1). Because u9 is false, and u4 is true, we can conclude that u10

has to be true, using the integrity constraint u4⇔(u9 ∨ u10). Because u10 holds and u10⇔(c0 <

a1) ∈ I , A1 can be refined with the constraint c0 − a1 < 0. Because a0 − c0 < 0 ∈ A1, a0 − a1 < 0

can be inferred. Similarly, when performing 0-assume on (P2, A2), a0−a1 < 0 is inferred. Call the

abstract values computed by 0-assume (P ′1, A′1) and (P ′2, A′2), respectively. At this point, the join

of (P ′1, A′1) and (P ′2, A′2) is taken. Because a0 − a1 < 0 is present in both branches, it is retained

in the join. The resulting abstract value is (P3, A3) = ([1, 1, 1, 1, 1, 1, 1, 1, ∗, ∗, ∗, ∗], {a0 − b0 <

0, a0 − c0 < 0, a1 − b1 < 0, a1 − c1 < 0, a2 − a0 < 0, a0 − a1 < 0}. Note that although P3 equals

P0, A3 is lower in the latticeA than A0 (i.e., A3 @ A0), and hence (P3, A3) is a semantic reduction

of (P0, A0) with respect to ψ.

Now suppose that (P3, A3) is split using u11. Using reasoning similar to that performed

above, a1−a2 < 0 is inferred on both branches, and hence so is a0−a2 < 0. However, a0−a2 < 0

contradicts a2 − a0 < 0; consequently, the abstract value reduces to (⊥P ,⊥A) on both branches.

Thus, As̃sume[ψ](>A) = ⊥A, and hence ψ is unsatisfiable. In this way, As̃sume instantiated

with the polyhedral domain can be used to decide the satisfiability of a LRA formula. �

1B is an abstract complement of B if and only if γ(B) ∩ γ(B) = ∅, and γ(B) ∪ γ(B) = γ(>).
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The process of repeatedly applying the Dilemma Rule is called 1-assume. That is, repeatedly

some variable u ∈ U is selected whose truth value is unknown, the current abstract value is split

using B = >P [u 7→ 0] and B = >P [u 7→ 1], 0-assume is applied to each of these values, and the

resulting abstract values are merged via join (Figure 6.3(b)). Different policies for selecting the

next variable on which to split can affect how quickly an answer is found; however, any fair

selection policy will return the same answer. The efficacy of the Dilemma Rule is partially due

to case-splitting; however, the real power of the Dilemma Rule is due to the fact that it preserves

information learned in both branches when a case-split is “abandoned” at a join point.

The generalization of the 1-assume algorithm is called k-assume: repeatedly some variable

u ∈ U is selected whose truth value is unknown, the current abstract value is split using

B = >P [u 7→ 0] and B = >P [u 7→ 1]; (k–1)-assume is applied to each of these values; and the

resulting values are merged via join. However, there is a trade-off: higher values of k give greater

precision, but are also computationally more expensive.

For certain abstract domains and logics, As̃sume[ψ](>A) is complete—i.e., with a high-

enough value of k for k-assume, As̃sume[ψ](>A) always computes the most-precise A value

possible for ψ. However, our experiments show that As̃sume[ψ](>A) has very good precision

with k = 1 (see Section 6.4)—which jibes with the observation that, in practice, with Stålmarck’s

method for propositional validity (tautology) checking “a formula is either [provable with k = 1]

or not a tautology at all!” (Harrison, 1996, p. 227).

6.2 Algorithm for As̃sume[ϕ](A)

This section presents our algorithm for computing As̃sume[ϕ](A) ∈ A, for ϕ ∈ L. The proofs of

the various theorems can be skipped without losing continuity.

The assumptions of our framework are as follows:

1. There is a Galois connection C −−→←−−α
γ
A between A and concrete domain C.

2. There is an algorithm to perform the join of arbitrary elements of A.
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Algorithm 16: As̃sume[ϕ](A)
1 〈I, uϕ〉 ← integrity(ϕ)
2 P ← >P [uϕ 7→ 1]
3 (P̃ , Ã)← k-assume[I]((P,A))
4 return Ã

Algorithm 17: 0-assume[I]((P,A))
1 repeat
2 (P ′, A′)← (P,A)
3 foreach J ∈ I do
4 if J has the form u⇔ ` then
5 (P,A)← LeafRule(J, (P,A))
6 else
7 (P,A)← InternalRule(J, (P,A))
8 until ((P,A) = (P ′, A′)) ‖ timeout
9 return (P,A)

Algorithm 18: k-assume[I]((P,A))
1 repeat
2 (P ′, A′)← (P,A)
3 foreach u ∈ U such that P (u) = ∗ do
4 (P0, A0)← (P,A)
5 (B,B)← (>P [u 7→ 0],>P [u 7→ 1])
6 (P1, A1)← (P0, A0) u (B,>)
7 (P2, A2)← (P0, A0) u (B,>)
8 (P ′1, A′1)← (k–1)-assume[I]((P1, A1))
9 (P ′2, A′2)← (k–1)-assume[I]((P2, A2))

10 (P,A)← (P ′1, A′1)t (P ′2, A′2)
11 until ((P,A) = (P ′, A′)) ‖ timeout
12 return (P,A)

3. Given a literal l ∈ L, there is an algorithm µα̃ to compute a safe (overapproximating)

“micro-α̃”—i.e., A′ = µα̃(l) such that γ(A′) ⊇ JlK.

4. There is an algorithm to perform the meet of an arbitrary element of Awith an arbitrary

element of {µα̃(l) | ` ∈ literal(L)}.

Note that A is allowed to have infinite descending chains; because As̃sume works from above,

it is allowed to stop at any time, and the value in hand is an over-approximation of the most

precise answer.

Algorithm 16 presents the algorithm that computes As̃sume[ϕ](A) for ϕ ∈ L and A ∈ A.

Line 1 calls the function integrity, which converts ϕ into integrity constraints I by assigning a

fresh Boolean variable to each subformula of ϕ, using the rules described in Figure 6.4. The

variable uϕ corresponds to formula ϕ. We use U to denote the set of Boolean variables created

when converting ϕ to I. Algorithm 16 also uses a second abstract domain P , each of whose

elements represents a set of Boolean assignments in P(U → {0, 1}). For simplicity, in this

presentation P is the Cartesian domain (U → {0, 1, ∗})⊥, but other more-expressive Boolean

domains could be used.
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ϕ := ` ` ∈ literal(L)
uϕ⇔ ` ∈ I

Leaf
ϕ := ϕ1op ϕ2

uϕ⇔(uϕ1 op uϕ2) ∈ I
Internal

Figure 6.4: Rules used to convert a formula ϕ ∈ L into a set of integrity constraints I. op
represents any binary connective in L, and literal(L) is the set of atomic formulas and their
negations.

On line 2 of Algorithm 16, an element of P is created in which uϕ is assigned the value 1,

which asserts that ϕ is true. Algorithm 16 is parameterized by the value of k (where k ≥ 0). Let

γI((P,A)) denote γ((P,A))∩JIK. The call to k-assume on line 3 returns (P̃ , Ã), which is a semantic

reduction of (P,A) with respect to I; that is, γI((P̃ , Ã)) = γI((P,A)) and (P̃ , Ã) v (P,A). In

general, the greater the value of k, the more precise is the result computed by Algorithm 16. The

next theorem establishes that Algorithm 16 computes an over-approximation of Assume[ϕ](A).

Theorem 6.4. For all ϕ ∈ L, A ∈ A, if Ã = As̃sume[ϕ](A), then γ(Ã) ⊇ JϕK ∩ γ(A), and Ã v A.

Proof. Line 1 calls the function integrity, which convertsϕ into integrity constraints I by assigning

a fresh Boolean variable to each subformula of ϕ, using the rules described in Figure 6.4. uϕ is

assigned to formula ϕ. We use U to denote the set of fresh variables created when converting ϕ

to I, and we use V to denote the vocabulary of the abstract domain A.

Thus, after line 1 we have that

JϕK = (JIK ∩ JuϕK) ↓V , (6.1)

where ′′M ↓ V ′′ denotes the operation of discarding all constants, functions, and relations of

a model M that are not in the vocabulary V . On line 2 of Algorithm 16, an element P of the

Cartesian domain P is created in which uϕ is assigned the value 1. Thus, we have that

JuϕK = γ((P,>)) (6.2)
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Using Equations (6.1) and (6.2), we obtain

JϕK = (JIK ∩ γ((P,>A))) ↓V (6.3)

JϕK ∩ γ(A) = (JIK ∩ γ((P,>A))) ↓V ∩ γ(A) (6.4)

JϕK ∩ γ(A) = (JIK ∩ γ((P,>A))) ↓V ∩ γ((>P , A)) ↓V (6.5)

JϕK ∩ γ(A) = (JIK ∩ γ((P,>A)) ∩ γ((>P , A))) ↓V (6.6)

JϕK ∩ γ(A) = (JIK ∩ γ((P,A))) ↓V (6.7)

After line 3, we have that

(P̃ , Ã) = k-assume[I]((P,A)) (6.8)

Using Theorem 6.5 on Equation (6.8), we have that

γI((P̃ , Ã)) = γI((P,A)) (6.9)

(P̃ , Ã) v (P,A) (6.10)

Using Equation (6.10), we immediately have

Ã v A (6.11)

Using Equation (6.9), we have that

γ((P̃ , Ã)) ∩ JIK = γ((P,A)) ∩ JIK

(γ((P̃ , Ã)) ∩ JIK) ↓V = (γ((P,A)) ∩ JIK) ↓V

Using Equation (6.7), we have that

(γ((P̃ , Ã)) ∩ JIK) ↓V = JϕK ∩ γ(A)

γ((P̃ , Ã)) ↓V ⊇ JϕK ∩ γ(A)

γ(Ã) ⊇ JϕK ∩ γ(A)

Algorithm 18 presents the algorithm to compute k-assume, for k ≥ 1. Given the integrity

constraints I , and the current abstract value (P,A), k-assume[I]((P,A)) returns an abstract value

that is a semantic reduction of (P,A) with respect to I. The crux of the computation is the

inner loop body, lines 4–10, which implements an analog of the Dilemma Rule from Stålmarck’s

method (Sheeran and Stålmarck, 2000).
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The steps of the Dilemma Rule are shown schematically in Figure 6.3(b). At line 3 of Al-

gorithm 18, a Boolean variable u whose value is unknown is chosen. B = >P [u 7→ 0] and its

complementB = >P [u 7→ 1] are used to split the current abstract value (P0, A0) into two abstract

values (P1, A1) = (P,A) u (B,>) and (P2, A2) = (P,A) u (B,>), as shown in lines 6 and 7.

The calls to (k–1)-assume at lines 8 and 9 compute semantic reductions of (P1, A1) and (P2, A2)

with respect to I, which creates (P ′1, A′1) and (P ′2, A′2), respectively. Finally, at line 10 (P ′1, A′1)

and (P ′2, A′2) are merged by performing a join. (The result is labeled (P3, A3) in Figure 6.3(b).)

The steps of the Dilemma Rule (Figure 6.3(b)) are repeated until a fixpoint is reached, or some

resource bound is exceeded. The next theorem establishes that k-assume[I]((P,A)) computes a

semantic reduction of (P,A) with respect to I.

Theorem 6.5. For all P ∈ P and A ∈ A, if (P ′, A′) = k-assume[I]((P,A)), then γI((P ′, A′)) =

γI((P,A)) and (P ′, A′) v (P,A).

Proof. We prove this via induction on k. Theorem 6.6 proves the base case when k = 0.

To prove the inductive case, assume that Algorithm 18 is sound for k − 1, i.e., for all P ∈ P

and A ∈ A, if (P ′, A′) = (k-1)-assume[I]((P,A)), then

γI((P ′, A′)) = γI((P,A)) and (P ′, A′) v (P,A) (6.12)

Let (P 0, A0) be the value of (P,A) passed as input to Algorithm 18, and (P i, Ai) be the value

of (P,A) computed at the end of the ith iteration of the loop body consisting of lines 4–10 (that is,

the value computed at line 10).

We show via induction that, for each i, γI((P i, Ai)) = γI((P 0, A0)) and (P i, Ai) v (P 0, A0).

We first prove the base case for i = 1; that is, γI((P 1, A1)) = γI((P 0, A0)) and (P 1, A1) v

(P 0, A0).

At line 3 of Algorithm 18, a variable u ∈ U is chosen such that P 0(u) = ∗. After line 5,

B = >P [u 7→ 0] and B = >P [u 7→ 1], and, thus, we have that

γ((B,>)) ∪ γ((B,>) = γ((>,>)) (6.13)

B and B are used to split the current abstract value (P 0, A0) into two abstract values.
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After line 6 of 18, we have that (P1, A1) = (P 0, A0) u (B,>), which implies

γ((P1, A1)) ⊇ γ((P 0, A0)) ∩ γ((B,>)) (6.14)

Similarly, after line 7 of Algorithm 18, we have that

γ((P2, A2)) ⊇ γ((P 0, A0)) ∩ γ((B,>)) (6.15)

From Equations (6.14) and (6.15), we have that

γ((P1, A1)) ∪ γ((P2, A2)) ⊇ (γ((P 0, A0)) ∩ γ((B,>))) ∪ (γ((P 0, A0)) ∩ γ((B,>)))

⊇ γ((P 0, A0)) ∩ (γ((B,>)) ∪ γ((B,>))

⊇ γ((P 0, A0)) ∩ γ((>,>)) (using Equation (6.13) )

⊇ γ((P 0, A0))

Thus, we obtain

γI((P1, A1)) ∪ γI((P2, A2)) ⊇ γI((P 0, A0)) (6.16)

After lines 6 and 7 of Algorithm 18 we also have that

(P1, A1) v (P 0, A0) (6.17)

(P2, A2) v (P 0, A0) (6.18)

After line 8 of Algorithm 18, we have that

(P ′1, A′1) = (k–1)-assume[I]((P1, A1)) (6.19)

By using the induction hypothesis (Equation (6.12)) in Equation (6.19), we obtain

(P ′1, A′1) v (P1, A1) (6.20)

Using Equations (6.17) and (6.20), we obtain

(P ′1, A′1) v (P 0, A0) (6.21)

Similarly, after line 9 of Algorithm 18, we obtain

(P ′2, A′2) v (P 0, A0) (6.22)

Using Equations (6.21) and (6.22), we obtain

(P ′1, A′1) t (P ′2, A′2) v (P 0, A0) (6.23)

Using Equation (6.23), we have that

γ((P ′1, A′1) t (P ′2, A′2)) ⊆ γ((P 0, A0))

γ((P ′1, A′1) t (P ′2, A′2)) ∩ JIK ⊆ γ((P 0, A0)) ∩ JIK
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This gives us

γI((P ′1, A′1) t (P ′2, A′2)) ⊆ γI((P 0, A0)) (6.24)

After line 10 of Algorithm 18, we have that (P 1, A1) = (P ′1, A′1)t (P ′2, A′2). Using Equation (6.23),

we obtain

(P 1, A1) v (P 0, A0) (6.25)

Using Equation (6.24), we obtain

γI(P 1, A1) ⊆ γI((P 0, A0)) (6.26)

Furthermore, by the induction hypothesis (Equation (6.12)), after lines 8 and 9 of Algorithm 18,

we also have

γI((P ′1, A′1)) = γI((P1, A1)) (6.27)

γI((P ′2, A′2)) = γI((P2, A2)) (6.28)

After line 10 of Algorithm 18, we have that

γI((P 1, A1)) = γI((P ′1, A′1) t (P ′2, A′2))

γI((P 1, A1)) ⊇ γI((P ′1, A′1)) ∪ γI((P ′2, A′2))

Using Equations (6.27) and (6.28), we have that

γI((P 1, A1)) ⊇ γI((P1, A1)) ∪ γI((P2, A2))

Using Equation (6.16), we obtain

γI((P 1, A1)) ⊇ γI((P 0, A0)) (6.29)

Using Equations (6.26) and (6.29), we have that

γI((P 1, A1)) = γI((P 0, A0)) (6.30)

Thus, using Equations (6.25) and (6.30) we have proved the base case with i = 1. An almost

identical proof can be used to prove the inductive case for the induction on i. Thus, for each i,

γI((P i, Ai)) = γI((P 0, A0)) and (P i, Ai) v (P 0, A0).

Because the value returned by Algorithm 18 is the final value computed at line 10, we have

proven the inductive case for the induction on k. Thus, by induction, we have shown that for

all P ∈ P and A ∈ A, if (P ′, A′) = k-assume[I]((P,A)), then γI((P ′, A′)) = γI((P,A)) and

(P ′, A′) v (P,A).
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J = (u1⇔(u2 ∨ u3)) ∈ I P (u1) = 0
(P u >[u2 7→ 0, u3 7→ 0], A)

Or1
J = (u1⇔(u2 ∧ u3)) ∈ I P (u1) = 1

(P u >[u2 7→ 1, u3 7→ 1], A)
And1

Figure 6.5: Boolean rules used by Algorithm 17 in the call InternalRule(J, (P,A)).

J = (u⇔ l) ∈ I P (u) = 1
(P,A u µα̃A(l))

PtoA-1
J = (u⇔ l) ∈ I P (u) = 0

(P,A u µα̃A(¬l))
PtoA-0

J = (u⇔ `) ∈ I A u µα̃A(l) = ⊥A
(P u >[u 7→ 0], A)

AtoP-0

Figure 6.6: Rules used by Algorithm 17 in the call LeafRule(J, (P,A)).

Algorithm 17 describes the algorithm to compute 0-assume: given the integrity constraints

I, and an abstract value (P,A), 0-assume[I]((P,A)) returns an abstract value (P ′, A′) that is a

semantic reduction of (P,A) with respect to I. It is in this algorithm that information is passed

between the component abstract values P ∈ P and A ∈ A via propagation rules, like the ones

shown in Figures 6.5 and 6.6. In lines 4–7 of Algorithm 17, these rules are applied by using a

single integrity constraint in I and the current abstract value (P,A).

Given J ∈ I and (P,A), the net effect of applying any of the propagation rules is to compute

a semantic reduction of (P,A) with respect to J ∈ I . The propagation rules used in Algorithm 17

can be classified into two categories:

1. Rules that apply on line 7 when J is of the form p⇔(q op r), shown in Figure 6.5. Such an

integrity constraint is generated from each internal subformula of formula ϕ. These rules

compute a non-trivial semantic reduction of P with respect to J by only using information

from P . For instance, rule And1 says that if J is of the form p⇔(q ∧ r), and p is 1 in P ,

then we can infer that both q and r must be 1. Thus, P u >[q 7→ 1, r 7→ 1] is a semantic

reduction of P with respect to J . (See Example 6.2, step 1.)

2. Rules that apply on line 5 when J is of the form u⇔ `, shown in Figure 6.6. Such an
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integrity constraint is generated from each leaf of the original formula ϕ. This category of

rules can be further subdivided into

a) Rules that propagate information from abstract value P to abstract value A; viz.,

rules PtoA-0 and PtoA-1. For instance, rule PtoA-1 states that given J = u⇔ l,

and P (u) = 1, then A u µα̃(l) is a semantic reduction of A with respect to J . (See

Example 6.2, steps 2 and 3.)

b) Rule AtoP-0, which propagates information from abstract value A to abstract value P .

Rule AtoP-0 states that if J = (u⇔ `) and A u µα̃(l) = ⊥A, then we can infer that u is

false. Thus, the value of P u >[u 7→ 0] is a semantic reduction of P with respect to J .

(See Example 6.2, step 4.)

Algorithm 17 repeatedly applies the propagation rules until a fixpoint is reached, or some

resource bound is reached. The next theorem establishes that 0-assume computes a semantic

reduction of (P,A) with respect to I.

Theorem 6.6. For all P ∈ P, A ∈ A, if (P ′, A′) = 0-assume[I]((P,A)), then γI((P ′, A′)) =

γI((P,A)) and (P ′, A′) v (P,A).

Proof. Let (P 0, A0) be the value of (P,A) passed as input to Algorithm 17, and (P i, Ai) be the

value of (P,A) computed at the end of the ith iteration of the loop body consisting of lines 4–7

(that is, the value computed at line 5 or line 7).

We show via induction that, for each i, γI((P i, Ai)) = γI((P 0, A0)) and (P i, Ai) v (P 0, A0).

We first prove the base case for i = 1; that is, γI((P 1, A1)) = γI((P 0, A0)), and (P 1, A1) v

(P 0, A0). After line 3 of Algorithm 17, we have that

J ∈ I (6.31)

From Equation (6.31), we have that

JJK ⊇ JIK (6.32)

It is easy to show that, given J ∈ I and (P 0, A0), the net effect of applying any of the

propagation rules in Figures 6.5 and 6.6 is to compute a semantic reduction of (P 0, A0) with
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respect to J ∈ I. Thus, after the ith iteration of the loop body, we have that

γ((P 1, A1)) ∩ JJK = γ((P 0, A0)) ∩ JJK (6.33)

(P 1, A1) v (P 0, A0) (6.34)

Using Equation (6.33),

(γ((P 1, A1)) ∩ JJK) ∩ JIK = (γ((P 0, A0)) ∩ JJK) ∩ JIK (6.35)

Using Equations (6.32) and (6.35),

γ((P 1, A1)) ∩ JIK = γ((P 0, A0)) ∩ JIK (6.36)

This gives us

γI((P 1, A1)) = γI((P 0, A0)) (6.37)

Thus, Equations (6.34) and (6.37) prove the base case of the induction for i = 1. An almost

identical proof can be used to prove the inductive case for the induction on i. Thus, for each i,

γI((P i, Ai)) = γI((P 0, A0)) and (P i, Ai) v (P 0, A0).

Because the value returned by Algorithm 17 is the final value of (P,A) computed at line 5

or line 7, we have shown that for all P ∈ P, A ∈ A, if (P ′, A′) = 0-assume[I]((P,A)), then

γI((P ′, A′)) = γI((P,A)) and (P ′, A′) v (P,A).

6.3 Instantiations

In this section, we describe instantiations of our framework for two logical-language/abstract-

domain pairs: (QFBV, E2w ) and (LRA, Polyhedra). For each instantiation, we describe the µα̃

operation. We say that an As̃sume algorithm is complete for a logic L and abstract domain A if it

is guaranteed to compute the best value Âssume[ϕ](A) for ϕ ∈ L and A ∈ A. We give conditions

under which the two instantiations are complete.

6.3.1 Bitvector Affine-Equalities Domain (QFBV, E2w)

Given a literal l ∈ QFBV, we compute µα̃E2w (l) by invoking α̃lE2w
(l). That is, we harness α̃lE2w

in

service of As̃sumeE2w , but only for µα̃E2w , which means that α̃lE2w
is only applied to literals.
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Algorithm 16 is not complete for (QFBV,E2w ). Let x be a bitvector of width 2, and let ϕ =

(x 6= 0∧ x 6= 1∧ x 6= 2). Thus, Âssume[ϕ](>E22 ) = {x− 3 = 0}. The E22 domain is not expressive

enough to represent disequalities. For instance, µα̃(x 6= 0) equals >E22 . Because Algorithm 16

considers only a single integrity constraint at a time, we obtain As̃sume[ϕ](>E22 ) = µα̃(x 6=

0) u µα̃(x 6= 1) u µα̃(x 6= 2) = >E22 .

The current approach can be made complete for (QFBV, E2w ) by making 0-assume consider

multiple integrity constraints during propagation (in the limit, having to call µα̃(ϕ)). For the

affine subset of QFBV, an alternative approach would be to perform a 2w-way split on the E2w

value each time a disequality is encountered, where w is the bit-width—in effect, rewriting x 6= 0

to (x = 1 ∨ x = 2 ∨ x = 3) in the example above. Furthermore, if there is a µAs̃sume operation,

then the second approach can be extended to handle all of QFBV: µAs̃sume[`](A) would be used

to take the current E2w abstract value A and a literal `, and return an over-approximation of

As̃sume[`](A). All these approaches would be prohibitively expensive. Our current approach,

though theoretically not complete, works very well in practice (see Section 6.4).

6.3.2 Polyhedral Domain (LRA, Polyhedra)

The second instantiation that we implemented is for the logic LRA and the polyhedral domain

(Cousot and Halbwachs, 1978). Because an LRA disequality t 6= 0 can be normalized to (t <

0 ∨ t > 0), every literal l in a normalized LRA formula is merely a half-space in the polyhedral

domain. Consequently, µα̃Polyhedra(l) is exact, and easy to compute. Furthermore, because of this

precision, the As̃sume algorithm is complete for (LRA, Polyhedra). In particular, if k = |ϕ|, then

k-assume is sufficient to guarantee that As̃sume[ϕ](A) returns Âssume[ϕ](A). For polyhedra, our

implementation uses PPL (Bagnara et al., 2008).

The observation in the last paragraph applies in general: if µα̃A(l) is exact for all literals

l ∈ L, then Algorithm 16 is complete for logic L and abstract domain A.
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name instrs procs BBs brs

write 232 10 134 26
finger 532 18 298 48
subst 1093 16 609 74
label 1167 16 573 103
chkdsk 1468 18 787 119
convert 1927 38 1013 161
route 1982 40 931 243
comp 2377 35 1261 224
logoff 2470 46 1145 306
setup 4751 67 1862 589

Table 6.1: The characteristics of the x86 binaries of Windows utilities used in the experiments.
The columns show the number of instructions (instrs); the number of procedures (procs); the
number of basic blocks (BBs); the number of branch instructions (brs).

6.4 Experimental Evaluation

6.4.1 Computing Representations of Abstract Transformers

In this section, I compare two methods for computing abstract transformers for the affine-equality

domain E232 :

• the α̃l-based framework (Chapter 5), instantiated for E232 , and

• the α̃↓-based framework described in this chapter, instantiated for E232 .

The experiments were designed to answer the following questions:

1. How does the speed of α̃↓ compare with that of α̃l, especially when each call to α̂ is given

a fixed time limit?

2. How does the precision of α̃↓ compare with that of α̃l, especially when each call to α̂ is

given a fixed time limit?

To address these questions, we performed affine-relation analysis (ARA) on x86 machine

code, computing affine-equality relations over the x86 registers.
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α̃
l
t=∞ α̃

l
t=1 α̃↓t=∞ α̃↓t=1

write 52.10 19.33 10.01 6.536
finger 99.42 31.51 29.03 12.35
subst 118.1 51.62 27.45 17.03
label 89.84 57.13 28.00 18.72
chkdsk 249.3 88.56 106.0 33.96
route 438.7 124.1 95.56 43.89
convert 212.4 98.02 83.56 34.82
comp 588.6 149.3 105.9 46.78
logoff 481.4 176.8 168.9 75.11
setup 1318 358.7 476.5 177.7

Table 6.2: Time taken, in seconds, by the α̃l and α̃↓ algorithms for WPDS construction. The
subscript is used to denote the time limit used for a single invocation of a call to α̃: t =∞ denotes
that no time limit was given, and t = 1 denotes that a time limit of 1 second was given. For each
benchmark, the algorithm that takes the least time is highlighted in bold.

The experimental setup in this section differs slightly from that used in Sections 4.3 and 5.5

in the following two ways:

• The α̃l and α̃↓ algorithms are passed an over-approximation of the answer computed using

operator-by-operator reinterpretation.2 This scenario better reflects how α̃ frameworks are

likely to be used in practice, and also highlights the fact that these two frameworks can

make use of an initial over-approximation. A (non-trivial) initial over-approximation aids

the Bilateral algorithm (α̃l) by guiding the set of abstract consequences it chooses.

• The set of benchmarks used in this experiment (Table 6.1) is a strict superset of the bench-

marks used in Sections 4.3 and 5.5.

Apart from the above two items, the rest of the experimental setup is the same as that used in

Sections 4.3 and 5.5.

Table 6.2 shows the time taken, in seconds, by the α̃l and α̃↓ algorithms for WPDS construction.

I also ran each of the algorithms with and without a total time limit on a single invocation of a

call to α̃. The subscript is used to denote the time limit used for a single invocation of a call to α̃:
2Section 3.1.2 briefly describes the TSL system used for computing transformers via reinterpretation.
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α̃
l
t=∞ better α̃↓t=1 better

than α̃↓t=1 than α̃lt=∞
write 0% 11.54%
finger 0% 12.50%
subst 0% 12.16%
label 0% 4.85%
chkdsk 9.24% 0%
route 6.17% 4.53%
convert 0% 0%
comp 0% 1.34%
logoff 11.76% 10.78%
setup 0% 4.70%

Table 6.3: Comparison of the degree of improvement gained by using α̃lt=∞ and α̃↓t=1 (measured
as the percentage of control points for which the inferred one-vocabulary affine relation inferred
by one analysis was strictly more precise than that inferred by the other analysis).

t =∞ denotes that no time limit was given, and t = 1 denotes that a time limit of 1 second was

given. From Table 6.2, we see that α̃↓t = 1 is 7.5 times faster than α̃lt=∞, and 2.7 times faster than

α̃
l
t=1 (computed as the geometric mean). This table answers question 1 stated above.

To answer question 2, we compare the precision of the WPDS analysis when using α̃l with the

precision obtained using α̃↓. In particular, we compare the affine-relation invariants computed

by the α̃↓-based and α̃l-based analyses for each control point. Table 6.3 compares the precision

of α̃lt=∞ and α̃↓t=1. We see that α̃↓ computes precise invariants even when given a much smaller

time limit of 1 second. Though not shown in Table 6.3, the precision of α̃lt=1 was slightly worse

than α̃lt=∞, while the precision of α̃↓t=∞ was the same as that of α̃↓t=1. Increasing the depth of the

Dilemma Rule from k = 1 to k = 2 did not improve precision of α̃↓.

6.4.2 Checking Unsatisfiability of LRA formulas

The formula used in Example 6.3 is just one instance of a family of unsatisfiable LRA formu-

las (McMillan et al., 2009). Let χd = (ad < a0) ∧
∧d−1
i=0 ((ai < bi) ∧ (ai < ci) ∧ ((bi < ai+1) ∨ (ci <

ai+1))). The formula ψ in Example 6.3 is χ2; that is, the number of “diamonds” is 2 (see Fig-

ure 6.3(a)). These “diamond formulas” appear in the naive encoding of sequences of if-then-elses



112

Figure 6.7: Semilog plot of Z3 vs. α̃↓ on χd formulas.

in programs, for instance, when trying to compute the worst-case execution time (Henry et al.,

2014). We used the (LRA, Polyhedra) instantiation of our framework to check whether α̃(χd) = ⊥

for d = 1 . . . 25 using 1-assume. We ran this experiment on a single processor of a 16-core 2.4

GHz Intel Zeon computer running 64-bit RHEL Server release 5.7. The semilog plot in Figure 6.7

compares the running time of α̃↓ with that of Z3, version 3.2 (de Moura and Bjørner, 2008). The

time taken by Z3 increases exponentially with d, exceeding the timeout threshold of 1000 seconds

for d = 23. These measurements corroborate the results of a similar experiment conducted by

McMillan et al. (2009), where the reader can also find an in-depth explanation of Z3’s behavior

on this family of formulas.

On the other hand, the running time of α̃↓ increases linearly with d taking 0.78 seconds for

d = 25. The cross-over point is d = 12. In Example 6.3, we saw how two successive applications

of the Dilemma Rule suffice to prove that ψ is unsatisfiable. That explanation generalizes to χd:

d applications of the Dilemma Rule are sufficient to prove unsatisfiability of χd. The order in

which Boolean variables with unknown truth values are selected for use in the Dilemma Rule

has no bearing on this linear behavior, as long as no variable is starved from being chosen (i.e., a

fair-choice schedule is used). Each application of the Dilemma Rule is able to infer that ai < ai+1

for some i.

We do not claim that α̃↓ is always better than mature SMT solvers such as Z3. We do believe

that it represents another interesting point in the design space of SMT solvers, similar in nature
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to the GDPLL algorithm (McMillan et al., 2009) and the k-lookahead technique used in the

DPLL(t) algorithm (Bjørner and de Moura, 2008).

6.5 Related Work

In the context of checking functional equivalence of sequential circuits, van Eijk (1998) and Bjesse

and Claessen (2000) present symbolic-abstraction algorithms for the abstract domain of Boolean

equalities. Van Eijk performs symbolic abstraction using BDDs. Bjesse and Claessen convert

van Eijk’s algorithm to use Stålmarck’s method (Sheeran and Stålmarck, 2000) instead of BDDs.

Furthermore, Bjesse and Claessen (2000) extend Stålmarck’s method from using equivalences

between variables to implications between variables.

Recent work has also explored connections between abstract interpretation and decision

procedures (D’Silva et al., 2012, 2013; Haller, 2013; D’Silva et al., 2014). In particular, D’Silva et al.

(2013) generalize the algorithm for Conflict Driven Clause Learning used in SAT solvers to solve

the lattice-theoretic problem of determining if an additive transformer on a Boolean lattice is

always bottom. In contrast, our algorithms address a broader class of problems. Our algorithms

apply to non-Boolean lattices. Moreover, provided there are no timeouts, our algorithms are

capable of discovering if the most-precise answer is ⊥. However, they are also useful when

the most-precise answer is not ⊥; in particular, our algorithms can be used to compute best

transformers. Furthermore, as described in Chapter 7, our algorithms can be used to solve the

BII problem (assuming no timeouts), and even when there are timeouts, they generate inductive

program invariants. Our work and that of D’Silva et al. were performed independently and

contemporaneously.

6.6 Chapter Notes

I first came across Stålmarck’s method in Harrison (2009). The fact that there was a merge of

proof branches involved was what stuck with me. Plenty of thinking and discussions with Tom
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resulted in the simple insight that the intersection of constraints at the merge of the Dilemma

Rule corresponds to the join of abstract values.

I spent a considerable amount of time trying to engineer a pure Stålmarck-based SAT/SMT

solver that would be competitive with state-of-the-art solvers. Alas the tremendous progress in

SAT solvers, such as variable-selection heuristics, and conflict-driven clause learning (CDCL),

and my inadequate engineering skills forced me to abandon this approach; see Thakur and Reps

(2012) for some preliminary experiments using my earlier prototype, and Chapter 10 for a more

practical design that incorporates the best of the Stålmarck-style approach and the DPLL/CDCL

approach.

One takeaway from my earlier prototype was the need for implementations of abstract do-

mains that scaled as the number of variables increased; in my experience, the abstract operations

of join and meet became prohibitively expensive when the number of variables was greater than

50.
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Chapter 7

Computing Best Inductive Invariants

In Chapters 4, 5, and 6, symbolic abstraction was used to compute best abstract transformers

for a sequence of statements. In this chapter, I show how symbolic abstraction can be used to

compute best inductive invariants for an entire program.

Let C be the concrete domain that describes the collecting semantics of the program. For

a concrete transformer τ , let Post[τ ] : C → C denote the operator that applies the concrete

transformer. A set of invariants {Ik} are said be inductive with respect to a set of transformers

{τij} if, for all i and j, Post[τij ](JIiK) ⊆ JIjK, where JIkK ∈ C denotes the meaning of Ik.

The choice of a particular abstract domain A fixes a limit on the precision of the invariants

identified by an analysis. If {Ik} is a set of inductive invariants, and Ij ∈ A for each single

member Ij of {Ik}, then the set of invariants {Ik} are said to be inductive A-invariants. (For

brevity, I also refer to a single member Ij of {Ik} as an inductive A-invariant.) Furthermore,

a most-precise inductive A-invariant exists: Post[τ ] is monotonic in C; given two A-invariants,

we can take their meet; thus, provided A is a meet semi-lattice, the most-precise inductive

A-invariant exists. (On the other hand, computing the most preciseA-invariant at a program point,

defined as the abstraction of the collecting semantics at that point, is generally infeasible.)
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In summary, the best inductive invariant (BII) problem can be stated as follows:

Given program P , and an abstract domain A, find the most-precise inductive A-

invariant for P .

BII is clearly an important problem because it represents the limit of obtainable precision for

a given abstract domain. The key insights behind our approach are:

• The BII problem reduces to the problem of applying P̂ost.

• The problem of applying P̂ost reduces to the problem of symbolic abstraction.

Because the symbolic-abstraction approach solves the BII problem (in the absence of timeouts), it

can obtain more precise results than more conventional approaches to implementing abstract in-

terpreters. In particular, the symbolic-abstraction approach can identify invariants and procedure

summaries that are more precise than the ones obtained by more conventional approaches.

Not only does the work provide insight on fundamental limits in abstract interpretation,

the algorithms that I present are also practical. Santini is an invariant-generation tool based on

the principles of symbolic abstraction. Santini uses the predicate-abstraction domain that can

infer arbitrary Boolean combinations of a given set of predicates. The implementation of the

abstract domain was simple: just 1200 lines of C# code. We then compared the performance of

Santini with Houdini (Flanagan and Leino, 2001), which is a well-established tool that infers

only conjunctive invariants from a given set of predicates. We ran the Corral model checker (Lal

et al., 2012) using invariants supplied by Houdini and Santini. For 19 examples for which Corral

gave an indefinite result using Houdini-supplied invariants, invariants discovered using Santini

allowed Corral to give a definite result in 9 cases (47%); see (Thakur et al., 2013, Section 5).

This experiment shows that symbolic abstraction provides a powerful tool that can be used

to implement automatically a correct and precise invariant generator that uses an expressive

abstract domain. The other instantiation of our BII framework is based on WALi (Kidd et al.,

2007), a tool for solving program-analysis problems using an abstract domain, which we have

used to perform machine-code analysis (Thakur et al., 2013, Section 5).
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7.1 Basic Insights

The following observation states how the most-precise inductive A-invariant can be computed:

Observation 7.1. Let program P consist of (i) nodes N = {ni} with enter node n1, (ii) edges

EP = {ni → nj}, and (iii) a concrete-state transformer τi,j associated with each edge ni → nj .

Let A be an abstract domain. The best inductive invariant (BII) for P that is expressible in A is

the least fixed-point of the equation system

V1 = a1 Vj =
⊔
ni→nj∈EP

P̂ost[τi,j ](Vi), (7.1)

where a1 is the best value in A that over-approximates the set of allowed input states at the enter

node n1. (“Best” means best with respect to A.)

As a corollary of Observation 7.1, we have

Observation 7.2. When the least solution to Equation (7.1) can be obtained algorithmically, e.g.,

by Kleene iteration in an abstract domain with no infinite ascending chains, the BII problem

reduces to the problem of applying P̂ost.

The precision obtained from a solution to BII depends on the set of “observation points” (or,

equivalently the equation system being solved). For instance, in Example 3.6, the strawman

solution does compute the best inductive A-invariant if the intermediate point between τ1 and τ2

is observable. Example 3.6 shows that, from the standpoint of precision, the fewer observation

points, the better. As with many methods in automatic program analysis and verification, our

method normally requires that each loop be cut by at least one observation point. Thus, the set

of loop headers would be a natural choice for the set of observation points. The take-away from

this discussion is that it can be desirable to have a procedure that is capable of applying P̂ost for

an arbitrary loop-free sequence of instructions.

Equation (7.1) has a conventional form, but is non-standard because it uses the application of

the most-precise abstract transformer P̂ost[τi,j ], whereas most work on abstract interpretation
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uses less-precise abstract transformers. For instance, some systems only support the state trans-

formations of a restricted modeling language—e.g., affine programs (Cousot and Halbwachs,

1978; Müller-Olm and Seidl, 2004) or Boolean programs (Ball and Rajamani, 2000). Transfor-

mations outside the modeling language are over-approximated very coarsely. For example,

for an assignment statement “x := e” in the original program, if e is an expression that uses

any non-modeled operator, the statement is modeled as “x := ?” or, equivalently, “havoc(x)”.

(That is, after “x := e” executes, x can hold any value.) This translation from a program to the

program-modeling language already involves some loss of precision.

In contrast, the application of P̂ost[τi,j ] in Equation (7.1) always incorporates the full concrete

semantics of τi,j (i.e., without an a priori abstraction step).

7.2 Best Inductive Invariants and Intraprocedural Anaysis

Figure 7.1(a) shows an example program that illustrates finding the best inductive invariant when

the abstract domain is the affine-equalities domain E232 . We concentrate on lines 1, 6, and 12.

Figure 7.1(b) depicts the dependences in the equation system over node-variables {V1, V6, V12}.

Figure 7.1(c) gives formulas for the transition relations among {V1, V6, V12}. The remainder of

this section illustrates how to solve the BII problem for the following equation system, which

corresponds to Figures 7.1(b) and 7.1(c):

V1 = >

V6 = P̂ost[τ1,6](V1) t P̂ost[τ6,6](V6)

V12 = P̂ost[τ6,12](V6)
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(a)

(1) // Initialize
(2) a = read_input();
(3) b = a;
(4) x = 0;
(5) y = 0;
(6) while (*) { // Loop invariant: a==b && x==y
(7) a = a+2;
(8) b = (x==y) ? b+2 : read_input();
(9) x = x+1;
(10) y = (a==b) ? y+1 : read_input();
(11) }
(12) . . . // Exit invariant: a==b && x==y

(b)

V1

V12

V6

τ1,6

τ6,6
τ6,12

τ1,6
def= b′ = a′ ∧ x′ = 0 ∧ y′ = 0

(c) τ6,6
def=

 a′ = a+ 2
∧ (x = y)⇒(b′ = b+ 2)
∧ x′ = x+ 1
∧ (a′ = b′)⇒(y′ = y + 1)


τ6,12

def= a′ = a ∧ b′ = b ∧ x′ = x ∧ y′ = y

Figure 7.1: (a) Example program. (b) Dependences among node-variables in the program’s equa-
tion system (over node-variables {V1, V6, V12}). (c) The transition relations among {V1, V6, V12}
(expressed as formulas).

It is convenient to rewrite these equations as

V1 = >

V6 = V6 t P̂ost[τ1,6](V1) t P̂ost[τ6,6](V6) (7.2)

V12 = V12 t P̂ost[τ6,12](V6)

Solving the BII Problem from Below. In the most basic approach to solving the BII problem,

we assume that we have an essentially standard fixed-point solver that performs chaotic iteration.

The method will create successively better under-approximations to the solution, until it finds

a fixed point, which will also be the best inductive invariant. We illustrate the algorithm on

Equation (7.2).1

1 We write abstract values in Courier typeface (e.g., [a = b, x = 0, y = 0] or [a′ = b′, x′ = 0, y′ = 0]
are pre-state and post-state abstract values, respectively); concrete state-pairs in Ro-
man typeface (e.g.,

[
a 7→ 42, b 7→ 27, x 7→ 5, y 7→ 19, a′ 7→ 17, b′ 7→ 17, x′ 7→ 0, y′ 7→ 0

]
); and ap-

proximations to BII solutions as mappings from node-variables to abstract values (e.g.,
〈V1 7→ >,V6 7→ [a = b, x = 0, y = 0],V12 7→ [a = 28,b = 28, x = 35, y = 35]〉).
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What is special, compared to standard equation solvers, is that each application of the

right-hand side of an equation in Equation (7.2)—defined by the corresponding formula in

Figure 7.1(c)—is given the best-transformer interpretation by means of a function P̂ost for applying

the best abstract transformer. That is, P̂ost satisfies P̂ost[τ ](a) = (α ◦ Post[τ ] ◦ γ)(a). A specific

instance of P̂ost is the function P̂ost
↑
, given as Algorithm 8.

Figure 7.2 shows a possible chaotic-iteration sequence when a BII solver is invoked to find

the best inductive affine-equality invariant for Equation (7.2), namely,

〈V1 7→ >,V6 7→ [a = b, x = y],V12 7→ [a = b, x = y]〉.

Note that this abstract value corresponds exactly to the loop-invariant and exit-invariant shown

in the comments on lines 6 and 12 of Figure 7.1(a). Moreover, the same abstract value would be

arrived at no matter what sequence of choices is made during chaotic iteration to find the least

fixed-point of Equation (7.2).

One such sequence is depicted in Figure 7.2, where three chaotic-iteration steps are performed

before the least fixed point is found. The three steps propagate information from V1 to V6; from

V6 to V6; and from V6 to V12, respectively. (At this point, to discover that chaotic iteration has

quiesced, the solver would have to do some additional work, which we have not shown because

it does not provide any additional insight on how BII problems are solved.)

The Value of a Bilateral Algorithm. P̂ost
↑

is not resilient to timeouts. A query to the SMT

solver—or the cumulative time for P̂ost
↑
—might take too long, in which case the only answer

that is safe for P̂ost
↑

to return is > (line 5 of Algorithm 8). To remedy this situation, we use a

bilateral algorithm for P̂ost. Algorithm 15 (Chapter 5) shows our bilateral algorithm for P̂ost,

called P̂ost
l
.

Figure 7.3 shows a possible trace of Iteration 2 from Figure 7.2 when the call to P̂ost
↑

(Al-

gorithm 8) is replaced by a call to P̂ost
l

(Algorithm 15). Note how a collection of individual,

non-trivial, upper-bounding constraints are acquired on the second, third, and fifth calls to

AbstractConsequence: [x′ = 1], [y′ = 1], and [a′ = b′], respectively. By these means, upper′works
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Initialization: ans := 〈V1 7→ >,V6 7→ ⊥,V12 7→ ⊥〉
Iteration 1: V6 := V6 t P̂ost

↑
[τ1,6](V1)

= ⊥ t P̂ost
↑
[τ1,6](>)

lower′ := ⊥
〈S, S′〉 := Model(true ∧ τ1,6 ∧ ¬γ̂(⊥))

=
[
a 7→ 42, b 7→ 27, x 7→ 5, y 7→ 99,
a′ 7→ 17, b′ 7→ 17, x′ 7→ 0, y′ 7→ 0

]
// A satisfying concrete
// state-pair

lower′ := ⊥ t [a′ = 17, b′ = 17, x′ = 0, y′ = 0]
〈S, S′〉 := Model(true ∧ τ1,6 ∧ ¬γ̂([a′ = 17,b′ = 17, x′ = 0, y′ = 0]))

=
[
a 7→ 73, b 7→ 2, x 7→ 15, y 7→ 19,
a′ 7→ 28, b′ 7→ 28, x′ 7→ 0, y′ 7→ 0

]
// A satisfying concrete
// state-pair

lower′ := [a′ = 17, b′ = 17, x′ = 0, y′ = 0] t [a′ = 28,b′ = 28, x′ = 0, y′ = 0]
v′ := [a′ = b′, x′ = 0, y′ = 0]
V6 := ⊥ t [a = b, x = 0, y = 0] = [a = b, x = 0, y = 0]
ans := 〈V1 7→ >,V6 7→ [a = b, x = 0, y = 0],V12 7→ ⊥〉

Iteration 2: V6 := V6 t P̂ost
↑
[τ6,6](V6)

= [a = b, x = 0, y = 0] t P̂ost
↑
[τ6,6]([a = b, x = 0, y = 0])

lower′ := ⊥
〈S, S′〉 := Model(γ̂([a = b, x = 0, y = 0]) ∧ τ6,6 ∧ ¬γ̂(⊥))

=
[
a 7→ 56, b 7→ 56, x 7→ 0, y 7→ 0,
a′ 7→ 58, b′ 7→ 58, x′ 7→ 1, y′ 7→ 1

]
// A satisfying concrete
// state-pair

lower′ := ⊥ t [a′ = 58, b′ = 58, x′ = 1, y′ = 1]
〈S, S′〉 := Model(γ̂([a = b, x = 0, y = 0]) ∧ τ6,6 ∧ ¬γ̂([a′ = 58, b′ = 58, x′ = 1, y′ = 1]))

=
[
a 7→ 16, b 7→ 16, x 7→ 0, y 7→ 0,
a′ 7→ 18, b′ 7→ 18, x′ 7→ 1, y′ 7→ 1

]
// A satisfying concrete
// state-pair

lower′ := [a′ = 58, b′ = 58, x′ = 1, y′ = 1] t [a′ = 18,b′ = 18, x′ = 1, y′ = 1]
v′ := [a′ = b′, x′ = 1, y′ = 1]
V6 := [a = b, x = 0, y = 0] t [a = b, x = 1, y = 1] = [a = b, x = y]
ans := 〈V1 7→ >,V6 7→ [a = b, x = y],V12 7→ ⊥〉

Iteration 3: V12 := V12 t P̂ost
↑
[τ6,12](V6)

= ⊥ t P̂ost
↑
[τ6,12]([a = b, x = y])

lower′ := ⊥
〈S, S′〉 := Model(γ̂([a = b, x = y]) ∧ τ6,6 ∧ ¬γ̂(⊥))

=
[
a 7→ 17, b 7→ 17, x 7→ 99, y 7→ 99,
a′ 7→ 17, b′ 7→ 17, x′ 7→ 99, y′ 7→ 99

]
// A satisfying concrete
// state-pair

lower′ := ⊥ t [a′ = 17, b′ = 17, x′ = 99, y′ = 99]
〈S, S′〉 := Model(γ̂([a = b, x = y]) ∧ τ6,6 ∧ ¬γ̂([a′ = 17,b′ = 17, x′ = 99, y′ = 99]))

=
[
a 7→ 28, b 7→ 28, x 7→ 35, y 7→ 35,
a′ 7→ 28, b′ 7→ 28, x′ 7→ 35, y′ 7→ 35

]
// A satisfying concrete
// state-pair

lower′ := [a′ = 17, b′ = 17, x′ = 99, y′ = 99] t [a′ = 28,b′ = 28, x′ = 35, y′ = 35]
v′ := [a′ = b′, x′ = y′]
V12 := ⊥ t [a = b, x = y] = [a = b, x = y]
ans := 〈V1 7→ >,V6 7→ [a = b, x = y],V12 7→ [a = b, x = y]〉

Fixed Point!

Figure 7.2: A possible chaotic-iteration sequence when a BII solver is invoked to find the best
inductive affine-equality invariant for Equation (7.2). The parts of the trace enclosed in boxes
show the actions that take place in calls to Algorithm 8 (P̂ost

↑
). (By convention, primes are

dropped from the abstract value returned from a call on P̂ost
↑
.)
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V6 := V6 t P̂ost
l
[τ6,6](V6)

= [a = b, x = 0, y = 0] t P̂ost
l
[τ6,6]([a = b, x = 0, y = 0])

upper′ := >
lower′ := ⊥

p′ := AbstractConsequence(⊥,>)
= ⊥

〈S, S′〉 := Model(γ̂([a = b, x = 0, y = 0]) ∧ τ6,6 ∧ ¬γ̂(⊥))
=

[
a 7→ 56, b 7→ 56, x 7→ 0, y 7→ 0,
a′ 7→ 58, b′ 7→ 58, x′ 7→ 1, y′ 7→ 1

]
// A satisfying concrete
// state-pair

lower′ := ⊥ t [a′ = 58, b′ = 58, x′ = 1, y′ = 1]
p′ := AbstractConsequence([a′ = 58,b′ = 58, x′ = 1, y′ = 1],>)

= [x′ = 1]
〈S, S′〉 := Model(γ̂([a = b, x = 0, y = 0]) ∧ τ6,6 ∧ ¬γ̂([x′ = 1]))

= None
upper′ := > u [x′ = 1] = [x′ = 1]

p′ := AbstractConsequence([a′ = 58,b′ = 58, x′ = 1, y′ = 1], [x′ = 1])
= [y′ = 1]

〈S, S′〉 := Model(γ̂([a = b, x = 0, y = 0]) ∧ τ6,6 ∧ ¬γ̂([y′ = 1]))
= None

upper′ := [x′ = 1] u [y′ = 1] = [x′ = 1, y′ = 1]
p′ := AbstractConsequence([a′ = 58,b′ = 58, x′ = 1, y′ = 1], [x′ = 1, y′ = 1])

= [a′ = 58]
〈S, S′〉 := Model(γ̂([a = b, x = 0, y = 0]) ∧ τ6,6 ∧ ¬γ̂([a′ = 58]))

=
[
a 7→ 19, b 7→ 19, x 7→ 0, y 7→ 0,
a′ 7→ 21, b′ 7→ 21, x′ 7→ 1, y′ 7→ 1

]
// A satisfying concrete
// state-pair

lower′ := [a′ = 58, b′ = 58, x′ = 1, y′ = 1] t [a′ = 21,b′ = 21, x′ = 1, y′ = 1]
= [a′ = b′, x′ = 1, y′ = 1]

p′ := AbstractConsequence([a′ = b′, x′ = 1, y′ = 1], [x′ = 1, y′ = 1])
= [a′ = b′]

〈S, S′〉 := Model(γ̂([a = b, x = 0, y = 0]) ∧ τ6,6 ∧ ¬γ̂([a′ = b′]))
= None

upper′ := [x′ = 1, y′ = 1] u [a′ = b′]
= [a′ = b′, x′ = 1, y′ = 1]

lower′ 6= upper′ = false
v′ := [a′ = b′, x′ = 1, y′ = 1]
V6 := [a = b, x = 0, y = 0] t [a = b, x = 1, y = 1] = [a = b, x = y]
ans := 〈V1 7→ >,V6 7→ [a = b, x = y],V12 7→ ⊥〉

Figure 7.3: A possible trace of Iteration 2 from Figure 7.2 when the call to P̂ost
↑

(Algorithm 8) is
replaced by a call to P̂ost

l
(Algorithm 15).

its way down the chain> A [x′ = 1] A [x′ = 1, y′ = 1] A [a′ = b′, x′ = 1, y′ = 1]. After each call to

AbstractConsequence, the abstract-consequence constraint is tested to see if it really is an upper

bound on the answer. For instance, the fourth call to AbstractConsequence returns [a′ = 58].
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The assertion that [a′ = 58] is an upper-bounding constraint is refuted by the concrete state-pair

〈S, S′〉 =

 a 7→ 19, b 7→ 19, x 7→ 0, y 7→ 0,

a′ 7→ 21, b′ 7→ 21, x′ 7→ 1, y′ 7→ 1

 ,
which is used to improve the value of lower′.

The important point is that if Iteration 2 is taking too much time, P̂ost
l

can be stopped and

upper′ returned as the answer. In contrast, if P̂ost
↑

is stopped because it is taking too much

time, the only safe answer that can be returned is >. The “can-be-stopped-anytime” property of

P̂ost
l

can make a significant difference in the final answer. For instance, suppose that P̂ost
↑

and

P̂ost
l

both stop early during Iteration 2 (Figures 7.2 and 7.3, respectively), and that P̂ost
l

returns

[x = 1, y = 1], whereas P̂ost
↑

returns >. Assuming no further timeouts take place during the

evaluation of Equation (7.2), the respective final answers would be

P̂ost
↑

: 〈V1 7→ >,V6 7→ >,V12 7→ >〉

P̂ost
l

: 〈V1 7→ >,V6 7→ [x = y],V12 7→ [x = y]〉

Because of the timeout, the answer computed by P̂ost
l

is not the best inductive affine-equality

invariant; however, the answer establishes that the equality constraint [x = y] holds at both lines 6

and 12 of Figure 7.1(a).

Attaining the Best Inductive A-Invariant

Lemma 7.3. The least fixed-point of Equation (7.1) (the best A-transformer equations of a transition

system) is the best inductive invariant expressible in A.

Corollary 7.4. Applying an equation solver to the best A-transformer equations, using either P̂ost
↑

or

P̂ost
l

to evaluate equation right-hand sides, finds the best inductive A-invariant if there are no timeouts

during the evaluation of any right-hand side.
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7.3 Best Inductive Invariants and Interprocedural Analysis

This section presents a method for solving the BII problem for multi-procedure programs. Our

framework is similar to the so-called “functional approach” to interprocedural analysis of Sharir

and Pnueli (1981) (denoted by SP), which works with an abstract domain that abstracts transition

relations. For instance, our approach

• also uses an abstract domain that abstracts transition relations, and

• creates a summary transformer for each reachable procedure P , which over-approximates

the transition relation of P .

However, to make the symbolic-abstraction approach suitable for interprocedural analysis,

the algorithm uses a generalization of P̂ost, called ̂Compose[τ ](a), where τ ∈ L[−→v ;−→v ′] and

a ∈ A[−→v ;−→v ′] both represent transition relations over the program variables −→v . The goal of

̂Compose[τ ](a) is to create an A[−→v ;−→v ′] value that is the best over-approximation of a’s action

followed by τ ’s action. Furthermore, instead of Equation (7.1), the least solution to Equations (7.3)–

(7.7) below is found, where each application of the right-hand side of an equation is given the

best-transformer interpretation—in this case, by means of ̂Compose.

A program is defined by a set of procedures Pi, 0 ≤ i ≤ K, and represented by an interproce-

dural control-flow graph G = (N,F ). G consists of a collection of intraprocedural control-flow

graphs G1, G2, . . . , GK , one of which, G main, represents the program’s main procedure. The

node set Ni of Gi = (Ni, Fi) is partitioned into five disjoint subsets: Ni = Ei ]Xi ] Ci ]Ri ] Li.

Gi contains exactly one enter node (i.e., Ei = {ei}) and exactly one exit node (i.e., Xi = {xi}). A

procedure call in Gi is represented by two nodes, a call node c ∈ Ci and a return-site node r ∈ Ri,

and has two edges: (i) a call-to-enter edge from c to the enter node of the called procedure, and

(ii) an exit-to-return-site edge from the exit node of the called procedure to r. The functions call

and ret record matching call and return-site nodes: call(r) = c and ret(c) = r. It is assumed that

an enter node has no incoming edges except call-to-enter edges.
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φ(e main) = Id|a1 a1 ∈ A describes the set of initial stores at e main (7.3)

φ(ep) = Id|a ep ∈ E, p 6= main, and a =
⊔

c∈C, c calls p
Vc (7.4)

φ(n) =
⊔

m→n∈F

̂Compose[τm,n](φ(m)) for n ∈ N , n 6∈ (R ∪ E) (7.5)

φ(n) = ̂Compose[γ̂(φ(xq))](φ(call(n))) for n ∈ R, and call(n) calls q (7.6)

Vn = range(φ(n)) (7.7)

The equations involve two sets of “variables”: φ(n) and Vn, where n ∈ N . φ(n) is a partial

function that represents a summary of the transformation from eproc(n) to n. Id|a denotes the

identity transformer restricted to inputs in a ∈ A. The domain of φ(n) over-approximates the

set of reachable states at eproc(n) from which it is possible to reach n; the range of φ(n) over-

approximates the set of reachable states at n. Vn’s value equals the range of φ(n).

̂Compose
l

is essentially identical to Algorithm 15, except that in line 5, ̂Compose
l

performs

a query using a three-state formula,

〈S, S′, S′′〉 ← Model(γ̂[−→v ,−→v ′](a) ∧ τ[−→v ′,−→v ′′] ∧ ¬γ̂[−→v ,−→v ′′](p′)),

and in line 11, ̂Compose
l

applies a two-state version of β to S and S′′, dropping S′ completely:

lower′ ← lower′ t β(S, S′′). ( ̂Compose
↑

is defined similarly.)

An important difference between our algorithm and the SP algorithm is that in our algorithm,

the initial abstract value for the enter node ep for procedure p is specialized to the reachable

inputs of p (see Equation (7.4)). In the SP algorithm, φ(ep) is always set to Id. Figure 7.4 illustrates

the effect on the inferred abstract post-condition at xp of specializing the abstract pre-condition

at enter node ep. The abstract domain used in Figure 7.4 is the domain of affine equalities over

machine integers E232 . With that domain, it is possible to express that a 32-bit variable x holds

an even number: 231x = 0. Consequently, the initial abstract value for enter node ehalve is the
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(1) main() {
(2) x = read_input();
(3) while (x != 1) {
(4) if (even(x)) halve();
(5) else increase();
(6) }
(7) }

(8) void halve() {
(9) x = x � 1;
(10) }
(11)
(12) void increase() {
(13) x = 3*x + 1;
(14) }

Abstract value at enter node ep
Id Id|a, where a =

⊔
c∈C, c calls p Vc

halve pre-condition (ehalve) x′ = x 231x = 0 ∧ x′ = x
post-condition (xhalve) > 231x = 0 ∧ x− 2x′ = 0

increase pre-condition (eincrease) x′ = x 231x = 1 ∧ x′ = x
post-condition (xincrease) x′ = 3x+ 1 231x = 1 ∧ 231x′ = 0 ∧ x′ = 3x+ 1

Figure 7.4: The effect of specializing the abstract pre-condition at enter node ep, and the resulting
strengthening of the inferred abstract post-condition. (The abstract domain is the domain of
affine equalities E232 .)

identity relation, constrained so that x is even. Similarly, the initial abstract value for enter node

eincrease is the identity relation, constrained so that x is odd.

Note that the abstract value at the exit point xp of a procedure p serves as a procedure

summary—i.e., an abstraction of p’s transition relation. Figure 7.4 shows that by giving halve

and increase more precise abstract values at the respective enter nodes, more precise procedure

summaries at the respective exit points are obtained. In particular, for halve, the constraint

x−2x′ = 0 provides a good characterization of the effect of a right-shift operation, but only when

x is known to be even (cf. the entries for halve’s post-condition in columns 3 and 4 of Figure 7.4).

7.4 Related Work

Houdini (Flanagan and Leino, 2001) is the first algorithm that I am aware of that solves a version

of the BII problem. The paper on Houdini does not describe the work in terms of abstract

interpretation. Santini (Thakur et al., 2013, Section 5) was directly inspired by Houdini, as an

effort to broaden Houdini’s range of applicability.
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Yorsh et al. (2006) introduced a particularly interesting technique. Their algorithm for the BII

problem can be viewed as basically solving Equation (7.1) using P̂ost
↑
. However, they observed

that it is not necessary to rely on calls to an SMT solver for all of the concrete states used by

P̂ost
↑
; instead, they used concrete execution of the program as a way to generate concrete states

very cheaply. If for some program point q of interest they have state-set Sq, they obtain an

under-approximation for the abstract value Vq by performing Vq = t{β(σ) | σ ∈ Sq}. This idea

is similar in spirit to the computation of candidate invariants from execution information by

Daikon (Ernst et al., 2007). Because P̂ost
l

works simultaneously from below and from above,

the Yorsh et al. heuristic can be used to improve the speed of convergence of lower′ in line 11 of

Algorithm 15.

If we think of τ = 〈. . . , τi,j , . . .〉 as a monolithic transformer, an alternative way of stating the

objective of intraprocedural BII is as follows:

• Given a concrete transformer τ and an abstract value a ∈ A that over-approximates the set

of initial states, apply the best abstract transformer for τ∗ to a (i.e., apply P̂ost[τ∗](a)).

This problem was the subject of a recent technical report by Garoche et al. (2012).

7.5 Chapter Notes

Extending the results of “best abstract transformers” to “best inductive invariant” appeared

daunting at first. Some amount of head scratching resulted in the simple observation that the

BII problem reduces to the problem of applying P̂ost.

The Santini tool, which incorporates the ideas described in this chapter, was developed by

Akash Lal of Microsoft Research. Because I had little to do with the implementation of this

tool and the running of the experiments, I have omitted these experimental results from this

thesis. The curious reader is encouraged to read about Santini and its application in the Corral

verification tool in Thakur et al. (2013).
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Chapter 8

Bit-Vector Inequality Domain

In this chapter, I describe how symbolic abstraction enables us to define a new abstract do-

main, called the Bit-Vector Inequality (BVI) domain, that addresses the following challenges:

(1) identifying affine-inequality invariants while handling overflow in arithmetic operations

over bit-vector data-types, and (2) holding onto invariants about values in memory during

machine-code analysis.

Need for bit-vector invariants. The polyhedral domain (Cousot and Halbwachs, 1978) is capable

of expressing relational affine inequalities over rational (or real) variables. However, the native

machine-integer data-types used in programs (e.g., int, unsigned int, long, etc.) perform

bit-vector arithmetic, and arithmetic operations wrap around on overflow. Thus, the underlying

point space used in the polyhedral domain does not faithfully model bit-vector arithmetic, and

consequently the conclusions drawn from an analysis based on the polyhedral domain are

unsound, unless special steps are taken (Simon and King, 2007).

Example 8.1. The following C-program fragment incorrectly computes the average of two int-
valued variables (Bloch, 2014):

unsigned i n t low , high , mid ;
assume (0 <= low <= high ) ;
mid = ( low + high ) /2;
a s s e r t (0 <= low <= mid <= high ) ;
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A static analysis based on polyhedra would draw the unsound conclusion that the assertion

always holds. In particular, assuming 32-bit ints, when the sum of low and high is greater

than 232 − 1, the sum overflows to a negative value, and the resulting value of mid is negative.

Consequently, there exist runs in which the assertion fails. These runs are overlooked when the

polyhedral domain is used for static analysis because the domain fails to take into account the

bit-vector semantics of program variables. �

The problem that we wish to solve is not one of merely detecting overflow—e.g., to restrain an

analyzer from having to explore what happens after an overflow occurs. On the contrary, our

goal is to be able to track soundly the effects of arithmetic operations, including wrap-around

effects of operations that overflow. This ability is useful, for instance, when analyzing code

generated by production code generators, such as dSPACE TargetLink (dSPACE, 2014), which

use the “compute-through-overflow” technique (Garner, 1978). Furthermore, clever idioms

for bit-twiddling operations, such as the ones explained in Warren (2003), sometimes rely on

overflow.

Challenges in dealing with bit-vectors. The ideas used in designing an inequality domain for

reals do not carry over to one designed for bit-vectors. First, in bit-vector arithmetic, additive

constants cannot be cancelled on both sides of an inequality, as illustrated in the following

example.

Example 8.2. Let x and y be 4-bit unsigned integers. Figures 8.1(a) and 8.1(b) depict the solutions

in bit-vector arithmetic of the inequalities x+ y + 4 ≤ 7 and x+ y ≤ 3, respectively. Although

x+y+4 ≤ 7 and x+y ≤ 3 are syntactically quite similar, their solution spaces are quite different.

In particular, because of wrap-around of values computed on the left-hand sides using bit-vector

arithmetic, one cannot just subtract 4 from both sides to convert the inequality x+ y+ 4 ≤ 7 into

x+ y ≤ 3. �

Second, in bit-vector arithmetic, positive constant factors cannot be cancelled on both sides

of an inequality; for example, if x and y are 4-bit bit-vectors, then (4, 4) is in the solution set of

2x+ 2y ≤ 4, but not of x+ y ≤ 2.
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15 + + + + + + + +
14 + + + + + + + +
13 + + + + + + + +
12 + + + + + + + +
11 + + + + + + + +
10 + + + + + + + +

9 + + + + + + + +
8 + + + + + + + +
7 + + + + + + + +
6 + + + + + + + +
5 + + + + + + + +
4 + + + + + + + +
3 + + + + + + + +
2 + + + + + + + +
1 + + + + + + + +
0 + + + + + + + +

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(a) x+ y + 4 ≤ 7

15 + + + +
14 + + + +
13 + + + +
12 + + + +
11 + + + +
10 + + + +

9 + + + +
8 + + + +
7 + + + +
6 + + + +
5 + + + +
4 + + + +
3 + + + +
2 + + + +
1 + + + +
0 + + + +

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(b) x+ y ≤ 3

Figure 8.1: Each + represents a solution of the indicated inequality in 4-bit unsigned bit-vector
arithmetic.

Recent work has developed several abstract domains of relational affine equalities over vari-

ables that hold machine integers (Müller-Olm and Seidl, 2005; King and Søndergaard, 2010;

Elder et al., 2011).1 These domains do account for wrap-around on overflow. With respect to

their analysis capabilities, the drawback of these domains is that they are unable to identify

inequality invariants.

While some simple domains do exist that are capable of representing certain kinds of inequal-

ities over bit-vectors (e.g., intervals with a congruence constraint, sometimes called “strided-

intervals” (Reps et al., 2006; Sen and Srikant, 2007; Balakrishnan and Reps, 2010)), such domains
1The bit-vector affine-equalities domain E2w has been used in this thesis in Sections 4.3, 5.5, and 6.4.1.
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are non-relational domains. That is, they are not capable of expressing relations among several

variables.

Challenges when dealing with memory. When analyzing machine-code, memory is usually

modeled as a flat array. When analyzing Intel x86 machine code, for instance, memory is modeled

as a map from 32-bit bit-vectors to 8-bit bit-vectors. Consequently, an analysis has to deal with

complications arising from the little-endian addressing mode and aliasing, as illustrated in the

next example.

Example 8.3. Consider the following machine-code snippet:

mov eax, [ebp]
mov [ebp+2], ebx

The first instruction loads the four bytes pointed to by register ebp into the 32-bit register eax.

Suppose that the value in register ebp is A. After the first instruction, the bytes of eax contain, in

least-significant to most-significant order, the value at memory location A, the value at location

A+ 1, the value at location A+ 2, and the value at location A+ 3. The second instruction stores

the value in register ebx into the memory pointed to by ebp+2. Due to this instruction, the values

at memory locations A+ 2 through A+ 5 are overwritten, after which the value in register eax

no longer equals (the little-endian interpretation of) the bytes in memory pointed to by ebp. �

The contribution of this chapter can be summarized as follows:

• I describe the design and implementation of the BVI abstract domain, which is capable of

expressing affine-inequality invariants among bit-vector data-types, as well as handling

invariants about values in memory during machine-code analysis.

Section 8.2 presents related work. The presentation of an experimental evaluation of the BVI

domain is postponed until Chapter 9, where it can be found in Section 9.4
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8.1 The BVI Abstract Domain

In this section, I present the intuition and formalism for the design and implementation of the

BVI abstract domain.

Abstract-Domain Vocabulary. For a given family of abstract domains A, A[V ] denotes the

specific instance of A that is defined over vocabulary V . Usually, the standard vocabulary used

to define an abstract domain is the set of program variables. For instance, in Section 5.5 we used

the abstract domain E232 [R], where R was the set of all 32-bit x86 registers; that is, E232 [R] is

the bit-vector affine-equalities domain E232 defined over the vocabulary of 32-bit x86 registers.

Consequently, E232 [R] is capable of expressing invariants among members of R.

Key Insights. The key insights behind the design of the BVI are:

• We extend the standard vocabulary of an abstract domain with view expressions, which are

w-bit terms expressed in some logic L. Thus, view expressions are capable of holding onto

richer constraints about the program state than the unenriched abstract domain alone.

• We construct the BVI domain as a reduced product between the bit-vector affine-equality

domain E2w and the bit-vector interval domain I2w .

• We use symbolic abstraction to implement precise versions of the abstract-domain opera-

tions for BVI.

Cousot et al. (2011b) use the term observables for view expressions. They also define the ob-

servational reduced product, which, in essence, is a reduced product of abstract domains those

vocabularies have been extended with observables.

I will illustrate each of the concepts listed in the key insights above using examples.

Example 8.4. This example illustrates how view expressions enable the abstract domain I2w to

express inequality constraints, and constraints over memory.

Let P ≡ {x, y, z} be the standard vocabulary consisting of 32-bit program variables x, y, and

z. Let t1 ≡ 2x+ 3y be a 32-bit term view expression. Let T ≡ P ∪ {t1} be the standard vocabulary

P extended with the view expression t1.
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An element of I232 [P ] is able to only express a non-relational constraint between x, y, and

z. On the other hand, the abstract value I1 ≡
[
t1 7→ [0, 5]

]
∈ I232 [T ] expresses the relational

bit-vector inequality constraint 0 ≤ 2x+ 3y ∧ 2x+ 3y ≤ 5.

To express invariants on values in memory (for machine-code analysis), we can add a view

expression that holds onto the values in memory. I use [e] to denote the 32-bit value at the

address e accessed using little-endian addressing. Let m1 ≡ [x + 2], m2 ≡ ([y] + 2z), and

M ≡ P ∪ {t1,m1,m2}. The abstract domain I232 [M ] is capable of expressing bit-vector affine-

inequality constraints, as well as constraints on the values in memory. For instance, the element

I2 ≡
[
t1 7→ [0, 5],m1 7→ [1, 10],m2 7→ [42, 56]

]
∈ I232 [M ] expresses the following relational

inequality constraint over program variables and the contents of memory:

0 ≤ 2x+ 3y ∧ 2x+ 3y ≤ 5

∧ 1 ≤ [x+ 2] ∧ [x+ 2] ≤ 10

∧ 42 ≤ [y] + 2z ∧ [y] + 2z ≤ 56

�

Example 8.5. In this example, I illustrate how computing a reduced product of E2w and I2w

improves precision.

Consider the abstract value I1 ≡
[
t1 7→ [0, 5]

]
∈ I232 [T ] defined in Example 8.4. An abstract

value in E232 [T ] is capable to expressing any bit-vector affine-equality relation among elements

of T . Constructing the reduced product E232 [T ] ? I232 [T ] expands the set of inequalities that are

expressible. For instance, let E1 ≡ {2x = z} ∈ E232 [T ]. The pair 〈E1, I1〉 expresses the following

constraint: 2x = z ∧ 0 ≤ 2x + 3y ∧ 2x + 3y ≤ 5. Furthermore, 〈E1, I1〉 implies the inequality

0 ≤ z + 3y ∧ z + 3y ≤ 5, which cannot be expressed in the individual domains E232 [T ] and

I232 [T ]. �

The previous two examples paint a rather rosy picture—in particular, it appears as if all one

needs to do is add view expressions to be able to handle bit-vector inequality constraints. As the

next example illustrates, adding view expressions is only half the story; we require machinery

that is capable of interpreting the semantics of the view expressions.
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Example 8.6. Consider the abstract domain E232 [T ], where the vocabulary T is defined in

Example 8.4. Let E1 ≡ {t1 = 8} ∈ E232 [T ], and E2 ≡ {x = 2, y = 3} ∈ E232 [T ]. We

now want to compute E1 u E2. If we compute the meet of E1 and E2 using the meet al-

gorithm described in Elder et al. (2011), we get {x = 2, y = 3, t1 = 8}. However, though

sound, this meet operation ignores the semantics of the view expression t1. In particular,

γ({x = 2, y = 3, t1 = 8}) = Jx = 2 ∧ y = 3 ∧ 2x+ 3y = 8K = ∅. Consequently, the semantic

reduction (Definition 3.7) of the meet of E1 and E2 should be ⊥; that is, ρ(E1 u E2) = ⊥.

This simple example illustrates the fact that existing approaches for performing abstract

operations, such as meet and join, are not capable of interpreting the complex view expressions.

Furthermore, if a view expression holds onto values in memory, then the abstract operations

need to reason about the theory of arrays (Bradley et al., 2006) to be precise. �

The solution to implementing precise abstract operations, such as meet and join, is to use

symbolic abstraction. For instance, in Example 8.6 we can compute the semantic reduction

of {x = 2, y = 3, t1 = 8} ∈ E232 [T ], which is ⊥, using symbolic abstraction (Section 3.2.3).

Furthermore, symbolic abstraction is also used to compute the reduced product of E2w and I2w .

Thus, the “heavy-lifting” of interpreting the meaning of the view expressions is done by the

algorithm for performing symbolic abstraction (Chapter 5).

Building on the intuition from the previous examples, we can define the BVI as follows:

Definition 8.7. Let P be the set of w-bit program variables. A view expression t is a w-bit term

expressed over P in logic L.

Given a vocabulary T consisting of a set of view expressions and program variables, the

abstract domain BVI2w is defined as the reduced product E2w [T ] ? I2w [T ].

Let A1 ≡ 〈E1, I1〉, A2 ≡ 〈E2, I2〉 ∈ BVI2w . The approximate abstract operations for BVI2w,

which do not interpret the meaning of the view expressions, are defined as:

A1ũA2
def= 〈E1 uE2w E2, I1 uI2w I2〉

A1t̃A2
def= 〈E1 tE2w E2, I1 tI2w I2〉

A1ṽA2
def= E1 vE2w E2 and I1 vI2w I2
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The more precise abstract operations, which do interpret the meaning of the view expressions,

are defined as:

γ̂(A1) def= γ̂E2w (E1) ∧ γ̂I2w (I1)

A1ûA2
def= α̂(γ̂(A1) ∧ γ̂(A2))

A1t̂A2
def= α̂(γ̂(A1) ∨ γ̂(A2))

A1v̂A2
def= γ̂(A1) implies γ̂(A2)

�

8.1.1 Implementation Details

Implementing Symbolic Abstraction. We use an instantiation of the Bilateral framework (Chap-

ter 5) to compute the symbolic abstraction of the BVI abstract domain. Note that the Bilateral

algorithm uses the approximate abstract operations ũ, t̃, and ṽ in order to compute the symbolic

abstraction.

Lazy Symbolic Abstraction. In the implementation of the t̂ and û operations of theBVI domain,

the computation of the symbolic abstraction can be delayed until it becomes necessary. In essence,

internal to the implementation of the BVI domain, the û and t̂ operations are treated as logical-

and and logical-or operations, respectively. When an answer is required to be an abstract value, a

call to α̂ is used to convert the formula into the abstract value. I call this technique of delaying the

call to symbolic abstraction Lazy Symbolic Abstraction. For instance, suppose we have to compute

(A1ûA2)ûA3, where A1, A2, A3 ∈ BVI. Using Definition 8.7, we have that

(A1ûA2)ûA3 ≡ α̂
(
γ̂(α̂(γ̂(A1) ∧ γ̂(A2))

)
∧ γ̂(A3)

)
(8.1)

Instead, we could compute it as follows:

(A1ûA2)ûA3 ≡ α̂
(
γ̂(A1) ∧ γ̂(A2) ∧ γ̂(A3)

)
(8.2)

Equation (8.2) avoids the call to α̂ in the computation of A1ûA2, and remains in the logical



136

domain. The call to α̂ is delayed until the end of the computation of the meets. There are two

advantages of delaying the call to α̂ as shown in Equation (8.2):

• Precision: Equation (8.2) avoids going back to the (less precise) abstract domain, and stays

in the logical domain.

• Speed: Equation (8.2) has a single call to α̂.

This same approach of delaying the call to α̂ applies to the implementation of t̂. In practice, we

perform an α̂ operation that converts the internal formula representation into an abstract value

when either of the following conditions are met:

• The number of conjunctions and disjunctions in the formula exceed a fixed threshold k.

• The join operation is performed at a loop header, or, more generally, at a widening point

(Bourdoncle, 1993).

Heuristics for picking view expressions. When performing machine-code analysis, the choice

of view expressions determines the precision of the abstract domain. In practice, the view

expressions include memory accesses performed by the program. We also determine the branch

predicates occurring in the program, and add these as view expressions. The branch predicate

is computing by first performing symbolic execution of the basic block that ends in a branch

instruction, and then inspecting the expression for the program counter in the symbolic state.

Given a (Boolean) branch predicate b, we add the view expression ITE(b, 1232 , 0232), where

ITE is the if-then-else term. This enables the BVI abstract domain to behave similarly to a

Cartesian predicate-abstraction domain (Flanagan and Qadeer, 2002), in that the BVI is capable

of expressing conjunctions of predicates. However, the use the affine-equalities domain allows

the BVI domain to also express a logical-xor of predicates, hence, making the domain more

expressive than a Cartesian predicate-abstraction domain. This concept is illustrated in the next

example.
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Example 8.8. Consider the view expressions t1 ≡ ITE(b1, 1232 , 0232), and t2 ≡ ITE(b2, 1232 , 0232),

and let T ≡ {t1, t2}.

a1 ≡ {t1 = 1, t2 = 0} ∈ BVI232 [T ] γ̂(a1) = b1 ∧ ¬b2

a2 ≡ {t1 + t2 = 2} ∈ BVI232 [T ] γ̂(a2) = b1 ∧ b2

a1 ≡ {t1 + t2 = 1} ∈ BVI232 [T ] γ̂(a3) = b1⊕ b2

�

Picking the right set of view expressions is an interesting and challenging research question

in itself. Exploring techniques based on, for example, counter-example guided abstraction

refinement (CEGAR) is left as future work. Section 9.4 describes an experimental evaluation of

the BVI abstract domain.

8.2 Related Work

Other work on identifying bit-vector-inequality invariants includes Brauer and King (2010,

2011) and Masdupuy (1992). Masdupuy (1992) proposed a relational abstract domain of interval

congruences on rationals. One limitation of his machinery is that the domain represents diagonal

grids of parallelepipeds, where the dimension of each parallelepiped equals the number of

variables tracked (say n). In our work, we can have any number of view-variables, which means

that the point-spaces represented can be constrained by more than n constraints.

Brauer and King employ bit-blasting to synthesize abstract transformers for the interval and

octagon (Miné, 2001) domains. One of their papers uses universal-quantifier elimination on

Boolean formulas (Brauer and King, 2010); the other avoids quantifier elimination (Brauer and

King, 2011). Compared with their work, we avoid the use of bit-blasting and work directly with

representations of sets of w-bit bit-vectors.

Chang and Leino (2005) developed a technique for extending the properties representable by

a given abstract domain from schemas over variables to schemas over terms. To orchestrate the

communication of information between domains, they designed the congruence-closure abstract

domain, which introduces variables to stand for subexpressions that are alien to a base domain; to
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the base domain, these expressions are just variables. Their scheme for propagating information

between domains is mediated by the e-graph of the congruence-closure domain. In contrast,

our method can make use of symbolic abstraction to propagate information between domains.

Cousot et al. (2011b) have recently studied the iterated pairwise exchange of observations between

components as a way to compute an over-approximation of a reduced product.

Chen et al. (2008) devised a way to use the polyhedral domain (Cousot and Halbwachs, 1978)

to analyze programs that use floating-point computations. They use a linearization technique

developed by Miné (2004), which soundly abstracts the floating-point computations performed in

a program being analyzed into computations on reals. These values are then over-approximated

using a variant of the polyhedral domain in which two of the underlying primitives are replaced

by floating-point versions that use interval arithmetic with outward rounding to compute

answers in floating-point arithmetic that over-approximate the exact real counterparts. Both

of the replaced primitives can produce a floating-point overflow or the value NaN (Not a

Number). In these cases, a sound answer is created by discarding a constraint. By this means, it

is possible to use the floating-point polyhedral domain to analyze programs that use floating-

point computations.

8.3 Chapter Notes

Tushar Sharma helped with part of the implementation and experimental evaluation of the

BVI domain; I was responsible for idea behind of the BVI domain, and most of the design and

implementation of the domain.
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Chapter 9

Symbolic Abstraction for

Machine-Code Verification

This chapter describes a model-checking algorithm for stripped machine-code, called MCVETO

(Machine-Code VErification TOol). The unique challenges and opportunities in verification

of stripped machine-code, as well as a comparison of MCVETO with previous machine-code

analysis tools, can be found in Chapter 2. In particular, MCVETO is able to detect and explore

“deviant behavior” in machine code. An example of such deviant behavior is when the program

over-writes the return address stored on the stack frame, as illustrated in Section 2.3. In MCVETO,

deviant behavior is reported as an acceptable-execution (AE) violation. Moreover, MCVETO is capable

of verifying (or detecting flaws in) self-modifying code (SMC). To the best of my knowledge,

MCVETO is the first model checker to handle SMC.

The specific problem addressed by MCVETO can be stated as follows: Given a stripped

machine-code program P , and a (bad) target state, find either

• an input to P that results in an AE violation,

• an input to P that causes the target state to be reached, or

• a proof that P performs only AEs, and the bad state cannot be reached during any AE.
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The (bad) target state is usually specified as a particular value of the program counter (PC),

which we denote by target.

MCVETO works by starting with an initial coarse abstraction of the program’s state space.

The initial abstraction has only two abstract states, defined by the predicates “PC = target” and

“PC 6= target” . The abstraction is gradually refined during subsequent analysis steps. Thus, the

MCVETO algorithm can be viewed as computing the symbolic abstraction of a machine-code

program with respect to a particular graph-based abstract domain.

The contributions of this chapter can be summarized as follows:

1. I describe how MCVETO adapts directed proof generation (DPG) (Gulavani et al., 2006) for

model checking stripped machine code (Section 9.1).

2. I describe how MCVETO uses trace-based generalization to build and refine an abstraction of

the program’s state space entirely on-the-fly (Section 9.2.2). Trace-based generalization

enables MCVETO to handle instruction aliasing and SMC.

3. I describe how MCVETO uses speculative trace refinement to identify candidate invariants that

can speed up the convergence of DPG (Section 9.2.3).

4. I introduce a new approach to performing DPG on multi-procedure programs (Section 9.2.4).

5. I describe a language-independent algorithm to identify the aliasing condition relevant to

a property in a given state (Section 9.2.5).

Item 2 addresses execution details that are typically ignored (unsoundly) by source-code

analyzers. Items 2, 3, 4, and 5 are applicable to both source-code and machine-code analysis.

Section 9.3 describes the implementation details of MCVETO; Section 9.4 presents an experi-

mental evaluation of MCVETO; Section 9.5 presents related work.



141

n’ : � ∧ ¬�

k

n : �

m : �

k

n’’ : � ∧ �

I

⟹

I

m : �

♦♦♦♦ ♦♦♦♦

♦♦♦♦ ♦♦♦♦

Figure 9.1: The general refinement step across frontier (n, I,m). The presence of a witness is
indicated by a “�” inside of a node.

9.1 Background on Directed Proof Generation (DPG)

Given a program P and a particular control location target in P , DPG returns either an input for

which execution leads to target or a proof that target is unreachable (or DPG does not terminate).

Two approximations of P ’s state space are maintained:

• A set T of concrete traces, obtained by runningP with specific inputs. T underapproximates

P ’s state space.

• A graph G, called the abstract graph, obtained from P via abstraction (and abstraction

refinement). G overapproximates P ’s state space.

Nodes in G are labeled with formulas; edges are labeled with program instructions or program

conditions. One node is the start node (where execution begins); another node is the target node

(the goal to reach). Information to relate the under- and overapproximations is also maintained:

a concrete state σ in a trace in T is called a witness for a node n in G if σ satisfies the formula that

labels n.

If G has no path from start to target, then DPG has proved that target is unreachable, and G

serves as the proof. Otherwise, DPG locates a frontier: a triple (n, I,m), where (n,m) is an edge

on a path from start to target such that n has a witness w but m does not, and I is the instruction

on (n,m). DPG either performs concrete execution (attempting to reach target) or refines G by

splitting nodes and removing certain edges (which may prove that target is unreachable). Which

action to perform is determined using the basic step from directed test generation (Godefroid

et al., 2005), which uses symbolic execution to try to find an input that allows execution to
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cross frontier (n, I,m). Symbolic execution is performed over symbolic states, which have two

components: a path constraint, which represents a constraint on the input state, and a symbolic map,

which represents the current state in terms of input-state quantities. DPG performs symbolic

execution along the path taken during the concrete execution that produced witness w for n;

it then symbolically executes I , and conjoins to the path constraint the formula obtained by

evaluating m’s predicate ψ with respect to the symbolic map. It calls an SMT solver to determine

if the path constraint obtained in this way is satisfiable. If so, the result is a satisfying assignment

that is used to add a new execution trace to T . If not, DPG refines G by splitting node n into n′

and n′′, as shown in Figure 9.1.

Refinement changes G to represent some non-connectivity information: in particular, n′ is not

connected to m in the refined graph (see Figure 9.1). Let ψ be the formula that labels m, c be the

concrete witness of n, and Sn be the symbolic state obtained from the symbolic execution up

to n. DPG chooses a formula ρ, called the refinement predicate, and splits node n into n′ and n′′

to distinguish the cases when n is reached with a concrete state that satisfies ρ (n′′) and when

it is reached with a state that satisfies ¬ρ (n′). The predicate ρ is chosen such that (i) no state

that satisfies ¬ρ can lead to a state that satisfies ψ after the execution of I , and (ii) the symbolic

state Sn satisfies ¬ρ. Condition (i) ensures that the edge from n′ to m can be removed. Condition

(ii) prohibits extending the current path along I (forcing the DPG search to explore different

paths). It also ensures that c is a witness for n′ and not for n′′ (because c satisfies Sn)—and thus

the frontier during the next iteration must be different.

9.2 MCVETO

This section explains the methods used to achieve contributions 2–5. While MCVETO was de-

signed to provide sound DPG for machine code, a number of its novel features are also useful

for source-code DPG. Thus, to make the chapter more accessible, our running example is the

C++ program in Figure 9.2. It makes a non-deterministic choice between two blocks that each

call procedure adjust, which loops—decrementing x and incrementing y. Note that the affine
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int main() {
int x, y;
if(*) {

x = 200;
y = 300;
adjust(x, y);

}
else {

x = 300;
y = 200;
adjust(x, y);

}
if (y != 500)

UNREACHABLE();
return 0;

}

void adjust(int& x, int& y) {
while(x > 0) {

x--;
y++;

}
}

F

while(x>0)

T

x = 200

y = 300

F

x--

y++

x = 300

y = 200

exit

adjust(x,y) ad
ju

st
(x

,y
)

ret

ret

if(*)

if (y≠500)

T

FT

F

x = 300

F

x = 300

(a) (b)

Figure 9.2: (a) A program with a non-deterministic branch; (b) the program’s ICFG.

relation x+ y = 500 holds at the two calls on adjust, the loop-head in adjust, and the branch

on y!=500.

9.2.1 Representing the Abstract Graph

The infinite abstract graph used in MCVETO is finitely represented as a nested word automaton

(NWA) (Alur and Madhusudan, 2009) and queried by symbolic operations.

Definition 9.1 (Alur and Madhusudan (2009)). A nested word (w, ) over alphabet Σ is an

ordinary word w ∈ Σ∗, together with a nesting relation of length |w|.  is a collection of

edges (over the positions in w) that do not cross. A nesting relation of length l ≥ 0 is a subset of

{−∞, 1, 2, . . . , l} × {1, 2, . . . , l,+∞} such that

• Nesting edges only go forwards: if i j then i < j.

• No two edges share a position: for 1 ≤ i ≤ l, |{j | i j}| ≤ 1 and |{j | j  i}| ≤ 1.

• Edges do not cross: if i j and i′  j′, then one cannot have i < i′ ≤ j < j′.

When i  j holds, for 1 ≤ i ≤ l, i is called a call position; if i  +∞, then i is a pending

call; otherwise i is a matched call, and the unique position j such that i j is called its return
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successor. Similarly, when i j holds, for 1 ≤ j ≤ l, j is a return position; if −∞ j, then j is

a pending return, otherwise j is a matched return, and the unique position i such that i j is

called its call predecessor. A position 1 ≤ i ≤ l that is neither a call nor a return is an internal

position.

MatchedNW denotes the set of nested words that have no pending calls or returns. NWPrefix

denotes the set of nested words that have no pending returns.

A nested word automaton (NWA) A is a 5-tuple (Q,Σ, q0, δ, F ), where Q is a finite set of

states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states, and δ is a

transition relation. The transition relation δ consists of three components, (δc, δi, δr), where

• δi ⊆ Q× Σ×Q is the transition relation for internal positions.

• δc ⊆ Q× Σ×Q is the transition relation for call positions.

• δr ⊆ Q×Q× Σ×Q is the transition relation for return positions.

Starting from q0, an NWAA reads a nested word nw = (w, ) from left to right, and performs

transitions (possibly non-deterministically) according to the input symbol and . If A is in state

q when reading input symbol σ at position i in w, and i is an internal or call position, A makes a

transition to q′ using (q, σ, q′) ∈ δi or (q, σ, q′) ∈ δc, respectively. If i is a return position, let k be

the call predecessor of i, and qc be the state A was in just before the transition it made on the

kth symbol; A uses (q, qc, σ, q′) ∈ δr to make a transition to q′. If, after reading nw, A is in a state

q ∈ F , then A accepts nw. �

As discussed in Section 9.2.2 the key property of NWAs for abstraction refinement is that,

even though they represent matched call/return structure, they are closed under intersection

(Alur and Madhusudan, 2009). That is, given NWAs A1 and A2, one can construct an NWA A3

such that L(A3) = L(A1) ∩ L(A2).

In our NWAs, the alphabet consists of all possible machine-code instructions. In addition, we

annotate each state with a predicate. Operations on NWAs extend cleanly to accommodate the

semantics of predicates—e.g., the ∩ operation labels a product state 〈q1, q2〉with the conjunction
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PC ≠ targets:

*

*

PC = targett:

δc =
{

(s, *, s),
(s, *, t)

}

δr =
{

(s, s, *, s),
(s, s, *, t)

}
(a) (b)

Figure 9.3: (a) Internal-transitions in the initial NWA-based abstract graphG0 created by MCVETO;
(b) call- and return-transitions in G0. * is a wild-card symbol that matches all instructions.

of the predicates on states q1 and q2. In MCVETO’s abstract graph, we treat the value of the PC as

data; consequently, predicates can refer to the value of the PC (see Figure 9.3).

9.2.2 Abstraction Refinement Via Trace Generalization

In a source-code model checker, the initial overapproximation of a program’s state space is often

the program’s ICFG. Unfortunately, for machine code it is difficult to create an accurate ICFG a

priori because of the use of indirect jumps, jump tables, and indirect function calls—as well as

more esoteric features, such as instruction aliasing and SMC. For this reason, MCVETO begins

with the degenerate NWA-based abstract graphG0 shown in Figure 9.3, which overapproximates

the program’s state space; i.e., Go accepts an overapproximation of the set of minimal1 traces

that reach target. The abstract graph is refined during the state-space exploration carried out by

MCVETO.

To avoid having to disassemble collections of nested branches, loops, procedures, or the

whole program all at once, MCVETO performs trace-based disassembly: as concrete traces are

generated during DPG, instructions are disassembled one at a time by decoding the current

bytes of memory starting at the value of the PC. Each indirect jump or indirect call encountered

can be resolved to a specific address. Trace-based disassembly is one of the techniques that

allows MCVETO to handle self-modifying code.

MCVETO uses each concrete trace π ∈ T to refine abstract graph G. As mentioned in Sec-

tion 9.1, the set T of concrete traces underapproximates the program’s state space, whereas G
1A trace τ that reaches target is minimal if τ does not have a proper prefix that reaches target.
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Figure 9.4: (a) and (b) show two generalized traces, each of which reaches the end of the program.
(c) shows the intersection of the two generalized traces. (“�” indicates that a node has a witness.)

represents an overapproximation of the state space. MCVETO repeatedly solves instances of the

following trace-generalization problem:
Given a trace π, which is an underapproximation of the program, convert π into an NWA-based

abstract graph Gπ that is an overapproximation of the program.
A trace π that does not reach target is represented by (i) a nested-word prefix (w, ) over

instructions (Definition 9.1), together with (ii) an array of PC values, PC[1..|w| + 1], where

PC[|w|+ 1] has the special value HALT if the trace terminated execution. Internal-steps, call-

steps, and return-steps are triples of the form 〈PC[i], w[i],PC[i+ 1]〉, 1 ≤ i < |w|, depending on

whether i is an internal-position, call-position, or return-position, respectively. We create Gπ

by “folding” π—grouping together all nodes with the same PC value, and augmenting it in a

way that overapproximates the portion of the program not explored by π (denoted by π/[PC]);

see Figures 9.4(a), 9.4(b), and 9.5. In particular, Gπ contains one accepting state, called TS (for

“target surrogate”). TS is an accepting state because it represents target, as well as all non-target

locations not visited by π.

We now have two overapproximations, the original abstract graph G and folded trace Gπ.

Abstract graphs are based on NWAs, and hence closed under intersection. Thus, by performing

G := G∩Gπ, information about the portion of the program explored by π is incorporated into G,

producing a third, improved overapproximation; see Figure 9.4(c). Equivalently, intersection elim-
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Definition 9.2. Given π, we construct Gπ
def= π/[PC] as follows:

1. All positions 1 ≤ k < |w| + 1 for which PC[k] has a given address a are collapsed to a
single NWA state qa. All such states are rejecting states (the target was not reached).

2. For each internal-step 〈a, I, b〉, Gπ has an internal-transition (qa, I, qb).

3. For each call-step 〈ac, call, ae〉, Gπ has a call-transition (qac
, call, qae

). (“call” stands
for whatever instruction instance was used in the call-step.)

4. For each return-step 〈ax, ret, ar〉 for which the PC at the call predecessor holds address
ac, Gπ has a return-transition (qax

, qac
, ret, qar

). (“ret” stands for whatever instruction
instance was used in the return-step.)

5. Gπ contains one accepting state, called TS (for “target surrogate”). TS is an accepting
state because it represents target, as well as all the non-target locations that π did not
explore.

6. Gπ contains three “self-loops”: (TS, *,TS) ∈ δi, (TS, *,TS) ∈ δc, and (TS,TS, *,TS) ∈ δr.
(We use “*” in the latter two transitions because there are many forms of call and ret
instructions.)

7. For each unmatched instance of a call-step 〈ac, call, ae〉, Gπ has a return-transition
(TS, qac

, *,TS). (We use * because any kind of ret instruction could appear in the matching
return-step.)

8. Let Bb denote a (direct or indirect) branch that takes branch-direction b.

• If π has an internal-step 〈a,Bb, c〉 but not an internal-step 〈a,B¬b, d〉, Gπ has an
internal-transition (qa, B¬b,TS).

• For each internal-step 〈a,BT , c〉, where B is an indirect branch, Gπ has an internal-
transition (qa, BT ,TS).

9. For each call-step 〈ac, call, ae〉 where call is an indirect call, Gπ has a call-transition
(qac

, call,TS).

10. If PC[|w|+1] 6= HALT,Gπ has an internal-transition (qPC[|w|], I,TS), where “I” stands for
whatever instruction instance was used in step |w| of π. (We assume that an uncompleted
trace never stops just before a call or ret.)

11. If PC[|w|+ 1] = HALT, Gπ has an internal-transition (qPC[|w|], I,Exit), where “I” stands
for whatever instruction instance was used in step |w| of π and Exit is a distinguished
non-accepting state.

Figure 9.5: Definition of the trace-folding operation π/[PC].
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Algorithm 19: Basic MCVETO algorithm (including trace-based disassembly)
1 π := nested-word prefix for an execution run on a random initial state
2 T := {π}; Gπ := π/[PC]; G := (NWA from Figure 9.3) ∩ Gπ
3 while true do
4 if target has a witness in T then
5 return “reachable”
6 Find a path τ in G from start to target
7 if no path exists then
8 return “not reachable”
9 Find a frontier (n, I,m) in G, where concrete state σ witnesses n

10 Perform symbolic execution of the instructions of the concrete trace that reaches σ, and
then of instruction I ; conjoin to the path constraint the formula obtained by evaluating m’s
predicate ψ with respect to the symbolic map; let S be the path constraint so obtained

11 if S is feasible, with satisfying assignment A then
12 π := nested-word prefix for an execution run on A
13 T := T ∪ {π}; Gπ := π/[PC]; G := G ∩Gπ
14 else
15 Refine G along frontier (n, I,m) (see Figure 9.1)

inates the family of infeasible traces represented by the complement of Gπ; however, because we

already have Gπ in hand, no automaton-complementation operation is required—cf. (Heizmann

et al., 2010).

The issue of how one forms an NWPrefix from an instruction sequence—i.e., identifying the

nesting structure—is handled by a policy in the trace-recovery tool for classifying each position

as an internal-, call-, or return-position. Currently, for reasons discussed in Section 9.2.6, we

use the following policy: the position of any form of call instruction is a call-position; the

position of any form of ret instruction is a return-position. In essence, MCVETO uses call and

ret instructions to restrict the instruction sequences considered. If these match the program’s

actual instruction sequences, we obtain the benefits of the NWA-based approach—especially the

reuse of information among refinements of a given procedure. The basic MCVETO algorithm is

stated as Algorithm 19.
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Trace Generalization for Self-Modifying Code

To perform trace generalization for self-modifying code, state names are now of the form qa,I ,

where a is an address and I is an instruction. Item 1 of the trace folding operation (Figure 9.5) is

changed to

• All positions 1 ≤ k < |w|+ 1 for which (i) PC[k] has a given address a, and (ii) w[k] has a

given instruction I are collapsed to a single NWA state qa,I . All such states are rejecting

states (the target was not reached).

Internal-, call-, and return-steps are now quadruples, 〈PC[i], w[i],PC[i+ 1], w[i+ 1]〉 depending

on whether i, for 1 ≤ i < |w|, is an internal-, call-, or return-position, respectively. Other items

are changed accordingly to account for instructions in state names. In addition, items 8–10 are

replaced by

• For each position i, 1 ≤ i < |w|+ 1, Gπ contains

– an internal-transition (qPC[i],w[i], ∗,TS)

– a call-transition (qPC[i],w[i], ∗,TS)

– a return-transition (qPC[i],w[i], qPC[j],w[j], ∗,TS), where 1 ≤ j < i and w[j] is the un-

matched call with largest index in w[1..i− 1].

9.2.3 Speculative Trace Refinement

Motivated by the observation that DPG is able to avoid exhaustive loop unrolling if it discovers

the right loop invariant, we developed mechanisms to discover candidate invariants from a folded

trace, which are then incorporated into the abstract graph via NWA intersection. Although they

are only candidate invariants, they are introduced into the abstract graph in the hope that they are

invariants for the full program. The basic idea is to apply dataflow analysis to a graph obtained

from the folded traceGπ. The recovery of invariants fromGπ is similar in spirit to the computation

of invariants from traces in Daikon (Ernst et al., 2007), but in MCVETO they are computed ex post
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facto by dataflow analysis on the folded trace. While any kind of dataflow analysis could be used

in this fashion, MCVETO currently uses the BVI abstract domain (Chapter 8). Specifically, the

candidate invariant ψ at program point p is

ψ ≡ γ̂
(⊔{

β(S)
∣∣S is a concrete state at p}

)

The candidate invariants are used to create predicates for the nodes of Gπ. Because an

analysis may not account for the full effects of indirect memory references on the inferred

variables, to incorporate a discovered candidate invariant ϕ for node n into Gπ safely, we split n

on ϕ and ¬ϕ. Again we have two overapproximations: Gπ, from the folded trace, augmented

with the candidate invariants, and the original abstract graph G. To incorporate the candidate

invariants into G, we perform G := G ∩Gπ; the ∩ operation labels a product state 〈q1, q2〉with

the conjunction of the predicates on states q1 of G and q2 of Gπ.

Figure 9.6 shows how the candidate affine relation ϕ ≡ x+ y = 500 would be introduced at

the loop-head of adjust in the generalized traces from Figures 9.4(a) and 9.4(b). (Relation ϕ does,

in fact, hold for the portions of the state space explored by Figures 9.4(a) and 9.4(b).) With this

enhancement, subsequent steps of DPG will be able to show that the dotted loop-heads (labeled

with ¬ϕ) can never be reached from start. In addition, the predicate ϕ on the solid loop-heads

enables DPG to avoid exhaustive loop unrolling to show that the true branch of y!=500 can never

be taken.

9.2.4 Symbolic Methods for Interprocedural DPG

In other DPG systems (Gulavani et al., 2006; Beckman et al., 2008; Godefroid et al., 2010), in-

terprocedural DPG is performed by invoking intraprocedural DPG as a subroutine. In contrast,

MCVETO analyzes a representation of the entire program (refined on-the-fly), which allows it

to reuse all information from previous refinement steps. For instance, in the program shown

in Figure 9.7(a), procedure lotsaBaz makes several calls to baz. By invoking analysis once for

each call site on baz, a tool such as DASH has to re-learn that y is set to 0. In contrast, MCVETO
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Figure 9.6: Figures 9.4(a) and 9.4(b) with the loop-head in adjust split with respect to the
candidate invariant ϕ def= x+ y = 500.

int y;
void baz(){

y=0;
y++;
y--;

}

void lotsaBaz(int a){
y=0;
if(a>0) baz();
if(a>1) baz();
if(a>2) baz();
if(a>3) baz();
if(y!=0)

ERR: return;
}

int bar1() {
int i,r = 0;
for(i=0;i<100;i++){

complicated(); r++;
}
return r;

}

int bar2(){ return 10; }

void foo(int x){
int y;
if(x == 0) y = bar2();
else y = bar1();
if(y == 10)

ERR: return;
}

(a) (b)

Figure 9.7: Programs that illustrate the benefit of using a conceptually infinite abstract graph.

only needs to learn this once and gets automatic reuse at all call sites. Note that such reuse

is achieved in a different way in SMASH (Godefroid et al., 2010), which makes use of explicit

procedure summaries. However, because the split between local and global variables is not

known when analyzing machine code, it is not clear to us how MCVETO could generate such

explicit summaries.

Furthermore, SMASH is still restricted to invoking intraprocedural analysis as a subroutine,

whereas MCVETO is not limited to considering frontiers in just a single procedure: at each stage,

it is free to choose a frontier in any procedure. To see why such freedom can be important,

consider the source-code example in Figure 9.7(b) (where target is ERR). DASH might proceed as

follows. The initial test uses [x 7→ 42], which goes through bar1, but does not reach target. After
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a few iterations, the frontier is the call to bar1, at which point DASH is invoked on bar1 to prove

that the return value is not 10. The subproof takes a long time because of the complicated loop

in bar1. In essence, DASH gets stuck in bar1 without recourse to an easier way to reach target.

MCVETO can make the same choices, and would start to prove the same property for the return

value of bar1. However, refinements inside of bar1 cause the abstract graph to grow, and at

some point, if the policy is to pick a frontier closest to target, the frontier switches to one in main

that is closer to target—in particular, the true branch of the if-condition x==0. MCVETO will be

able to extend that frontier by running a test with [x 7→ 0], which will go through bar2 and reach

target. The challenge that we face to support such flexibility is how to select the frontier while

accounting for paths that reflect the nesting structure of calls and returns. As discussed below,

by doing computations via automata, transducers, and pushdown systems, MCVETO can find

the set of all frontiers, as well as identify the k closest frontiers.

Symbolic Methods to Find All Frontiers and Closest Frontiers

Definition 9.3. A configuration u of an NWA A is a sequence of states; that is, u ∈ Q∗. The

transition relation δ of A defines a transition relation δ⇒ on configurations of A as follows:

• if (q, σ, q′) ∈ δi, then qu δ⇒ q′u for all u ∈ Q∗

• if (qc, σ, qe) ∈ δc, then qcu
δ⇒ qeqcu for all u ∈ Q∗

• if (qx, qc, σ, qr) ∈ δr, then qxqcu
δ⇒ qru for all u ∈ Q∗ �

We often work with abstractions of NWAs in which alphabet symbols are dropped: ⇒def=⋃
σ∈Σ

δ⇒. Let ⇒∗ denote the reflexive transitive closure of ⇒. For a set of configurations C,

pre∗(C) def= {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) def= {c′ | ∃c ∈ C : c ⇒∗ c′}—i.e., backward and

forward reachability, respectively, with respect to transition relation⇒. When C is a regular

language of configurations, automata for the configuration languages pre∗(C) and post∗(C)

can be computed in polynomial time (Driscoll et al., 2012). Note that the check on line 6 of

Algorithm 19 can be performed by testing whether start ∈ pre∗(target).
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Given the set of all 〈PC, stack〉 configurations for concrete states that occur in some execution

trace, let X be the corresponding set of configurations in Q∗ for the NWA of the abstract graph.

It is straightforward to build an automaton that recognizes X because we can recover 〈PC, stack〉

information during a traversal of an NWPrefix. (Henceforth, the automaton is referred to as X ,

as well.) We also create an automaton InChopButNotExecuted for the part of the chop between

start and target that has not been reached during a concrete execution:

InChopButNotExecuted = post∗(start) ∩ pre∗(target) ∩ ¬X.

Given an automaton A for a language L(A), let ID[A] be the transducer for the projection of the

identity relation on L(A): {(a, a) | a ∈ L(A)}. It is straightforward to create a transducer for the

post relation on NWA configurations: e.g., (q, σ, q′) ∈ δi contributes the fragment

→ • q/q
′
→ } 	 q/q, q ∈ Σ

to the transducer. (Note that the transducer encodes post, not post∗.) Now we put these together

to find all frontiers:

Frontiers = ID[X] ◦ post ◦ ID[InChopButNotExecuted],

where ◦ denotes transducer composition. In English, what this does is the following: Frontiers

identifies—as a relation between configuration pairs of the form (x, icbne)—all edges in the

infinite transition relation of the abstract graph in which

1. x is reached during concrete execution (ID[X])

2. one can go from x to icbne in one step ( post)

3. icbne is on a path from start to target in the infinite transition relation of the abstract graph,

but was not reached during a concrete execution (ID[InChopButNotExecuted])
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The composition with the two projection functions, “ID[X]◦. . .” and “. . .◦ID[InChopButNotExecuted]”,

serves to specialize post to just the edges in the infinite transition relation of the abstract graph

that run between a configuration in X and a configuration in InChopButNotExecuted.

We can obtain “closest frontiers” by using weighted NWAs (Driscoll et al., 2012) and adding

shortest-distance weights to either pre∗(target) (to obtain frontiers that are closest to target) or to

post∗(start) (to obtain frontiers that are closest to start), and then carrying the weights through

the transducer-composition operations.

9.2.5 A Language-Independent Approach to Aliasing Relevant to a Property

This section describes how MCVETO identifies—in a language-independent way suitable for use

with machine code—the aliasing condition relevant to a property in a given state. Lim et al. (2009)

showed how to generate a Pre primitive for machine code; however, repeated application of Pre

causes refinement predicates to explode. We now present a language-independent algorithm

for obtaining an aliasing condition α that is suitable for use in machine-code analysis. From α,

one immediately obtains Preα. There are two challenges to defining an appropriate notion of

aliasing condition for use with machine code: (i) int-valued and address-valued quantities are

indistinguishable at runtime, and (ii) arithmetic on addresses is used extensively.

Suppose that the frontier is (n, I,m), ψ is the formula on m, and Sn is the symbolic state

obtained via symbolic execution of a concrete trace that reaches n. For source code, Beckman

et al. (2008) identify aliasing condition α by looking at the relationship, in Sn, between the

addresses written to by I and the ones used in ψ. However, their algorithm for computing α is

language-dependent: their algorithm has the semantics of C implicitly encoded in its search for

“the addresses written to by I”. In contrast, as explained below, we developed an alternative,

language-independent approach, both to identifying α and computing Preα. Further details on

this particular problem can be found in Thakur et al. (2010).
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void bar ( ) {
ERR : / / a d d r e s s h e r e i s 0x10

}
void foo ( ) {

i n t b = MakeChoice ( ) & 1 ;
i n t r = b∗0 x68 + (1−b ) ∗0 x10 ;
∗(& r +2) = r ;
return ;

}
i n t main ( ) {

foo ( ) ;
/ / a d d r e s s h e r e i s 0x68

}

Figure 9.8: ERR is reachable, but only along a path in which a ret instruction serves to perform a
call.

9.2.6 Soundness Guarantee

The soundness argument for MCVETO is more subtle than it otherwise might appear because

of examples like the one shown in Figure 9.8. The statement *(&r+2) = r; overwrites foo’s

return address, and MakeChoice returns a random 32-bit number. At the end of foo, half the

runs return normally to main. For the other half, the ret instruction at the end of foo serves to

call bar. The problem is that for a run that returns normally to main after trace generalization

and intersection with G0, there is no frontier. Consequently, half of the runs of MCVETO, on

average, would erroneously report that location ERR is unreachable.

MCVETO uses the following policy P for classifying execution steps: (a) the position of any

form of call instruction is a call-position; (b) the position of any form of ret instruction is a

return-position. Our goals are (i) to define a property Q that is compatible with P in the sense

that MCVETO can check for violations of Q while checking only NWPrefix paths, and (ii) to establish

a soundness guarantee: either MCVETO reports that Q is violated (along with an input that

demonstrates it), or it reports that target is reachable (again with an input that demonstrates it),

or it correctly reports that Q is invariant and target is unreachable. To define Q, we augment the

instruction-set semantics with an auxiliary stack. Initially, the auxiliary stack is empty; at each
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call, a copy of the return address pushed on the processor stack is also pushed on the auxiliary

stack; at each ret, the auxiliary stack is popped.

Definition 9.4. An acceptable execution (AE) under the instrumented semantics is one in which

at each ret instruction (i) the auxiliary stack is non-empty, and (ii) the address popped from the

processor stack matches the address popped from the auxiliary stack. �

In the instrumented semantics, a flag V is set whenever the program performs an execu-

tion step that violates either condition (i) or (ii) of Definition 9.4. Instead of the initial NWA

shown in Figure 9.3, we use a similar two-state NWA that has states q1: PC 6= target ∧ ¬V and

q2: PC = target ∨ V, where q1 is non-accepting and q2 is accepting. In addition, we add one more

rule to the trace-generalization construction for Gπ from Figure 9.5:

12. For each return-step 〈ax, ret, ar〉, Gπ has an internal-transition (qax , ret,TS).

As shown below, these modifications cause the DPG algorithm to also search for traces that are

AE violations.

Theorem 9.5 (Soundness of MCVETO).

1. If MCVETO reports “AE violation” (together with an input S), execution of S performs an execution

that is not an AE.

2. If MCVETO reports “bug found” (together with an input S), execution of S performs an AE to

target.

3. If MCVETO reports “OK”, then (a) the program performs only AEs, and (b) target cannot be reached

during any AE.

Proof. If a program has a concrete execution trace that is not AE, there must exist a shortest non-

AE prefix, which has the form “NWPrefix ret” where either (i) the auxiliary stack is empty, or (ii)

the return address used by ret from the processor stack fails to match the return address on the

auxiliary stack. At each stage, the abstract graph used by MCVETO accepts an overapproximation
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of the program’s shortest non-AE execution-trace prefixes. This is true of the initial graph G0

because internal transitions have wild-card symbols. Moreover, each folded trace Gπ = π/[PC]

accepts traces of the form “NWPrefix ret” due to the addition of internal transitions to TS for

each ret instruction (item 12 above). NWA intersection of two sound overapproximations leads

to a refined sound overapproximation. Therefore, when MCVETO has shown that no accepting

state is reachable, it has also proved that the program has no AE violations.

For an example such as Figure 9.8, MCVETO reports “AE violation”.

In cases when MCVETO reports “AE violation”, it can indicate a stack-smashing attack. If

one wishes to find out more information when there is an AE violation, one can run a purely

intraprocedural version of MCVETO that does not give special treatment to call and ret instruc-

tions. This approach is potentially more expensive than running the interprocedural version of

MCVETO, but it can find out additional information about executions that are not AE.

9.3 Implementation

The MCVETO implementation incorporates all of the techniques described in Section 9.2. The

implementation uses only language-independent techniques; consequently, MCVETO can be easily

retargeted to different languages. The main components of MCVETO are language-independent

in two different dimensions:

1. The MCVETO DPG driver is structured so that one only needs to provide implementations

of primitives for concrete and symbolic execution of a language’s constructs, plus a handful

of other primitives (e.g., Preα). Consequently, this component can be used for both source-

level languages and machine-code languages.

2. For machine-code languages, I used two tools that generate the required implementations of

the primitives for concrete and symbolic execution from descriptions of the syntax and con-

crete operational semantics of an instruction set. The abstract syntax and concrete semantics

are specified using TSL (Lim and Reps, 2008). Translation of binary-encoded instructions
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to abstract syntax trees is specified using a tool called ISAL (Instruction Set Architecture

Language).2 The relationship between ISAL and TSL is similar to the relationship between

Flex and Bison—i.e., a Flex-generated lexer passes tokens to a Bison-generated parser.

In our case, the TSL-defined abstract syntax serves as the formalism for communicating

values—namely, instructions’ abstract syntax trees—between the two tools.

To perform symbolic queries on the conceptually-infinite abstract graph Section 9.2.4), the

implementation uses OpenFst (Allauzen et al., 2007) (for transducers) and OpenNWA (Driscoll

et al., 2012) (for NWAs).

9.4 Experimental Evaluation

The experiments in this section were designed to answer the following questions:

1. How effective is the BVI abstract domain (Chapter 8) for verifying machine code?

2. How effective is MCVETO in verifying machine code?

3. How does speculative trace refinement (Section 9.2.3) impact the performance of MCVETO?

We used benchmarks taken from Gulavani et al. (2006). The examples are small, but challenging.

Our experiments (see Table 9.1) were run on a single core of a single-processor quad-core 3.0

GHz Xeon computer running Windows 7, configured so that a user process has 4 GB of memory.

The benchmarks were compiled using Visual Studio 2010, and the executables were analyzed

(without using symbol-table information). Out of the 16 benchmarks used, the target was

reachable in 4, and the target PC was unreachable in 12; in Table 9.1, [ ] means the target PC is

reachable, [9] means the target PC is unreachable.

Analysis based on BVI abstract domain was able to prove that the target was unreachable

for 8 out of the 12 unreachable benchmarks. An analysis based only on the affine-equality E232

2ISAL also handles other kinds of concrete syntactic issues, including (a) encoding (abstract syntax trees to binary-
encoded instructions), (b) parsing assembly (assembly code to abstract syntax trees), and (c) assembly pretty-printing
(abstract syntax trees to assembly code).
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Test Name Expected BVI MCVETO MCVETO+

1. badBuggy [ ] 62.63 [ ? ] 0.98 [ ] 1.11 [ ]
2. berkeley [ ] 102.60 [ ? ] 26.81 [ ] 11.95 [ ]
3. berkeley-nat [ ] 103.32 [ ? ] 35.28 [ ] 21.65 [ ]
4. fig7 [ ] 6.29 [ ? ] 0.56 [ ] 0.58 [ ]

5. cars [9] 63.62 [ ? ] 12.61 [9] 14.85 [9]
6. cars.2 [9] 107.82 [ ? ] 12.8 [9] 15.52 [9]
7. fig6 [9] 6.42 [9] 0.87 [9] 2.86 [9]
8. fig8 [9] 18.16 [ ? ] 12.91 [9] 12.82 [9]
9. fig9 [9] 1.50 [9] 1.22 [9] 2.78 [9]
10. prog1 [9] 5.21 [9] 0.88 [9] 0.87 [9]
11. prog2 [9] 11.30 [9] 0.96 [9] 1.78 [9]
12. prog3 [9] 4.59 [9] 0.42 [9] 0.63 [9]
13. prog4 [9] 125.48 [ ? ] [—] [—]
14. prog5 [9] 5.69 [9] 1.2 [9] 1.44 [9]
15. test1 [9] 25.07 [9] 2.52 [9] [—]
16. test2 [9] 58.567 [9] 3.12 [9] [—]

Table 9.1: Machine-code verification experiments. The first column displays the test name. The
Expected column lists the expected answer: [ ] means the target PC is reachable, [9] means
the target PC is unreachable. The ’BVI’ column displays the time taken (in seconds) and the
answer obtained when performing analysis based on the BVI abstract domain; [ ? ] means the
analysis could not determine whether or not the target PC was reachable. No total timeout
was specified for the BVI analysis. The ’MCVETO’ column displays the time taken (in seconds)
by MCVETO when not using any speculative trace refinement. The MCVETO+ column displays
the time taken (in seconds) by MCVETO when using speculative trace refinement. [—] means
MCVETO or MCVETO+ timed out after 100 seconds.

over registers was unable to prove unreachability for any of the benchmarks. This result answers

question 1. Note that for the 4 benchmarks in which the target is reachable, the BVI analysis

reports that there could be a path to the target, which is the only possible sound answer for such

an analysis.

The ’MCVETO’ column in Table 9.1 displays the time taken (in seconds) by MCVETO for

verifying the benchmarks when not using speculative trace refinement (Section 9.2.3). The total

timeout for MCVETO was set to 100 seconds. For all but two of the benchmarks, MCVETO was

able to correctly ascertain the reachability or unreachability of the target. This result answers

question 2. Note that no total timeout was given for the BVI analysis. Furthermore, the time

reported for MCVETO includes the time taken to learn the control-flow graph of the program using
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trace generalization (Section 9.2.2); on the other hand, the BVI analysis uses CodeSurfer/x86

(Balakrishnan et al., 2005) to construct the control-flow graph.

In Table 9.1, MCVETO+ represents the MCVETO algorithm when using speculative trace

refinement. MCVETO+ performs better than MCVETO for two of the reachable benchmarks, while

it performs worse for two unreachable benchmarks, as highlighted in Table 9.1. This experiment

answers question 3.

9.5 Related Work

Machine-Code Analyzers Targeted at Finding Vulnerabilities. A substantial amount of work

exists on techniques to detect security vulnerabilities by analyzing source code for a variety

of languages (Wagner et al., 2000; Livshits and Lam, 2005; Xie and Aiken, 2006). Less work

exists on vulnerability detection for machine code. Kruegel et al. (2005) developed a system

for automating mimicry attacks; it uses symbolic execution to discover attacks that can give up

and regain execution control by modifying the contents of the data, heap, or stack so that the

application is forced to return control to injected attack code at some point after the execution

of a system call. Cova et al. (2006) used that platform to detect security vulnerabilities in x86

executables via symbolic execution.

Prior work exists on directed test generation for machine code (Godefroid et al., 2008; Brumley

et al., 2008). Directed test generation combines concrete execution and symbolic execution to find

inputs that increase test coverage. An SMT solver is used to obtain inputs that force previously

unexplored branch directions to be taken. In contrast, MCVETO implements directed proof

generation. Unlike directed-test-generation tools, MCVETO is goal-directed, and works by trying

to refute the claim “no path exists that connects program entry to a given goal state”.

Machine-Code Model Checkers. The SYNERGY model checker can be used to verify safety

properties of an x86 executable compiled from a “single-procedure C program with only [int-

valued] variables” (Gulavani et al., 2006) (i.e., no pointers). It uses debugging information to

obtain information about variables and types, and uses Vulcan (Srivastava et al., 2001) to obtain
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a CFG. It uses integer arithmetic—not bit-vector arithmetic—in its solver. In contrast, MCVETO

addresses the challenges of checking properties of stripped executables.

AIR (“Assembly Iterative Refinement”) (Chaki and Ivers, 2009) is a model checker for PowerPC.

AIR decompiles an assembly program to C, and then checks if the resulting C program satisfies

the desired property by applying COPPER (Chaki et al., 2004), a predicate-abstraction-based

model checker for C source code. They state that the choice of COPPER is not essential, and that

any other C model checker, such as SLAM (Ball and Rajamani, 2001) or BLAST (Henzinger et al.,

2002) would be satisfactory. However, the C programs that result from their translation step use

pointer arithmetic and pointer dereferencing, whereas many C model checkers, including SLAM

and BLAST, make unsound assumptions about pointer arithmetic.

[MC]SQUARE (Schlich, 2008) is a model checker for microcontroller assembly code. It uses

explicit-state model-checking techniques (combined with a degree of abstraction) to check CTL

properties.

Self-Modifying Code. The work on MCVETO addresses a problem that has been almost entirely

ignored by the PL research community. There is a paper on SMC by Gerth (1991), and a recent

paper by Cai et al. (2007). However, both of the papers concern proof systems for reasoning

about SMC. In contrast, MCVETO can verify (or detect flaws in) SMC automatically.

As far as I know, MCVETO is the first model checker to address verifying (or detecting flaws

in) SMC.

Trace Generalization. The trace-generalization technique of Section 9.2.2 has both similarities

to and differences from the path programs of Beyer et al. (2007) and the trace-refinement technique

of Heizmann et al. (2010). All three techniques refine an overapproximation to eliminate families

of infeasible concrete traces. However, trace generalization obtains the desired outcome in a

substantially different way. Beyer et al. analyze refuted abstract traces to obtain new predicates

to refine the predicate abstraction in use. The subsequent refinement step requires possibly

expensive calls on an SMT solver to compute new abstract transformers. Heizmann et al. adopt

a language-theoretic viewpoint: once a refutation automaton is constructed—which involves
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calling an SMT solver and an interpolant generator—refinement is performed by automaton com-

plementation followed by automaton intersection. In contrast, our generalized traces are created

by generalizing a feasible concrete trace to create directly a representation that overapproximates the

set of minimal traces that reach target. Consequently, refinement by trace generalization involves

no calls on an SMT solver, and avoids the potentially expensive step of automaton complementation.

9.6 Chapter Notes

The design and implementation of MCVETO was based on that of the MCDASH tool (Lal et al.,

2009). In particular, both tools use directed proof generation (Section 9.1) and a language-

independent algorithm to identify aliasing relevant to a property (Section 9.2.5). However, the

techniques for trace generalization (Section 9.2.2), speculative trace refinement (Section 9.2.3),

interprocedural DPG (Section 9.2.4), and finding acceptable-execution violations (Section 9.2.6)

are not found in MCDASH.
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Chapter 10

A Distributed SAT Solver

Groups do not need to be dominated by exceptionally intelligent people

in order to be smart. Even if most of the people within a group are not

especially well-informed or rational, it can still reach a collectively wise

decision. This is a good thing, since human beings are not perfectly

designed decision makers. [. . .] Yet despite all these limitations, when

our imperfect judgments are aggregated in the right way, our collective

intelligence if often excellent.
— James Surowiecki, The Wisdom of Crowds

In this chapter, I describe a new distributed SAT solver, called DiSSolve, which uses a new

proof rule that combines concepts from Stålmarck’s method with those found in modern SAT

solvers.

A modern sequential SAT solver usually implements same variant of the Davis, Putnam,

Logemann, and Loveland (DPLL) procedure (Davis et al., 1962). A DPLL-based SAT solver

performs a backtrack search over the set of assignments to literals. When a modern solver

reaches a conflict during the search, it generates a conflict clause (or learned clause) (Marques

Silva and Sakallah, 1996; Moskewicz et al., 2001). This learned clause enables the solver to prune

the search space. This technique for “learning from failure” is called Conflict-Driven Clause

Learning (CDCL). More information regarding DPLL/CDCL solvers can be found in Darwiche

and Pipatsrisawat (2009); Marques-Silva et al. (2009).
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A modern parallel SAT solver falls into the following two categories:

• The divide-and-conquer approach incrementally divides the search space into subspaces,

which are then allocated to a DPLL/CDCL solver (Chrabakh and Wolski, 2003; Chu et al.,

2008). Care has to be taken to ensure load balancing when performing the division of the

search space.

• The Parallel Portfolio approach exploits the complementarity of different sequential DPLL/CDCL

strategies to let them compete and cooperate on the same formula (Hamadi et al., 2009b).

Though load balancing is not an issue in this approach, care has to be taken to craft the

individual strategies.

The DiSSolve algorithm (Section 10.1.1) presented in this chapter can be seen as combining

concepts from Stålmarck’s method and modern DPLL/CDCL solvers:

1. DiSSolve partitions the search space using k variables in the same fashion that the Dilemma

Rule partitions the search space in Stålmarck’s method.

2. Each of the 2k branches can be solved concurrently with the help of a sequential DPLL/CDCL

solver, similar to what is done in the divide-and-conquer approach discussed above.

3. The DPLL/CDCL solver assigned to a branch is allotted a finite amount of time, after

which the DPLL/CDCL solver returns a set of learned clauses. Such a branch-and-merge

approach does not have to as careful about load balancing, unlike the divide-and-conquer

approach.

4. DiSSolve performs a union of the information from all the branches, instead of an inter-

section as done in Stålmarck’s method. Performing a union of clauses is more effective

at pruning the search space compared to computing an intersection: with intersection

only common information learned by every process can be used to prune the search space,

while with union, all of the information learned by each process can be used to prune the

search space. In abstract-interpretation terms, DiSSolve combines the information from
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the branches using a meet (u), while the Dilemma Rule in Stålmarck’s method combines

the information using a join (t).

The DiSSolve implementation (Section 10.1.2) also makes use of techniques already imple-

mented in modern DPLL/CDCL solvers, such as variable branching heuristics.

The contributions of this chapter can be summarized as follows:

• I describe, DiSSolve, a new SAT solver that combines the Dilemma rule in Stålmarck’s

method with clause-learning techniques from DPLL/CDCL solvers (Section 10.1).

• I evaluate the performance of DiSSolve when deployed on a multi-core machine and on

the cloud (Section 10.2).

• I present a natural extension of the DiSSolve algorithm from SAT to SMT, and describe

the DiSSolve algorithm as an SMA solver (Section 10.3).

Section 10.4 presents related work.

10.1 The DiSSolve Algorithm

This section explains the algorithm used in DiSSolve. Section 10.1.1 explains the basic algo-

rithm and skips over some of the details of the algorithm. These algorithm details are filled in

Section 10.1.2. Thus, Section 10.1.1 can be viewed as describing the algorithm mechanism, and

Section 10.1.2 describing the algorithm policy.

10.1.1 Basic Algorithm

Algorithm 20 shows the basic DiSSolve algorithm for deciding the satisfiability of a propositional-

logic formula ϕ. C is a set of clauses, which is initialized to the empty set (line 1). Recall that

a clause c is a disjunction of literals. I use ε to represent an empty clause, whose meaning is to

be interpreted as false. The meaning of a set of clauses C = {c1, c2, . . . , cn} is: JCK def=
∧

1≤i≤n ci.

The meaning of the empty set of clauses ∅ is true.
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Algorithm 20: DiSSolve(ϕ)
1 C ← ∅
2 for j ∈ {0, 1, 2, . . .} do
3 Vj ← SplittingVariables(j)
4 tj ← TimeBudget(j)
5 (ansj , C)← DiSSolveSplit(ϕ,C, Vj , tj)
6 if ansj is sat or ansj is unsat then
7 return ansj

Algorithm 21: DissolveSplit(ϕ,C, V, t)
1 k ← |V |
2 {a0, a1, . . . , a2k−1} ← DilemmaAssumptions(V )
3 for i ∈ {0, 1, . . . , 2k − 1} do
4 (ansi, Ci)← Deduce(ϕ,C, ai, t)
5 if ansi is sat then
6 return (sat, ∅)
7 if all ansi are unsat then
8 return (unsat, {ε})
9 C ′ ← UnionClauses(C,C0, C1, C2 . . . , C2k−1)

10 return (unknown, C ′)

In the loop from lines 2–7, DiSSolve repeatedly calls DiSSolveSplit (Algorithm 21). The loop

invariant is ϕ⇒C. Vj is a set of variables to be used in iteration j, which are returned by a call

to SplittingVariables (line 3). A call to TimeBudget returns the time budget tj to be used by

iteration j. The formula ϕ, the clauses C, the splitting variables Vj , and the time budget tj are

passed to the call to DiSSolveSplit on line 5. If the answer ansj returned by DiSSolveSplit is sat

or unsat, then DiSSolve returns; if the answer is unknown, then the set of clause C returned by

DiSSolveSplit is used in the next iteration of the loop.

Algorithm 21 shows the algorithm for DiSSolveSplit, which forms the core of the DiSSolve

algorithm. If the k represents the size of the set of variables V , the call to DilemmaAssumptions(V )

returns the full set of 2k assignments to the variables V (line 2). Each assignment (or assumption)

ai is passed to the call to Deduce on line 4, along with the formula ϕ, set of clauses C, and the

time budget t. If any of the calls to Deduce returns sat within time budget t, then DiSSolveSplit

return sat, which implies that the formula ϕ is satisfiable. If all the 2k calls to Deduce return unsat,
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then DiSSolveSplit returns unsat, which implies that ϕ is unsatisfiable. If neither of these two

cases occur, then DiSSolveSplit performs a union of (i) the clauses Ci returned by the 2k separate

calls to Deduce, and (ii) the clause C (line 9).

Each call to function Deduce on line 4 attempts to find, within the time budget t, either a

satisfying assignment for ϕ under the given assumption ai, or to prove that ϕ is unsatisfiable

under ai. The set of clauses Ci returned by Deduce on line 4 is such that ϕ⇒Ci. This implication

follows from the inherent property of conflict clauses that they are independent of the assumption

ai under which they occur (Eén and Sörensson, 2003). DiSSolveSplit partitions the search space,

because each call to Deduce on line 4 works on a separate part of the search space. However, the

space of deductions is common to all instances; that is, the learned clauses Ci are pervasive.

At first glance, the pseudo-code for DiSSolveSplit looks similar to that for k-saturation in

Stålmarck’s method (Algorithm 4, Section 3.4.2). In particular, the use of the 2k assignments to

split the search space is common between the two algorithms. However, at the end of the Dilemma

Rule, we perform an intersection of the information from the various branches. DiSSolveSplit, on

the other hand, performs a union of the information computed by each of the individual calls to

Deduce.

10.1.2 Algorithm Details

This section presents the details not covered in Section 10.1.1; I explain the various details going

“bottom-up”: I start with Deduce, then DiSSolveSplit, and finally DiSSolve.

Implementation of Deduce. Deduce is implemented as a wrapper around the efficient SAT

solver, Glucose 3.0 (Audemard and Simon, 2009), whose implementation is based on MiniSAT

(Eén and Sörensson, 2004). The Glucose implementation was modified slightly to communicate

with DiSSolveSplit via protobufs (protobuf, 2014). Apart from the convenience, the protobuf

format also compresses the data.

Returned learned clauses. The learned clauses Ci returned by a call to Deduce on line 4 are

ordered by priority. In particular, Glucose uses the Literals Blocks Distance (LBD) metric to
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rank each learned clause (Audemard and Simon, 2009). Furthermore, the maximum length is

restricted to be no greater than some fixed value m. (In practice, the value of m was chosen to be

30.)

Cancellation. If the call to Deduce on line 4 infers that ϕ is unsatisfiable under the assumption

ai, then it also returns a final conflict clause. A conflict clause cf only contains a subset of the

literals occurring in assumption ai, and is such that ϕ ∧ c is unsatisfiable. This conflict clause cf

is used to cancel other ongoing branches. For example, if cf ≡ (v1 ∨ ¬v2), then DiSSolveSplit

can safely cancel all pending calls to Deduce that have either v1 = true or v2 = false as part of

their assumption. In practice, instead of merely canceling a call to Deduce, it is sent an interrupt.

Upon receiving the interrupt, the call to Deduce terminates, but returns its current set of learned

clauses.

Concurrent execution. Each call to Deduce in the loop in DiSSolveSplit (lines 3–6) can be executed

concurrently, because each of the 2k calls to Deduce are independent of each other.

DiSSolveSplit schedules the 2k calls to Deduce onto the c compute engines provided. If

DiSSolve is given access to c = 2n compute engines, picking k = (n+ 1) seems to work well. I

call this technique overclocking. The intuition behind this is that short final conflict clauses often

cause many of the Deduce calls to be terminated. Overclocking increases the utilization of the c

compute engines.

Clause Management. On line 9, UnionClauses aggregates the learned clauses returned by each

of the 2k branches. If we simply perform a union of the clauses, then very quickly the number

of clauses maintained by DiSSolve will grow prohibitively large. These clauses have to be

communicated to each of the calls to Deduce, sometimes over a network. Thus, to control the

number of clauses maintained, the call to UnionClauses on line 9 of DiSSolveSplit does the

following:

• A UBTree (Hoffmann and Koehler, 1999), which is a trie data structure, is used to implement

subsumption of clauses. For example, the clause v1 ∨ v4 subsumes the (longer) clause

v1 ∨ v2 ∨ ¬v3 ∨ v4.
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• A maximum budget on the number of clauses is used. As stated above, each Deduce call

returns the clauses sorted based on their quality. If the number of clauses exceeds the

clause budget, then clauses with lower priority are discarded until the number of clauses

does not exceed the clause budget. Unary and binary clauses are never discarded.

Choosing splitting variables. Each call to Deduce returns an ordered sequence of k variables

it considers as useful to split on; each variable is assigned a weight reflecting its priority.

SplittingVariables (line 3 in DiSSolve) picks the k variables with the highest weight. This

technique allows DiSSolve to reuse the decision-variable heuristics implemented in existing SAT

solver. To make the pseudo-code simpler, the return of splitting variables is not shown on line 4

of DiSSolveSplit.

Time budget. As seen in line 4, the call to DiSSolveSplit in the jth iteration of the loop in

DiSSolve is provided a time budget tj . Thus, each iteration of the loop in DiSSolve can be

viewed as performing a restart of the search. It has been argued in Gomes et al. (1998) that

randomization and, in particular, restarts, counter the heavy-tail behavior found in combinatorial

search. The question arises regarding what the restart schedule should be. One possibility is to

use the same constant time budget for each tj . However, it has been shown that restart schedules

that vary the time budget work better in practice (Gomes et al., 1998, 2000). I experimented with

the following two restart sequences:

• Luby restart sequence (Luby et al., 1993)

• PicoSAT restart sequence (Biere, 2008, Section 3.2)

In Section 10.2, I use DiSSolveSplitf to mean a call to DiSSolveSplit in which the time budget t

is finite, and DiSSolveSplit∞ to mean a call to DiSSolveSplit in which the time budget t is infinite.

Note that DiSSolveSplit∞ never performs a merge of the branches by calling UnionClauses, and,

thus, does not make use of the repeated split-and-merge behavior of DiSSolve.

Phase Saving. One disadvantage of frequent restarts discussed by other reseachers is that the

restart could erase partial solutions, and as a result might cause work to be repeated. Phase saving
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(Pipatsrisawat and Darwiche, 2007) is a technique that simply saves the partial solutions. In

particular, the technique maintains an additional array of literals, called the saved-literal array.

Every time the solver backtracks and erases assignments, each erased assignment is saved in the

saved-literal array. Now, any time the solver decides to branch on variable v, it uses the value in

the saved-literal array, if one exists, to decide the polarity of the variable.

This phase-saving technique is implemented in the Glucose solver that is used to implement

Deduce. Each call to Deduce is given as input and returns as output the saved-literal array.

DiSSolveSplit aggregates the information from all 2k saved-literal arrays to compute the saved-

literal array for the next iteration. This technique allows some of the partial solutions to reused

across iterations. To make the pseudo-code simpler, the use of a saved-literal array is not shown

on line 4 of DiSSolveSplit.

10.2 Experimental Evaluation

This section describes an experimental evaluation of DiSSolve. Section 10.2.1 describes an

experiment for configuring DiSSolve. Section 10.2.2 presents an evaluation of DiSSolve when it

is deployed on a multicore machine. Section 10.2.3 presents an evaluation of DiSSolve when it

is deployed on hundreds of machines on a cloud-computing platform.

10.2.1 Configuring DiSSolve

The experiments described in this section address the following questions:

1. What are good parameter settings for DiSSolve?

2. Does DiSSolveSplitf perform better than DiSSolveSplit∞?

ParamILS (Hutter et al., 2009) is an automatic algorithm configuration framework. It explores

the parameter-configuration space using iterated local search along with solution perturbation

to escape from local optima. I used ParamILS to find a good configuration out of a total of 1296

configurations corresponding to the various settings for 6 parameters for DiSSolve. One of the
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parameters controlled the time budget for each round of DiSSolveSplit—in particular, whether

the time budget should be (effectively) infinite (DiSSolveSplit∞), or whether it should be finite

(DiSSolveSplitf ). If a finite time budget is used, then various restart sequences could be used:

a fixed budget, the Luby restart sequence (Luby et al., 1993), or the PicoSAT restart sequence

(Biere, 2008, Section 3.2).

ParamILS adaptively limits the time spent for evaluating individual configurations; the time

limit for evaluating an individual configuration ts can be specified by the user. In this experiment,

I used ts = 250 seconds.

The set of benchmark instances consisted of a total of 79 satisfiable and unsatisfiable formulas

taken from the application track of SAT-COMP 2013 (SAT-COMP’13, 2013). These benchmarks

were chosen because (sequential) Glucose took less than 200 seconds to solve each of them.

The parameter tuning was carried out for 26 hours on an 8-core Intel Xeon 2.4 Ghz machine

with 32 GB of RAM running Red Hat Linux 6.5.

The parameter configuration provided by DiSSolve is used for the rest of the experiments

described in this section.

ParamILS did not return DiSSolveSplit∞ as part of the final configuration. Instead, it picked

a finite time budget per round; the specific restart sequence that was chosen was the PicoSAT

restart sequence. This result provides confidence in the fact that the branch-and-merge behavior

in Algorithm 20 is useful. This result answers question 2 posed above.

10.2.2 DiSSolve on Multi-Core Machine

In this experiment, DiSSolve was compared with ppfolio, a parallel portfolio solver (Roussel,

2012). The experiment was designed to answer the following question:

1. How does the performance of DiSSolve compare with ppfolio when solving application

track benchmarks?

2. How does the performance of DiSSolve compare with ppfolio when solving difficult

benchmarks?
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Figure 10.1: Log-log scatter plot comparing the running time (in seconds) of ppfolio[c = 8] and
DiSSolve[c = 23, k = 4] on 150 unsatisfiable (UNSAT) benchmarks.

To answer question 1, we use the 150 unsatisfiable and 150 satisfiable benchmarks in the appli-

cation track of SAT-COMP 2013 (SAT-COMP’13, 2013). The experiment was run on n1-standard-8

machine type, which is a standard 1 CPU machine type with 8 virtual CPUs and 30 GB of mem-

ory available on the Google Compute Engine service. The time limit per benchmark was 1000

seconds. Figure 10.1 shows the log-log scatter plot comparing the time taken (in seconds) by

DiSSolve[c = 23, k = 4] and ppfolio[c = 8] on the 150 unsatisfiable (UNSAT) benchmarks. This

scatter plot shows that DiSSolve performs significantly better than ppfolio on the unsatisfiable

benchmarks. This fact is also illustrated using Figure 10.2, which shows the cactus plot for

DiSSolve[c = 23, k = 4] and ppfolio[c = 8] using the 150 UNSAT benchmarks. The x-axis

shows the number of correctly solved benchmarks. The y-axis displays the cumulative time

taken (in seconds) to correctly solve the benchmarks. A point (x, y) denotes that the solver

was able to correctly solve at most x benchmarks in y seconds. Thus, a curve that is lower and
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Figure 10.2: Cactus plot comparing the running time (in seconds) of ppfolio[c = 8] and
DiSSolve[c = 23, k = 4] on 150 unsatisfiable (UNSAT) benchmarks.

to the left is better. Figure 10.3 shows the log-log scatter plot comparing the time taken (in

seconds) by DiSSolve[c = 23, k = 4] and ppfolio[c = 8] on the 150 satisfiable (SAT) benchmarks.

This scatter plot shows that DiSSolve performs slightly worse than ppfolio on the satisfiable

benchmarks. This fact is also illustrated using Figure 10.4, which shows the cactus plot for

DiSSolve[c = 23, k = 4] and ppfolio[c = 8] using the 150 SAT benchmarks.

To answer question 2 above, we used the 45 formulas in the application track of SAT-COMP

2013 that were not solved by any sequential solver within a time limit of 10000 seconds (SAT-

COMP’13, 2013). Out of the 45 benchmarks, 44 were unsatisfiable instances. The experiment

was run on the same 8-core machine described in Section 10.2.1. The time limit for DiSSolve

and ppfolio was 1000 seconds. ppfolio timed out for all 45 benchmarks. DiSSolve was able

to correctly prove unsatisfiability for 19 of the 45 benchmarks. Table 10.1 lists the times for the

individual benchmarks.
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Figure 10.3: Log-log scatter plot comparing the running time (in seconds) of ppfolio[c = 8] and
DiSSolve[c = 23, k = 4] on 150 satisfiable (SAT) benchmarks.

10.2.3 DiSSolve on the Cloud

The experiment in this section was designed to answer the following question:

• How well does DiSSolve perform when used as a distributed solver deployed on hundreds

of machines on the cloud?

The benchmarks used in this experiment consisted of 10 formulas in the application track

of SAT-COMP 2013 that were not solved by any parallel solver running on a 32-core machine

within a time limit of 10000 seconds (SAT-COMP’13, 2013). Out of the 10 benchmarks, 8 were

unsatisfiable instances.

In this experiment, DiSSolve was given 128 and 256 compute engines. The compute en-

gines were deployed on the Google Compute Engine cloud; each compute engine was of the

n1-standard-1 machine type, which is a standard 1 CPU machine type with 1 virtual CPU



175

Benchmark DiSSolve
[c = 23, k = 4]

1. bivium-39-200-0s0-0x28df. . .ad91-98.cnf 450.11
2. bivium-39-200-0s0-0x53e7. . .a300-63.cnf 802.99
3. bivium-39-200-0s0-0x5fa9. . .80d7-30.cnf 634.16
4. bivium-39-200-0s0-0xdcfb. . .b174-43.cnf 460.78
5. dated-5-13-u.cnf 562.26
6. hitag2-7-60-0-0x5f8ec0ffa4b15c6-25.cnf 875.06
7. hitag2-7-60-0-0xe8fa35372ed37e2-80.cnf 729.38
8. hitag2-7-60-0-0xe97b5f1bee04d70-47.cnf 412.08
9. hitag2-8-60-0-0xa3b8497b8aad6d7-42.cnf 690.44

10. hitag2-8-60-0-0xb2021557d918860-94.cnf 931.58
11. hitag2-8-60-0-0xdcdbc8bf368ee73-37.cnf 683.33
12. hitag2-10-60-0-0xa360966c6eb75c4-62.cnf 751.74
13. hitag2-10-60-0-0x8edc44db7837bbf-65.cnf 803.38
14. hitag2-10-60-0-0xac23f1205f76343-96.cnf 983.64
15. hitag2-10-60-0-0xb7b72dfef34c17b-39.cnf 579.67
16. hitag2-10-60-0-0xdf7fa6426edec07-17.cnf 432.34
17. hitag2-10-60-0-0xe14721bd199894a-99.cnf 479.23
18. hitag2-10-60-0-0xe6754daf48162bf-46.cnf 638.82
19. hitag2-10-60-0-0xfee9637399d85a2-78.cnf 636.40

Table 10.1: Run time, in seconds, for DiSSolve on an 8-core machine. The number of compute
engines (or cores) available to DiSSolve was 8; the value of k was chosen to be 4. (The names of
some of the benchmarks have been truncated due to space constraints.)

Benchmark DiSSolve DiSSolve
[c = 27, k = 8] [c = 28, k = 9]

1. k_unsat.cnf 719.58 586.46
2. ctl_3791_556_unsat.cnf 965.67 799.83
3. ctl_4291_567_5_unsat.cnf 408.96 270.23
4. arcfour_initialPermutation_5_32.cnf 533.58 503.17
5. arcfour_initialPermutation_6_24.cnf 685.66 576.59

Table 10.2: Run time, in seconds, for DiSSolve when run on the cloud. c denotes the number of
compute engines available to DiSSolve, and k is the number of splitting variables.
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Figure 10.4: Cactus plot comparing the running time (in seconds) of ppfolio[c = 8] and
DiSSolve[c = 23, k = 4] on 150 unsatisfiabile (UNSAT) benchmarks.

and 3.75 GB of memory available on the Google Compute Engine service. The time limit per

benchmark for DiSSolve was 1000 seconds. DiSSolve was able to correctly prove unsatisfiability

for 5 out of the 10 benchmarks. Table 10.2 lists the running times for the individual benchmarks.

The second and third columns in Table 10.2 list the time taken by DiSSolve when using 128 and

256 compute engines, respectively.

10.3 Generalization

In this section, I first describe a natural extension of DiSSolve from SAT to SMT. I then describe

the DiSSolveSplit function using abstract-interpretation terminology.

The DiSSolve algorithm described in Section 10.1 can be naturally generalized to handle

richer logics by replacing the SAT solver used to implement Deduce on line 4 with an SMT
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Algorithm 22: AbstractDissolveSplit(ϕ,A)
1 k = |V |
2 {A1, A2, . . . , An} ← AbstractDilemmaAssumptions()
3 for i ∈ {1, 2, . . . , n} do
4 A′i ← D̂educe(ϕ,A uAi)
5 A′ ← A uA′0 uA′1 uA′2 . . . uA′2k−1
6 return A′

solver. Consequently, the set of clauses returned would not be over propositional literals, but

would instead contain literals of the particular theory. However, the algorithm as stated would

still apply to this new setting; in particular, the UnionClauses method could ignore the theory

interpretation of the literals, and the DiSSolveSplit method would remain sound. Furthermore,

instead of allowing arbitrary literals of the theory, we could restrict the set of literals to a fixed set

of predicates. In other words, we could use an abstract domain of clauses involving a fixed set of

predicates (which is one way to implement the abstract domain of full predicate abstraction).

The implementation of the DiSSolve algorithm described in Section 10.1 can be viewed as

using the m-clausal abstract domain; that is, an abstract domain of clauses of length up to m. The

meet of two abstract values is the union of the sets of clauses that correspond to the abstract

values.

Algorithm 22 presents the DiSSolveSplit function of Algorithm 21 using abstract-interpretation

terminology. An abstract value A from an abstract domain A plays the role of the set of clauses

C used in Algorithm 21. The function AbstractDilemmaAssumptions on line 2 returns a set of n

abstract values Ai such that
⋃
i γ(Ai) ⊇ γ(A). The function D̂educe must return an abstract value

A′i such that ϕ⇒ γ̂(A′i) (line 4).1 Finally, on line 5, the abstract values returned by each call to

D̂educe are merged by performing a meet (u).

Figures 10.5 and 10.6 illustrate the two distinct processes that occur in the calls to D̂educe

on line 4, and shed light on the behavior of AbstractDissolveSplit in terms of the lattice of the

abstract domain A. Assume that AbstractDilemmaAssumptions returns two abstract values
1 Note that, unlike Algorithm 18 and Figure 6.3(b), where A′i v Ai, at line 4 of Algorithm 22 A′i v Ai does not

hold, in general. The requirement on A′i is ϕ⇒ γ̂(A′i).
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𝐴 ⊓ 𝐴1 
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𝐴 ⊓ 𝐴2 

𝐴 

⊤ 

Figure 10.5: Each call to D̂educe in AbstractDissolveSplit works on a different, though not
necessarily disjoint, portion of the search space. The dot-shaded sub-lattice (on the left) is
searched for models of ϕ that satisfy the (abstract) assumption A1. The solid-filled sub-lattice
(on the right) is searched for models of ϕ that satisfy the (abstract) assumption A2.

A1 and A2. Figure 10.5 illustrates the different, though not necessarily disjoint, search spaces,

shown as different shaded sub-lattices, that are explored by the calls to D̂educe(ϕ,A u A1)

and D̂educe(ϕ,A uA2) in the loop on lines 3–4 in Algorithm 22. Specifically, D̂educe(ϕ,A uA1)

restricts its search to models ofϕ that satisfy the (abstract) assumptionA1, while D̂educe(ϕ,AuA2)

restricts its search to models of ϕ that satisfy the (abstract) assumption A2. Alternatively, in the

case of an SMA-based solver, one can think about the two calls to D̂educe as trying to prove

different goals. In particular, D̂educe(ϕ,A uA1) is trying to show that ϕ implies ¬γ̂(A1), while

D̂educe(ϕ,A uA2) is trying to show that ϕ implies ¬γ̂(A2).

Figure 10.6 illustrates how each call to D̂educe infers (possibly different) globally true ab-

stract values A′1 and A′2, each starting with the currently known abstract value A. Though

the calls to D̂educe work over different search spaces, the space of deductions is common

to both calls. For instance, Figure 10.6 illustrates how D̂educe(ϕ,A u A1) deduces the ab-

stract values A11, A12, and A′1. These abstract values satisfy A w A11 w A12 w A′1 and

ϕ⇒ γ̂(A), ϕ⇒ γ̂(A11), ϕ⇒ γ̂(A12), ϕ⇒ γ̂(A′1). The call D̂educe(ϕ,A uA2) follows a different se-
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Figure 10.6: Each call to D̂educe in AbstractDissolveSplit infers (possibly different) globally
true abstract values A′1 and A′2, where ϕ⇒ γ̂(A′1) and ϕ⇒ γ̂(A′2). These two branches are then
merged by performing a meet.

quence of deductions to reach the abstract value A′2, where ϕ⇒ γ̂(A′2). Finally, the two branches

of the proof are then merged by performing the meet of A′1 and A′2.

10.4 Related Work

This section reflects only a small portion of the literature on sequential and parallel SAT solvers.

The introduction of this chapter already provided a qualitative comparison of DiSSolve with

modern parallel SAT solvers based on divide-and-conquer and parallel portfolio approaches.

Hamadi and Wintersteiger (2012) present an overview of parallel SAT solvers.

Katsirelos et al. (2013) explore bottlenecks to parallelization of SAT solvers. Their findings

suggest that efficient parallelization of SAT is not merely a matter of designing the right clause-

sharing heuristic. They suggest exploring solvers based on other proof systems that produce

more parallelizable refutations. This observation provided motivation for exploring a technique

that does not fall into the divide-and-conquer and parallel-portfolio approaches.
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SatX10 (Bloom et al., 2012) is a framework for implementing parallel SAT solvers based

on the parallel execution language X10. The implementation of DiSSolve is written in the go

programming language (Go, 2014). The concurrency features built into go greatly simplified the

design and implementation of DiSSolve.

Audemard et al. (2012) explore techniques for clause exchanges within a parallel SAT solver

that incorporate the LBD heuristic developed for the Glucose sequential solver. They incorporate

these techniques in Penelope, a portfolio-based parallel SAT solver.

Hamadi et al. (2011) describe a lazy-decomposition technique for distributing formulas,

which is based on Craig interpolation. Instead of partitioning the search space, Hamadi et al.

(2011) partition the clauses of the problem formula. Such a partitioning technique is especially

useful when the input formula is too large to fit in main memory. This approach is orthogonal to

the search-space decomposition technique used in DiSSolve.

The technique of choosing partition variables as a weighted sum of the decision variables

returned by Deduce used in DiSSolve can also be found in Martins et al. (2010).

Currently, DiSSolve maintains a fixed bound on the number of clauses maintained, and the

number of clauses returned by each call to Deduce. Hamadi et al. (2009a) described a dynamic

control-based technique for guiding clause sharing.

10.5 Chapter Notes

Nick Kidd helped with the implementation of DiSSolve in the go programming language. He

also directed me to the book The Wisdom of Crowds from which the quotation for this chapter was

taken.

I had a great time learning how to use The Cloud.
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Chapter 11

Satisfiability Modulo Abstraction for

Separation Logic with Linked Lists

This chapter describes a sound procedure for checking the unsatisfiability of formulas in a frag-

ment of separation logic. The procedure is designed using concepts from abstract interpretation,

and is thus a Satisfiability Modulo Abstraction (SMA) solver.

Separation logic (Reynolds, 2002) is an expressive logic for reasoning about heap-allocated

data structures in programs. It provides a mechanism for concisely describing program states by

explicitly localizing facts that hold in separate regions of the heap. In particular, a “separating

conjunction” (ϕ1 ∗ ϕ2) asserts that the heap can be split into two disjoint regions (“heaplets”)

in which ϕ1 and ϕ2 hold, respectively (Reynolds, 2002). A “septraction” (ϕ1 −~ ϕ2) asserts

that a heaplet h can be extended by a disjoint heaplet h1 in which ϕ1 holds, to create a heaplet

h1 ∪ h in which ϕ2 holds (Vafeiadis and Parkinson, 2007). The −~ operator is sometimes called

existential magic wand, because it is the DeMorgan-dual of the magic-wand operator “−∗” (also

called separating implication); i.e., ϕ1 −~ ϕ2 iff ¬(ϕ1 −∗ ¬ϕ2).

The use of separation logic in manual, semi-automated, and automated verification tools is a

burgeoning field (Berdine et al., 2005; Distefano et al., 2006; Magill et al., 2007; Distefano and

Parkinson, 2008; Dudka et al., 2013). Most of these incorporate some form of automated reasoning

for separation logic, but only limited fragments of separation logic are typically handled.
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Given a formula ϕ, the unsatisfiability checker sets up an appropriate abstract domain that is

tailored for representing information about the meanings of subformulas of ϕ. It uses an abstract

domain of shape graphs (Sagiv et al., 2002) to represent a set of heap structures. The proof

calculus that is presented performs a bottom-up evaluation of ϕ, using a particular shape-graph

interpretation. It computes an abstract value that over-approximates the set of satisfying models

of ϕ. If the over-approximation is the empty set of shape graphs, then ϕ is unsatisfiable. If ϕ is

satisfiable, then the procedure reports a set of abstract models.

The unsatisfiability checker presented in this chapter is the first to apply the SMA approach

to a fragment of separation logic. One of the main advantages of the SMA approach is that it is

able to reuse abstract-interpretation machinery to implement decision procedures. In Chapter 6,

for instance, the polyhedral abstract domain—implemented in PPL (Bagnara et al., 2008)—is

used to implement a decision procedure for the logic of linear rational arithmetic. In this chapter,

the abstract domain of shapes—implemented in TVLA (Sagiv et al., 2002)—is used in a novel

way to implement a sound procedure for checking unsatisfiability of formulas in separation

logic. The challenge was to instantiate the parametric framework of TVLA to precisely represent

the literals and capture the spatial constraints of our fragment of separation logic.

The nature of this unsatisfiability checker is thus much different from other decision proce-

dures for fragments of separation logic that I are aware of. Most previous decision procedures

are proof-theoretic. In some sense, our method is model-theoretic: it uses explicitly instantiated sets

of 3-valued structures to represent overapproximations of the models of subformulas.

The fragment of separation logic discussed in this chapter includes points-to assertions (x 7→

y), acyclic-list-segment assertions (ls(x, y)), empty-heap assertions (emp), and their negations;

separating conjunction; septraction; logical-and; and logical-or. The fragment considered only

allows negation at the leaves of a formula (Section 11.1.1), but still contains formulas that lie

outside of previously considered fragments (Berdine et al., 2004; Pérez and Rybalchenko, 2011;

Park et al., 2013; Lee and Park, 2014; Hou et al., 2014). The procedure can prove validity of
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implications of the form

ψ⇒(ϕi ∧
∧
j

ψj −∗ ϕj), (11.1)

where ϕi and ϕj are formulas that contain only ∧, ∨, and positive or negative occurrences of emp,

points-to, or ls assertions; and ψ and ψj are arbitrary formulas in the logic fragment defined in

Section 11.1.1. Consequently, we believe that ours is the first procedure that can prove the validity

of formulas that contain both ls and the magic-wand operator −∗. Furthermore, the procedure

is able to prove unsatisfiability of interesting classes of formulas that are outside of previously

considered fragments, including (i) formulas that use conjunctions of separating-conjunctions with

ls or negations below separating-conjunctions, such as

(ls(a1, a2) ∗ ls(a2, a3)) ∧ (¬emp ∗ ¬emp)

∧(a1 7→ e1 ∗ True) ∧ e1 = nil,

and (ii) formulas that contain both ls and septraction (−~), such as

(a3 7→ a4−~ ls(a1, a4)) ∧ (a3 = a4 ∨ ¬ls(a1, a3)).

The former are useful for describing overlaid data structures; the latter are useful in dealing with

interference effects when using rely/guarantee reasoning to verify programs with fine-grained

concurrency (Vafeiadis and Parkinson, 2007; Calcagno et al., 2007).

The contributions of this chapter include the following:

• I show how a canonical-abstraction domain can be used to overapproximate the set of

heaps that satisfy a separation-logic formula (Section 11.1).

• I present rules for calculating the overapproximation of a separation-logic formula for a

fragment of separation logic that consists of separating conjunction, septraction, logical-and,

and logical-or (Section 11.3).

• The procedure is parameterized by a shape abstraction, and can be instantiated to handle

(positive or negative) literals for points-to or acyclic-list-segment assertions—and hence

can prove the validity of implications of the kind shown in formula (11.1) (Section 11.3).
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Section 11.2 illustrates the key concepts used in the unsatisfiability-checking procedure. The pro-

cedure is implemented in a tool called SMASLTOV (Satisfiability Modulo Abstraction for Separa-

tion Logic ThrOugh Valuation), which is available at https://www.github.com/smasltov-team/

SMASLTOV. I evaluated SMASLTOV on a set of formulas taken from the literature (Section 11.4).

To the best of my knowledge, SMASLTOV is able to establish the unsatisfiability of formulas that

cannot be handled by previous approaches.

11.1 Separation Logic and Canonical Abstraction

In this section, I provide background on separation logic and introduce the separation-logic

fragment considered in the thesis. I then show how a canonical-abstraction domain can be used

to approximate the set of models that satisfy a separation-logic formula.

11.1.1 Syntax and Semantics of Separation Logic

Formulas in our fragment of separation logic (SL) are defined as follows:

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ∗ ϕ | ϕ−~ ϕ | atom | ¬atom

atom ::= true | emp | x = y | x 7→ y | ls(x, y)

The set of literals, denoted by Literals, is the union of the positive and negative atoms of SL.

The semantics of SL is defined with respect to memory “statelets”, which consist of a store

and a heaplet. A store is a function from variables to values; a heaplet is a finite function from

locations to locations.

Val def= Loc ] {nil} Store def= Var→ Val

Heaplet def= Loc ⇀fin Val Statelet def= Store×Heaplet

Loc and Var are disjoint countably infinite sets, neither of which contain nil. Loc represents

heap-node addresses. The domain of h, dom(h), represents the set of addresses of cells in the

heaplet. Two heaplets h1, h2 are disjoint, denoted by h1#h2, if dom(h1) ∩ dom(h2) = ∅. Given

two disjoint heaplets h1 and h2, h1 · h2 denotes their disjoint union h1 ] h2. A statelet is denoted

by a pair (s, h).

https://www.github.com/smasltov-team/SMASLTOV
https://www.github.com/smasltov-team/SMASLTOV
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(s, h) |= ϕ1 ∧ ϕ2 iff (s, h) |= ϕ1 and (s, h) |= ϕ2
(s, h) |= ϕ1 ∨ ϕ2 iff (s, h) |= ϕ1 or (s, h) |= ϕ2
(s, h) |= ϕ1 ∗ ϕ2 iff ∃h1, h2. h1#h2 and h1 · h2 = h and

(s, h1) |= ϕ1 and (s, h2) |= ϕ2
(s, h) |= ϕ1 −~ ϕ2 iff ∃h1. h1#h and (s, h1) |= ϕ1 and

(s, h1 · h) |= ϕ2
(s, h) |= ¬atom iff (s, h) 6|= atom
(s, h) |= true iff true
(s, h) |= emp iff dom(h) = ∅
(s, h) |= x = y iff s(x) = s(y)
(s, h) |= x 7→ y iff dom(h) = {s(x)} and h(s(x)) = s(y)
(s, h) |= ls(x, y) iff if s(x) = s(y) then dom(h) = ∅,

else there is a nonempty acyclic path from
s(x) to s(y) in h, and this path contains
all heap cells in h

Figure 11.1: Satisfaction of an SL formula ϕ with respect to statelet (s, h).

Satisfaction of an SL formula ϕ with respect to statelet (s, h) is defined in Figure 11.1. Fur-

thermore, in this chapter, we consider a formula to be satisfiable only if it is satisfiable over an

acyclic heap. JϕK denotes the set of statelets that satisfy ϕ: JϕK def= {(s, h) | (s, h) |= ϕ}.

11.1.2 2-Valued Logical Structures

We model full states—not statelets—by 2-valued logical structures. A logical structure provides an

interpretation of a vocabulary Voc = {eq, p1, . . . , pn} of predicate symbols (with given arities).

Vock denotes the set of k-ary symbols.

Definition 11.1. A 2-valued logical structure S over Voc is a pair S = 〈U, ι〉, where U is the

set of individuals, and ι is the interpretation. Let B = {0, 1} be the domain of truth values.

For p ∈ Voci, ι(p) : U i → B. We assume that eq ∈ Voc2 is the identity relation: (i) for all

u ∈ U , ι(eq)(u, u) = 1, and (ii) for all u1, u2 ∈ U such that u1 and u2 are distinct individuals,

ι(eq)(u1, u2) = 0.

The set of 2-valued logical structures over Voc is denoted by 2-STRUCT[Voc]. �

A concrete state is modeled by a 2-valued logical structure over a fixed vocabulary C of core

predicates. Core predicates are part of the underlying semantics of the linked structures that make
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Predicate Intended Meaning

eq(v1, v2) Do v1 and v2 denote the same memory cell?
q(v) Does pointer variable q point to memory cell v?
n(v1, v2) Does the n-field of v1 point to v2?

Table 11.1: Core predicates used when representing states made up of acyclic linked lists.

up the states of interest. Table 11.1 lists the core predicates that are used when representing

states made up of acyclic linked lists.

Without loss of generality, vocabularies exclude constant and function symbols. Constant

symbols can be encoded via unary predicates, and n-ary functions via n + 1-ary predicates.

In both cases, we need integrity rules—i.e., global constraints that restrict the set of structures

considered to the ones that we intend. The set of unary predicates, Voc1, always contains

predicates that encode the variables of the formula. In a minor abuse of notation, we overload

“x” to denote both the name of variable x and the unary predicate x(·) that encodes the variable.

The binary predicate n ∈ Voc2 encodes list-node linkages. In essence, the following integrity

rules restrict each x ∈ Var ⊆ Voc1 to serve as a constant, and restrict relation n to encode a partial

function:

for each x ∈ Var, ∀v1, v2 : x(v1) ∧ x(v2) ⇒ eq(v1, v2)

∀v1, v2, v3 : n(v3, v1) ∧ n(v3, v2) ⇒ eq(v1, v2)

11.1.3 Connecting 2-Valued Logical Structures and SL Statelets

We use unary domain predicates, typically denoted by d, d′, d1, . . . , dk ∈ Voc1, to pick out regions of

the heap that are of interest in the state that a logical structure models. The connection between

2-valued logical structures and SL statelets is formalized by means of the operation S|(d,·), which
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performs a projection of structure S with respect to a domain predicate d:

S|(d,·)
def= (s, h),where

s =

 {(p, u) | p ∈ VarS , u ∈ US , and p(u)}

∪ {(q, nil) | q ∈ VarS and ¬∃v : q(v)}

 (11.2)

h = {(u1, u2) | u1, u2 ∈ US , d(u1), and n(u1, u2)}. (11.3)

The subscript “(d, ·)” serves as a reminder that in Equation (11.3), only u1 needs to be in the

region defined by d. We lift the projection operation to apply to a set SS of 2-valued logical

structures as follows:

SS|(d,·)
def= {S|(d,·) | S ∈ SS}.

11.1.4 Representing Sets of SL Statelets using Canonical Abstraction

In the framework of Sagiv et al. (2002) for logic-based abstract-interpretation, 3-valued logical

structures provide a way to overapproximate possibly infinite sets of 2-valued structures in a

finite way that can be represented in a computer. The application of Equations (11.2) and (11.3)

to 3-valued structures means that the abstract-interpretation machinery developed by Sagiv et

al. provides a finite way to overapproximate a possibly infinite set of SL statelets.

In 3-valued logic, a third truth value, denoted by 1/2, represents uncertainty. The set T def=

B ∪ {1/2} of 3-valued truth values is partially ordered “l @ 1/2 for l ∈ B”. The values 0 and 1

are definite values; 1/2 is an indefinite value.

Definition 11.2. A 3-valued logical structure S = 〈U, ι〉 is almost identical to a 2-valued struc-

ture, except that ι maps each p ∈ Voci to a 3-valued function ι(p) : U i → T. In addition, (i) for

all u ∈ U , ι(eq)(u, u) w 1, and (ii) for all u1, u2 ∈ U such that u1 and u2 are distinct individuals,

ι(eq)(u1, u2) = 0. (An individual u for which ι(eq)(u, u) = 1/2 is called a summary individual.)

The set of 3-valued logical structures over Voc is denoted by 3-STRUCT[Voc]. Note that

2-STRUCT[Voc] ( 3-STRUCT[Voc]. �
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As we will see below, a summary individual may represent more than one individual from

certain 2-valued structures.

A 3-valued structure can be depicted as a directed graph with individuals as graph nodes (see

Figure 11.2). A summary individual is depicted with a double-ruled border. A unary predicate

p ∈ Var is represented in the graph by having an arrow from the predicate name p to all nodes

of individuals u for which ι(p)(u) w 1. An arrow between two nodes indicates that a binary

predicate holds for the corresponding pair of individuals. (To reduce clutter, in the figures in

this chapter, the only binary predicate shown is the predicate n ∈ Voc2.) A predicate value of

1/2 is indicated by a dotted arrow, a value of 1 by a solid arrow, and a value of 0 by the absence

of an arrow. A unary predicate p ∈ (Voc1 − Var) is listed, with its value, inside the node of each

individual u for which ι(p)(u) w 1. A nullary predicate is displayed in a rectangular box.

To define a suitable abstraction of 2-valued logical structures, we start with the notion of

structure embedding (Sagiv et al., 2002):

Definition 11.3. Given S = 〈U, ι〉 and S′ = 〈U ′, ι′〉, two 3-valued structures over the same

vocabulary Voc, and f : U → U ′, a surjective function, f embeds S in S′, denoted by S vf S′, if

for all p ∈ Voc and u1, . . . , uk ∈ U ,

ι(p)(u1, . . . , uk) v ι′(p)(f(u1), . . . , f(uk))

If, in addition,

ι′(p)(u′1, . . . , u′k) =
⊔

u1,...,uk∈U,s.t.f(ui)=u′i,1≤i≤k
ι(p)(u1, . . . , uk)

then S′ is the tight embedding of S with respect to f , denoted by S′ = f(S). (Note that

we overload f to also mean the mapping on structures f : 3-STRUCT[Voc] → 3-STRUCT[Voc]

induced by f : U → U ′.) �

Intuitively, f(S) is obtained by merging individuals of S and by defining the valuation of

predicates accordingly (in the most precise way). The relation vid, which will be denoted by

v, is the natural information order between structures that share the same universe. One has

S vf S′ ⇔ f(S) vid S′. Henceforth, we use S vf S′ to mean “there exists a surjective f : U → U ′

such that f(S) vid S′”.
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However, embedding alone is not enough. The challenge for representing and manipulating

sets of 2-valued structures is that the universe of a structure is of a priori unbounded size.

Consequently, we need a method that, for a 2-valued structure 〈U, ι〉 ∈ 2-STRUCT[Voc], abstracts

U to an abstract universe U ] of bounded size. The idea behind canonical abstraction (Sagiv

et al., 2002, Section 4.3) is to choose a subset A ⊆ Voc1 of abstraction predicates, and to define

an equivalence relation 'AS on U that is parameterized by the logical structure S = 〈U, ι〉 ∈

2-STRUCT[Voc] to be abstracted:

u1 'AS u2 ⇔ ∀p ∈ A : ι(p)(u1) = ι(p)(u2).

This equivalence relation defines the surjective function fSA : U → (U/ 'AS ), which maps an

individual to its equivalence class. We thus have the Galois connection

℘(2-STRUCT[Voc]) −−→←−−α
γ

℘(3-STRUCT[Voc])

α(X) = {fSA (S) | S ∈ X}

γ(Y ) = {S | S] ∈ Y ∧ S vf S]}

where fSA in the definition of α denotes the tight-embedding function for logical structures

induced by the node-embedding function fSA : U → (U/ 'AS ). The abstraction function α is

referred to as canonical abstraction. Note that there is an upper bound on the size of each structure

〈U ], ι]〉 ∈ 3-STRUCT[Voc] that is in the image of α: |U ]| ≤ 2|A|—and thus the power-set of the

image of α is a finite sublattice of ℘(3-STRUCT[Voc]).

For technical reasons, it turns out to be convenient to work with 3-valued structures other

than the ones in the image of α; however, we still want to restrict ourselves to a finite sublattice of

℘(3-STRUCT[Voc]). With this motivation, we make the following definition (Arnold et al., 2006):

Definition 11.4. A 3-valued structure 〈U ], ι]〉 ∈ 3-STRUCT[Voc] is bounded (with respect to

abstraction predicates A) if for every u1, u2 ∈ U ], where u1 6= u2, there exists an abstraction
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predicate symbol p ∈ A ⊆ Voc1 such that ι](p)(u1) = 0 and ι](p)(u2) = 1, or ι](p)(u1) = 1 and

ι](p)(u2) = 0. B-STRUCT[Voc,A] denotes the set of such structures. �

Definition 11.4 also imposes an upper bound on the size of a structure 〈U ], ι]〉 ∈ B-STRUCT[Voc,A]—

again, |U ]| ≤ 2|A|—and thus ℘(B-STRUCT[Voc,A]) is a finite sublattice of ℘(3-STRUCT[Voc]).

It defines the abstract domain that we use, the abstract domain whose elements are subsets of

B-STRUCT[Voc,A], which will be denoted by A[Voc,A]. (For brevity, we call such a domain

a “canonical-abstraction domain”, and denote it by Awhen Voc and A are understood.) The Galois

connection we work with is thus

℘(2-STRUCT[Voc]) −−→←−−α
γ

℘(B-STRUCT[Voc,A]) = A[Voc,A]

α(X) = {fSA (S) | S ∈ X}

γ(Y ) = {S | S] ∈ Y ∧ S vf S]}.

The ordering on ℘(B-STRUCT[Voc,A]) = A[Voc,A] is the Hoare ordering: S1 v S2 if for all

s1 ∈ S1 there exists s2 ∈ S2 such that s1 vf s2.

11.2 Overview

This section presents two examples to illustrate the concepts that we use in the unsatisfiability-

checking procedure:

• a formula that is unsatisfiable over acyclic linked lists: (x 7→ y) ∗ (y 7→ x)

• a formula that is satisfiable over acyclic linked lists: (x 7→ y)−~ ls(x, z).

11.2.1 An Unsatisfiable Formula

Consider ϕ def= x 7→ y ∗ y 7→ x. We want to compute A ∈ A such that γ(A)|(d,·) ⊇ JϕK. The key to

handling the ∗ operator is to introduce two new domain predicates d1 and d2, which are used to

demarcate the heaplets that must satisfy ϕ1
def= x 7→ y and ϕ2

def= y 7→ x, respectively. We have
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x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]
d1

x y

¬d1

¬is_eq[x,y]()

¬r[n,x]

r[n,y]
next[n,x]
d2

x y

¬d2

¬is_eq[x,y]()

(a) (b) (c)

x y

d,d1,¬d2
d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬is_eq[x,y]()

x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬r[n,x]

r[n,y]
next[n,x]

¬is_eq[x,y]()

x y

d,d1,¬d2 d,¬d1, d2

¬d,¬d1,¬d2

r[n,x]

¬r[n,y]

next[n,y]

¬r[n,x]

r[n,y]
next[n,x]

¬is_eq[x,y]()

(d) (e) (f)

Figure 11.2: Structures that arise in the meet operation used to analyze x 7→ y ∗ y 7→ x.

designed A so that there exist A1, A2 ∈ A such that γ(A1)|(d1,·) = Jx 7→ yK and γ(A2)|(d2,·) =

Jy 7→ xK, respectively. Table 11.2 describes the abstraction predicates we use. A1 and A2 each

consist of a single 3-valued structure, shown in Figure 11.2(b) and Figure 11.2(c), respectively.

Furthermore, to satisfy ϕ1 ∗ ϕ2, d1 and d2 are required to be disjoint regions whose union is

d. A also contains an abstract value, which we will call D, that represents this disjointness

constraint exactly. D consists of four 3-valued structures. Figure 11.2(a) shows the “most general”

of them: it represents two disjoint regions, d1 and d2, that partition the d region (where each of d1

and d2 contain at least one cell). The summary individual labeled ¬d,¬d1,¬d2 in Figure 11.2(a)

represents a region that is disjoint from d. (See also Figure 11.6.)

Note that here and throughout the paper, for brevity the figures only show predicates that

are relevant to the issue under discussion.
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Meet for a Canonical-Abstraction Domain. To impose a necessary condition for x 7→ y ∗ y 7→ x

to be satisfiable, we take the meet of D, A1, and A2: Jx 7→ y ∗ y 7→ xK ⊆ DuA1 uA2. Figs. 11.2(d),

(e), and (f) show some of the structures that arise in D uA1 uA2.

The meet operation in A is defined in terms of the greatest-lower-bound operation induced

by the approximation order in the lattice B-STRUCT[Voc,A]. Arnold et al. Arnold et al. (2006)

show that in general this operation is NP-complete; however, they define an algorithm based on

graph matching that typically performs well in practice (Jeannet et al., 2010, §8.3). To understand

some of the subtleties of meet, consider Figure 11.2(d), which shows one of the structures in

D uA1 (i.e., Figure 11.2(a) u Figure 11.2(b)).

• From the standpoint of Figure 11.2(b), meet caused the summary individual labeled “¬d1”

to be split into two summary individuals: “¬d,¬d1,¬d2” and “d,¬d1, d2”.

• From the standpoint of Figure 11.2(a), meet caused the summary individual labeled

“d, d1,¬d2” to (i) become a non-summary individual, (ii) acquire the value 1 for x, r[n, x],

and next[n, y], and (iii) acquire the value 0 for y and r[n, y].

Figure 11.2(e) shows one of the structures in (D uA1) uA2, i.e., Figure 11.2(d) u Figure 11.2(c),

which causes further (formerly indefinite) elements to acquire definite values.

Arnold et al. develop a graph-theoretic notion of the possible correspondences among indi-

viduals in the bounded structures that are arguments to meet, and structure the meet algorithm

around the set of possible correspondences (Arnold et al., 2006, §4.2).

Improving Precision Using Semantic-Reduction Operators. Figure 11.2(e) still contains a great

deal of indefinite information because the meet operation does not take into account the integrity

constraints on structures. For instance, for the structures that we use to represent states and SL

statelets, we use a unary predicate next[n, y], which holds for individuals whose n-link points to

the individual that is pointed to by y. This predicate has an associated integrity constraint

∀v1, v2.next[n, y](v1) ∧ y(v2)⇒n(v1, v2). (11.4)
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In particular, in Figure 11.2(e) the individual pointed to by x has next[n, y] = 1; however, the

edge to the individual pointed to by y has the value 1/2. Similarly, we force the procedure to

consider only acyclic heaps by imposing the integrity constraint ¬∃v1, v2.n(v1, v2) ∧ t[n](v2, v1).

To improve the precision of the (graph-theoretic) meet, the procedure makes use of semantic-

reduction operators. The notion of semantic reduction was introduced by Cousot and Cousot

Cousot and Cousot (1979). Semantic-reduction operators are useful when an abstract domain is

a lattice that has multiple elements that represent the same set of states. A semantic reduction

operator ρ maps an abstract-domain element A to ρ(A) such that (i) ρ(A) v A, and (ii) γ(ρ(A)) =

γ(A). In other words, ρ maps A to an element that is lower in the lattice—and hence a “better”

representation of γ(A) inA—while preserving the meaning. In our case, the semantic-reduction

operations that we use convert a set of 3-valued structures XS into a “better” set of 3-valued

structures XS ′ that describe the same set of 2-valued structures.

A semantic-reduction operator can have two effects:

1. In some structure S ∈ XS, some tuple p(u) with indefinite value 1/2 may be changed to

have a definite value (0 or 1).

2. It may be determined that some structure S ∈ XS is infeasible: i.e., γ(S) = ∅. In this case,

S is removed from XS.

The effect of a precision improvement from a type-1 effect can cause a type-2 effect to occur. For

instance, let u1 and u2 be the individuals pointed to by x and y, respectively, in Figure 11.2(e).

• Figure 11.2(f) is Figure 11.2(e) after integrity constraint (11.4) has triggered a type-1 change

that improves the value of n(u1, u2) from 1/2 to 1.

• A type-2 rule can then determine that the structure shown in Figure 11.2(f) is infeasible. In

particular, the predicate r[n, x](v) means that individual v is reachable from the individual

pointed to by x along n-links. The semantic-reduction rule would find that the values

x(u1) = 1, n(u1, u2) = 1, and r[n, x](u2) = 0 represent an irreconcilable inconsistency in
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Figure 11.3: Some of the structures that arise in the meet operation used to evaluate x 7→
y −~ ls(x, z).

Figure 11.2(f): the first two predicate values mean that u2 is reachable from the individual

pointed to by x along n-links, which contradicts r[n, x](u2) = 0.

The operation that applies type-1 and type-2 rules until no more changes are possible is called

coerce (because it coerces XS to a better representation XS ′). Sagiv et al. (Sagiv et al., 2002, §6.4)

and Bogudlov et al. Bogudlov et al. (2007a,b) discuss algorithms for coerce.

11.2.2 A Satisfiable Formula

Consider the formula ϕ def= x 7→ y −~ ls(x, z). We want to compute A ∈ A such that γ(A)|(d,·) ⊇

JϕK. Similar to what was done in Section 11.2.1 for the ∗ operator, we introduce two new domain

predicates d1 and d2, which are used to demarcate the heaplets that must satisfy ϕ1
def= x 7→ y

and ϕ2
def= ls(x, z). By design, there exist A1, A2 ∈ A such that γ(A1)|(d1,·) = Jx 7→ yK and

γ(A2)|(d2,·) = Jls(x, z)K, respectively. A1 consists of the single 3-valued structure shown in
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Figure 11.3(a). Figure 11.3(b) shows one of the structures in A2; it represents an acyclic linked list

from x to z whose length is greater than 1. Furthermore, to satisfy ϕ1−~ϕ2, d and d1 are required

to be disjoint regions whose union is d2. A also contains an abstract value, which we will call

D, that represents this disjointness constraint exactly. D consists of four 3-valued structures.

Figure 11.3(c) shows the “most general” of them: it represents two disjoint regions, d and d1,

that partition the d2 region (where each of d and d1 contain at least one cell). The summary

individual labeled ¬d,¬d1,¬d2 in Figure 11.3(c) represents a region that is disjoint from d2.

To impose a necessary condition for x 7→ y −~ ls(x, z) to be satisfiable, we take the meet of D,

A1, and A2: Jx 7→ y −~ ls(x, z)K ⊆ D uA1 uA2. Figure 11.3(d) shows one of the structures that

arises in D uA1 uA2, after the semantic-reduction operators have been applied. A few points to

note about this resultant structure:

• The summary individual in region d2 present in the ls(x, z) structure in Figure 11.3(b) is

split in Figure 11.3(d) into a singleton individual pointed to by y and a summary individual.

• The individual pointed to by x is in regions d1 and d2, but not d.

• The individual pointed to by y is in regions d and d2, but not d1.

• The variables x and y are not equal.

• All the individuals in d are reachable from y, not reachable from z, and have link[d, n, z]

true.

Figure 11.3(e) shows the structure after we have projected the heap onto the heap region d;

that is, the values of the domain predicates d1 and d2 have been set of 1/2 on all individuals,

and all the abstraction predicates have been set to 1/2 on all individuals not in d. In effect, this

operation blurs the distinction between the region that is outside d, but in d2, and the region

that is outside of d and d2. Note that the fact that x and y are not equal is preserved by the

projection operation. This projection operation, denoted by (·) d in Section 11.3, serves as an

abstract method for quantifier elimination.
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` ∈ Literals, d  A`
(`)

ϕ1, d  A1 ϕ2, d  A2

ϕ1 ∧ ϕ2, d  A1 uA2
(∧)

ϕ1, d  S1 ϕ2, d  A2

ϕ1 ∨ ϕ2, d  A1 tA2
(∨)

ϕ1, d1  A1 ϕ2, d2  A2

ϕ1 ∗ ϕ2, d  ([d = d1 · d2]] uA1 uA2) d
(∗)

ϕ1, d1  A1 ϕ2, d2  A2

ϕ1 −~ ϕ2, d  ([d2 = d · d1]] uA1 uA2) d
(−~)

Figure 11.4: Rules for computing an abstract value that overapproximates the meaning of a
formula in SL

.

Predicate Intended Meaning

is_eq[x, y]() Are x and y equal?
next[n, y](v) The target of the n-edge from v is

pointed to by y
t[n](v1, v2) Is v2 reachable via zero or more

n-edges from v1?
r[n, y](v) ∃v1.y(v1) ∧ t[n](v1, v)
d(v) Is v in heap domain d?
link[d, n, y](v) The target of the n-edge from v is

either in d or is pointed to by y

Table 11.2: Voc consists of the predicates shown above, together with the ones in Table 11.1. All
unary predicates are abstraction predicates; that is, A = Voc1.

Note that Figure 11.3(e) represents an acyclic linked-list from y to z with x 6= y, which is one

of the models that satisfies x 7→ y −~ ls(x, z).

11.3 Proof System for Separation Logic

This section describes how we compute A ∈ A[Voc,A] such that A overapproximates the satisfy-

ing models of ϕ ∈ SL. The vocabulary Voc and abstraction predicates A are listed in Table 11.2.

The procedure works with judgments of the form “ϕ, d  A”, where d is a domain predicate.

The invariant maintained by the procedure is that, whenever it establishes a judgment ϕ, d  A,

A ∈ A overapproximates ϕ in the following sense: γ(A)|(d,·) ⊇ JϕK. Figure 11.4 lists the rules

used for calculating ϕ, d  A for ϕ ∈ SL. Using these rules, the procedure performs a bottom-up
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Figure 11.5: The abstract value for ls(x, y) ∈ atom in the canonical-abstraction domain.
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Figure 11.6: The abstract value for [di = dj · dk]] in the canonical-abstraction domain.

evaluation of the formula ϕ; if the answer is the empty set of 3-valued structures, then ϕ is

unsatisfiable.

For each literal ` ∈ Literals, there is an abstract value A` ∈ A such that γ(A`)|(d,·) = J`K.

These A` values are used in the (`)-rule of Figure 11.4. Figure 11.5 shows the abstract value Als

used for ls(x, y). Als consists of three structures:

• Figure 11.5(a) represents the empty list from x to y. That is, x = y and region d is empty.

• Figure 11.5(b) represents a singleton list from x to y. That is, x 6= y and x 6= nil, and for all

individuals v in d, v is reachable from x and link[d, n, y](v) is true. (See line 6 of Table 11.2.)

• Figure 11.5(c) represents acyclic linked lists of length two or more from x to y.
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Figure 11.5(b) is the single structure in Ax 7→y. The abstract values for atoms x = y, true, and

emp are straightforward. We see that it is possible to represent the positive literals True, emp,

x = y, x 7→ y, and ls(x, y) precisely in A; that is, we have γAl|(d,·) = JlK. Furthermore, because

the canonical-abstraction domain A is closed under negation (Kuncak and Rinard, 2003; Yorsh

et al., 2007), we are able to represent the negative literals x 6= y, ¬True, ¬emp, ¬ls(x, y), and

¬x 7→ y precisely in A, as well.

The rest of the rules in Figure 11.4 can be derived by reinterpreting the concrete logical

operators using an appropriate abstract operator. In particular, logical-and is reinterpreted as

meet, and logical-or is reinterpreted as join. Consequently, the (∧)-rule and (∨)-rule are straight-

forward. The (∧)-rule and (∨)-rule are justified by the following observation: if γ(A1)|(d,·) ⊇ Jϕ1K

and γ(A2)|(d,·) ⊇ Jϕ2K, then γ(A1 uA2)|(d,·) ⊇ Jϕ1 ∧ ϕ2K and γ(A1 tA2)|(d,·) ⊇ Jϕ1 ∨ ϕ2K.

For a given structureA = 〈U, ι〉 and unary domain predicate di, we use the phrase “individuals

in di” to mean the set of individuals {u ∈ U | ι(di)(u) = 1}.

The (∗)-rule computes A ∈ A such that γ(A)|(d,·) ⊇ Jϕ1 ∗ ϕ2K. The handling of separating

conjunction ϕ1 ∗ ϕ2 is based on the following insights:

• The domain predicates d1 and d2 are used to capture the heaplets h1 and h2 that satisfy ϕ1

and ϕ2, respectively. That is,

γ(A1)|(d1,·) ⊇ Jϕ1K and γ(A2)|(d2,·) ⊇ Jϕ2K. (11.5)

• [d = d1 · d2]] ∈ A is used to express the constraint that the individuals in d1 are disjoint

from d2, and that the individuals in d are the disjoint union of the individuals in d1 and

d2. With only a slight abuse of notation, the meaning of [d = d1 · d2]] can be expressed as

follows:

γ([d = d1 · d2]])|(d,·) ⊇ {(s, h, h1, h2) | h1#h2

and h1 · h2 = h}. (11.6)

Figure 11.6 shows the four structures in the abstract value [di = dj · dk]], where di, dj , and

dk are domain predicates.
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• (·) d denotes the structure that results from setting the abstraction predicates to 1/2 for all

individuals not in d, and setting all domain predicates other than d to 1/2. In effect, this

operation blurs the distinction between individuals in d1 and d2, and serves as an abstract

method for quantifier elimination.

Using Equations (11.5) and (11.6) in the definition of ϕ1 ∗ ϕ2, we have

Jϕ1 ∗ ϕ2K

= {(s, h) | ∃h1, h2. h1#h2 and h1 · h2 = h and (s, h1) |= ϕ1 and (s, h2) |= ϕ2}

⊆ ([d = d1 · d2]] u A1 u A2) d

The handling of septraction in the (−~)-rule is similar to the handling of separating conjunc-

tion in the (∗)-rule, except for the condition that h2 = h · h1. This requirement is easily handled

by using [d2 = d · d1]]. Section 11.2.2 illustrates the application of the (−~)-rule.

Theorem 11.5. The rules in Figure 11.4 are sound; that is, if the rules in Figure 11.4 say that ϕ, d  A,

then γ(A)|(d,·) ⊇ JϕK.

The proof follows from the fact that each of the abstract operators is sound.

Discussion. As discussed in (Piskac et al., 2013, Section 4), there exist no methods that handle

negations below a separating conjunction. Our fragment of separation logic admits negations at

the leaves of formulas, and, thus, is the first approach that can handle formulas with negations

below a separating conjunction.

It is, however, non-trivial to extend our technique to handle general negation. Let (·)c de-

note the set-complement operation. Let ¬#(·) denote the abstract negation operation; that

is, γ(¬#(A)) ⊇ γ(A)c, and ¬#(A) w α(γ(A)c). Suppose that γ(A)|(d,·) ⊇ JϕK; in general,

γ(¬#(A))|(d,·) is not guaranteed to overapproximate the models of ¬ϕ.

Furthermore, it is non-trivial to extend our technique to prove validity of general implications.

Suppose that we would like to prove the validity of ϕ1⇒ϕ2, where ϕ1, ϕ2 ∈ SL. Let A1 overap-
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emp x = y x 7→ y ls(x, y) ∧ ∨ ∗ −~ Full
+ − + − + − + − Corpus

Group 1 1 5 8 8 13 1 19 10 22 4 12 10 23
Group 2 64 22 0 0 22 22 22 22 64 0 64 0 64
Group 3 512 218 0 0 218 218 218 218 512 0 512 512 512

Total 577 245 8 8 253 241 259 250 598 4 588 522 599

Table 11.3: Number of formulas that contain each of the SL operators in Groups 1, 2, and 3. The
columns labeled “+” and “−” indicate the number of atoms occurring as positive and negative
literals, respectively.

proximate the set of models of ϕ1, and A2 overapproximate the set of models of ϕ2. A1 v A2

does not imply Jϕ1K ⊆ Jϕ2K.

11.4 Experimental Evaluation

This section presents the results of our experiments to evaluate the costs and benefits of our

approach. The implementation, which is called SMASLTOV, is available together with our

benchmarks at https://www.github.com/smasltov-team/SMASLTOV. The experiments were

designed to shed light on the following questions:

1. How fast is SMASLTOV?

2. How often is SMASLTOV able to determine that a formula is unsatisfiable?

3. For unsatisfiable formulas that are beyond the capabilities of other tools, is SMASLTOV

actually able to prove the formulas unsatisfiable?

Setup. The unsatisfiability-checking procedure is written in OCaml; it compiles a formula to a

proof DAG written in the language of ITVLA (Jeannet et al., 2010, §8). We ported the frontend of

ITVLA to the latest version of TVLA Lev-Ami and Sagiv (2000) in order to make use of TVLA’s

enhanced speed Bogudlov et al. (2007a) and ITVLA’s language features. ITVLA (i) replaces

TVLA’s notion of an intraprocedural control-flow graph by the more general notion of equation

system, in which transfer functions may depend on more than one argument, and (ii) supports a

https://www.github.com/smasltov-team/SMASLTOV
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more general language in which to specify equation systems. In particular, the ITVLA language

supports explicit use of the meet operator Arnold et al. (2006) for a canonical-abstraction domain.

The abstract-value manipulations in the proof rules of Figure 11.4 are performed by the TVLA

backend. TVLA has a significant startup cost and a smaller shutdown cost. We chose to amortize

these costs by running TVLA in a batch mode, in which a single invocation of TVLA checks

several separation-logic formulas.

We report trimmed means of all time measurements; that is, we made each measurement

five times, discarded the highest and lowest values, and report the mean of the remaining three

values. Experiments were run on a single core of a 2-processor, 4-core-per-processor 2.27 GHz

Xeon computer running Red Hat Linux 6.5.

Test Suite. Our test suite consists of three groups of unsatisfiable formulas. We tested each

group with a single invocation of TVLA.

• Group 1, shown in Table 11.4, was chosen to evaluate our procedure on a wide spectrum

of formulas.

• Group 2 was created by replacing the Boolean variables a and b in the template T1
def=

¬a ∧ emp ∧ (a ∗ b) with the 8 literals Literals of SL; that is, true, emp, x 7→ y, ls(x, y), and

their negations. Five of the 64 instantiations of template T1 are shown in Table 11.5.

• Group 3 was created by replacing the Boolean variables a, b, and c in the template T2
def=

emp∧a∧(b∗(c−~(emp∧¬a))) with the 8 literals Literals of SL. Five of the 512 instantiations

of template T2 are shown in Table 11.6.

Templates T1 and T2 are based on work by Hou et al. Hou et al. (2014) on Boolean separation logic.

Templates T1 and T2 are listed as formulas 15 and 19, respectively, in (Hou et al., 2014, Tab. 2). In

total, there were 599 formulas in our test suite. Table 11.3 summarizes the characteristics of the

corpus based on the occurrences of the SL operators.

In Tables 11.4, 11.5, and 11.6, a X in the U-column indicates that SMASLTOV was able to

prove the formula unsatisfiable; a ? indicates that the SMASLTOV was not able to prove the

formula unsatisfiable.
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Formula U Time

(1) a1 7→ a2 ∧ ¬ls(a1, a2) X 0.12
(2) a1 7→ a2 ∗ a2 7→ a1 X 0.08
(3) ¬emp ∧ (ls(a1, a2) ∗ ls(a2, a1)) X 0.27
(4) a1 6= a2 ∧ (ls(a1, a2) ∗ ls(a2, a1)) X 0.25
(5) (ls(a1, a2) ∗ ls(a2, a3)) ∧ ¬ls(a1, a3) X 0.85
(6) ls(a1, a2) ∧ emp ∧ a1 6= a2 X 0.09
(7) (a1 7→ a2 ∗ True) ∧ (a2 7→ a3 ∗ True) ∧ (True ∗

a3 7→ a1)
X 0.72

(8) (a1 7→ a2−~ True) ∧ (a1 7→ a2 ∗ True) X 0.77

(9) (ls(a1, a2) ∗ ¬ls(a2, a3)) ∧ ls(a1, a3) X 2.02
(10) ls(a1, a2) ∧ ls(a1, a3) ∧ ¬emp ∧ a2 6= a3 X 0.13
(11) (ls(a1, a2)∗True∗a3 7→ a4)∧(True∗(ls(a2, a1)∧

a2 6= a1))
X 7.94

(12) (a1 7→ a2 ∗ ls(e1, e2)) ∧ (a2 7→ a3 ∗ ¬emp) ∧
(a3 7→ a1 ∗ ¬a5 7→ a6 ∗ True)

X 4.64

(13) (¬emp∗¬emp)∧(a1 = nil∨a1 7→ e1∨((a1 7→
e1 ∧ e1 = nil) ∗ True)) ∧ ls(a1, a2)

X 0.20

(14) ((ls(a1, a2)∧a1 6= a2)∗(ls(a2, a3)∧a2 6= a3))∧
((ls(a4, a1) ∧ a4 6= a1) ∗ a1 7→ e1 ∗ True)

X 1.45

(15) (ls(a1, a2)−~ ls(a1, a2)) ∧ ¬emp X 0.18
(16) (a3 7→ a4−~ls(a1, a4))∧(a3 = a4∨¬ls(a1, a3)) X 0.20
(17) ((a2 7→ a3 −~ ls(a2, a4)) −~ ls(a1, a4)) ∧

¬ls(a1, a3)
X 0.65

(18) ((a2 7→ a3−~ls(a2, a4))−~ls(a3, a1))∧a2 = a4 X 0.62
(19) (a1 7→ a2−~ ls(a1, a3))∧ (¬ls(a2, a3)∨ (True∧

(a1 7→ e1 ∗ True)) ∨ a1 = a3)
X 0.45

(20) ((ls(a1, a2) ∧ a1 6= a2) −~ ls(e1, e2)) ∧ e1 6=
a1 ∧ e2 = a2 ∧ ¬ls(e1, a1)

X 0.88

(21) a1 6= a4∧ (ls(a1, a4)−~ ls(e1, e2))∧ a4 = e2∧
¬ls(e1, a1)

X 1.23

(22) ((ls(a1, a2) ∧ a1 6= a2) −~ ls(e1, e2)) ∧ e2 6=
a2 ∧ e1 = a1 ∧ ¬ls(a2, e2)

X 0.89

(23) ((a2 7→ a3 −~ ls(a2, a4)) −~ ls(a3, a1)) ∧
(¬ls(a4, a1) ∨ a2 = a4)

? 0.71

Table 11.4: Unsatisfiable formulas. The time is in seconds.
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Formula U Time

(1) ¬(a1 7→ a2) ∧ emp ∧ (a1 7→ a2 ∗ a3 7→ a4) X 0.83
(2) a1 7→ a2 ∧ emp ∧ (¬(a1 7→ a2) ∗ a3 7→ a4) X 0.32
(3) ¬(a1 7→ a2) ∧ emp ∧ (a1 7→ a2 ∗ ls(a3, a4)) X 0.62
(4) ls(a1, a2) ∧ emp ∧ (¬ls(a1, a2) ∗ ls(a3, a4)) X 8.46
(5) ls(a1, a2) ∧ emp ∧ (¬ls(a1, a2) ∗ ¬ls(a3, a4)) X 10.3

Table 11.5: Example instantiations of T1
def= ¬a ∧ emp ∧ (a ∗ b), where a, b ∈ Literals. The time is

in seconds.

Though not shown in this section, I also evaluated our procedure on a set of satisfiable

formulas. The procedure reports a set of abstract models when given a satisfiable formula (see

Section 11.2.2).

We now answer Questions 1–3 posed at the beginning of this section using the three groups

of formulas.

Group 1 Results. The running time of our procedure on the formulas listed in Table 11.4 was

often on the order of one second. The TVLA startup and shutdown time for Group 1 was

10.9 seconds. The procedure was able to prove unsatisfiability for all formulas, except (23). I

believe that formulas (9)–(23) are beyond the scope of previously existing tools. Formulas (9)–(14)

demonstrate that we can handle formulas that describe overlapping data structures, including

conjunctions of separating conjunctions. Formulas (15)–(21) demonstrate that we can handle

formulas containing ls and septraction together.

Group 2 Results. The 64 formulas instantiated from the template T1
def= ¬a ∧ emp ∧ (a ∗ b) took

between 0.0003 and 10.31 seconds to check, with a mean of 0.56 and a median of 0.03 seconds.

Our procedure was able to prove unsatisfiability for all 64 formulas. The TVLA startup and

shutdown time for Group 2 was 3.39 seconds. All instantiations of T1 that contain an occurrence

of the ls predicate are beyond the capabilities of existing tools. The formulas that took the most

time were (5) and (4) in Table 11.5. In both cases, a large amount of time was required because

of the presence of ¬ls, which is represented by 24 structures—a much larger number than is

needed for the other literals.
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Formula U Time

(1) emp ∧ ls(a1, a2) ∧ (ls(a3, a4) ∗ (ls(a5, a6) −~
(emp ∧ ¬ls(a1, a2))))

X 0.37

(2) emp ∧ ¬emp ∧ (ls(a3, a4) ∗ (¬(a5 7→ a6) −~
(emp ∧ emp)))

X 0.17

(3) emp∧a1 7→ a2∧(a3 7→ a4∗(a5 7→ a6−~(emp∧
¬(a1 7→ a2))))

X 0.49

(4) emp∧¬ls(a1, a2)∧ (¬ls(a3, a4)∗ (ls(a5, a6)−~
(emp ∧ ls(a1, a2))))

X 3.97

(5) emp∧¬ls(a1, a2)∧(¬ls(a3, a4)∗(emp−~(emp∧
ls(a1, a2))))

X 9.51

Table 11.6: Example instantiations ofT2
def= emp∧a∧(b∗(c−~(emp∧¬a))), where a, b, c ∈ Literals.

The time is in seconds.

Group 3 Results. The 512 formulas instantiated from the template T2
def= emp ∧ a ∧ (b ∗ (c−~

(emp ∧ ¬a))) took between 0.0001 and 9.51 seconds to check using our procedure, with a mean

of 0.12, and a median of 0.04 seconds. Our procedure was able to prove unsatisfiability for

all 512 formulas. The TVLA startup and shutdown time for Group 3 was 10.12 seconds. All

instantiations of T2 that contain an occurrence of ls are beyond the capabilities of existing tools.

11.5 Related Work

The literature related to reasoning about separation logic is vast, and I mention only a small

portion of it in this section. Decidability results related to first-order separation logic are discussed

in Calcagno et al. (2001); Brochenin et al. (2012). A fragment of separation logic for which it is

decidable to check validity of entailments was introduced by Berdine et al. (2004). The fragment

includes points-to and linked-list predicates, but no septraction, or negations of points-to or

linked-list predicates. More recent approaches deal with fragments of separation logic that are

incomparable to ours (Park et al., 2013; Lee and Park, 2014; Hou et al., 2014); in particular, none

of the latter papers handle linked lists. I based the experiments on formulas listed in Hou et

al.’s work on Boolean separation logic (Hou et al., 2014)—the only paper I found that listed

formulas outside the syntactic fragment defined by Berdine et al. I believe that our technique
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represents the first important step in designing a verification system that uses a richer fragment

of separation logic.

Most approaches to separation-logic reasoning use a syntactic proof-theoretic procedure

(Berdine et al., 2004; Pérez and Rybalchenko, 2011). Two exceptions are the approaches of Cook

et al. (2011) and Enea et al. (2013), which use a more semantics-based approach: they represent

separation-logic formulas as graphs in a particular normal form, and then prove that one formula

entails another by finding a homomorphism between the corresponding graphs. Our approach

is also semantics-based, but has more of an algebraic flavor: our method performs a bottom-up

evaluation of a formula ϕ using a particular shape-analysis interpretation (Figure 11.4); if the

answer is the empty set of 3-valued structures, then ϕ is unsatisfiable.

To deal with overlaid data-structures, Enea et al. (2013) introduce the ∗w operator: the ∗w

operator specifies data structures that share sets of objects as long as they are built over disjoint

sets of fields. Their approach, however, does not handle conjunctions of separating conjunctions

or negations of the ls-predicate. Thus, Enea et al. (2013) cannot handle formulas (9)–(14) in

Table 11.4, even though these formulas do not contain septraction. Note that, for instance, the

logical conjunction in formula (9) cannot be replaced by the ∗w operator.

Piskac et al. (2013) present a decision procedure for a decidable fragment of separation logic

based on a reduction to a particular decidable first-order theory. Unlike our approach, the

approach in Piskac et al. (2013) does not handle septraction or negations below a separating

conjunction.

Many researchers pigeonhole TVLA (Lev-Ami and Sagiv, 2000) as a system exclusively

tailored for “shape analysis”. In fact, it is actually a metasystem for (i) defining a family of logical

structures 2-STRUCT[Voc], and (ii) defining canonical-abstraction domains whose elements

represent sets of 2-STRUCT[Voc]. The ITVLA (Jeannet et al., 2010, Section 8) variant of TVLA is

a different packaging of the classes that make up the TVLA implementation, and demonstrates

better that canonical abstraction is a general-purpose method for abstracting the structures that

are a logic’s domain of discourse.
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To simplify matters, the separation-logic fragment addressed in this chapter does not allow

one to make assertions about numeric-valued variables and numeric-valued fields. Our approach

could be extended to support such capabilities using methods developed in work on abstract

interpretation that combines canonical abstraction with numeric abstractions (Gopan et al., 2004;

McCloskey et al., 2010).

11.6 Future Work

Ifϕ is satisfiable, then the procedure described in this chapter reports a set of abstract models—i.e.,

a value in the canonical-abstraction domain that overapproximates JϕK. As shown in Chapter 6

(using a variety of other techniques, and for a variety of other logics), a decision-procedure-like

method that is prepared to return such “residual” answers provides a way to generate sound

abstract transformers automatically. In particular, whenϕ specifies the transition relation between

the pre-state and post-state of a concrete transformer τ , a residuating decision procedure provides

a way to create a sound abstract transformer τ ] for τ , directly from a specification in logic of τ ’s

concrete semantics. Using our procedure, we now have a way to create abstract transformers

based on canonical-abstraction domains directly from a specification of the semantics of a

language’s concrete transformers, written in SL.

Although TVLA and separation logic have both been applied to the problem of analyzing

programs that manipulate linked data structures, there has been only rather limited crossover of

ideas between the two approaches. Our procedure is built on the connection between TVLA states

and SL statelets described in Section 11.1.3, which represents the first formal connection between

the two approaches. For this reason, the procedure should be of interest to both communities:

• For the TVLA community, the procedure illustrates a different and intriguing use for

canonical-abstraction domains. The domains that we use are tailored for the particular

formula, but, more importantly, provide an encoding that can be connected to the SL

semantics: see Equations (11.2) and (11.3) in Section 11.1.3, and the use of domain predicates

to express disjointness in Section 11.2.
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• For the separation-logic community, the procedure shows how using TVLA and canonical-

abstraction domains leads to a model-theoretic approach to the decision problem for SL

that is capable of handling formulas that are beyond the capabilities of existing tools.

The question of whether or not the separation-logic fragment considered in this chapter

is decidable remains an open question. However, the eventual goal of this research direction

is to extend the approach to deal with richer fragments of separation logic. In particular, I

believe that our approach could be extended to perform unsatisfiability checking (and symbolic

abstraction) for undecidable fragments that contain both separating implication and acyclic

linked-list predicates.

11.7 Chapter Notes

The idea of building an SMA solver for separation logic using the abstract domain of TVLA shape

graphs seemed intuitive and straight forward at first. Devising the right abstraction predicates

for the TVLA abstract domain, and the correct integrity constraints for the coerce operation

turned out to be fiddly work. Further work in this direction would require automation of these

two tasks.

Jason Breck helped with the implementation of SMASLTOV, especially with the integration

of ITVLA with the latest implementation of TVLA.

Jason Breck and Thomas Reps came up with the name “SMASLTOV” for the SMA solver for

separation logic with only minor input from me.
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Chapter 12

Property-Directed Symbolic

Abstraction

This chapter presents a framework for computing inductive invariants for a program that are

sufficient to prove that a given pre/post-condition holds, which I call the property-directed inductive-

invariant (PDII) framework. To understand the particular properties of the framework described

in this chapter I contrast it with the framework for computing best inductive A-invariants of

Chapter 7, which I will refer to as the BII framework:

1. The PDII framework computes an inductive invariant that might not be the best (or most

precise), but is sufficient to prove a given program property. The BII framework, in general,

aims to compute the best inductive A-invariant (in the given resource/time constraints).

2. In case the program does not satisfy the given property, the PDII framework reports a

concrete counter-example to the property. The BII framework is agnostic to the particular

property to be proved.

3. The PDII framework is applicable to the abstract domain of full predicate abstraction; the

BII framework can be instantiated with a larger class of abstract domains, which includes

full predicate abstraction.
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The advantages of the PDII method described in this chapter are two-fold:

1. The PDII framework obtains the same precision as the best abstract transformer for full

predicate abstraction, without ever constructing the transformers explicitly.

2. The PDII framework is relatively complete with respect to the given abstraction. That is, the

analysis is guaranteed to terminate and either

a) verifies the given property,

b) generates a concrete counterexample to the given property, or

c) reports that the abstract domain is not expressive enough to establish the proof.

Note that outcome c) is a much stronger guarantee than what other approaches provide in

such cases when they neither succeed nor give a concrete counterexample.

The PDII framework is based on the IC3 algorithm (Bradley, 2011), which is also referred

to as property-directed reachability (PDR). The PDR algorithm was chosen for the following two

reasons:

• The PDR algorithm has been shown to work extremely well in other domains, such as

hardware verification (Bradley, 2011; Eén et al., 2011). Subsequently, it was generalized to

software model checking for program models that use linear real arithmetic (Hoder and

Bjørner, 2012) and linear rational arithmetic (Cimatti and Griggio, 2012).

• The PDR algorithm maintains a “frame” structure, which can be used to build a trace

formula; if the formula is satisfiable, the model can be presented to the user as a concrete

counterexample (outcome b)).

In this chapter I describe how to integrate PDR with full predicate abstraction, and cast PDR

as a framework that is parameterized on

• the logic L in which the semantics of program statements are expressed, and
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Algorithm 23: PDIIA(Init, ρ,Bad)
1 R[−1]← false
2 R[0]← true
3 N ← 0
4 while true do
5 if there exists 0 ≤ i < Nsuch that R[i] = R[i+ 1] then
6 return valid
7 (r,A)← CheckA(Bad, R[N ])
8 if r = unsat then
9 N ← N + 1

10 R[N ]← true
11 else
12 reduceA(N,A)

• the finite set of predicates that define the abstract domain A in which invariants can be

expressed. An element of A is an arbitrary Boolean combination of the predicates.

The PDII framework has been instantiated to prove shape properties of programs manip-

ulating singly linked lists. This instantiation represents the first algorithm for shape analysis

that either (i) succeeds, (ii) returns a concrete counterexample, or (iii) returns an abstract trace

showing that the abstraction in use is not capable of proving the property in question. Details of

the instantiation to shape analysis and the experimental evaluation can be found in Itzhaky et al.

(2014).

The contribution of this chapter is:

• The PDII framework, based on the PDR algorithm, for finding an inductive invariant in a

certain logic fragment (abstract domain) that allows one to prove that a given pre-/post-

condition holds or find a concrete counter-example to the property, or, in the case of a

negative result, the information that there is no inductive invariant expressible in the

abstract domain (Section 12.1).
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Algorithm 24: reduceA(j, A)
1 (r,A1)← CheckA(Init, A)
2 if r = sat then
3 σ ← Model(Init ∧ ρN−j ∧ (Bad)′×(N−j))
4 if σ is None then
5 error “abstraction failure”
6 else
7 error “concrete counterexample(σ)”
8 while true do
9 (r,A2)←

10 CheckA((Init)′ ∨ (R[j − 1] ∧ ρ), (A)′)
11 if r = unsat then
12 break
13 else
14 reduceA(j − 1, A2)
15 for i = 0 . . . j do
16 R[i]← R[i] ∧ (¬A1 ∨ ¬A2)

12.1 The Property-Directed Inductive Invariant (PDII) Algorithm

In this section, I present the PDII framework, which is an adaptation of the PDR algorithm that

uses predicate abstraction. In this chapter, by predicate abstraction I mean the technique that

performs verification using a given fixed set of abstraction predicates (Flanagan and Qadeer,

2002), and not techniques that incorporate automatic refinement of the abstraction predicates;

e.g., CEGAR. The PDII algorithm shown in Algorithm 23 is parameterized by a given finite set

of predicates P expressed in a logic L. The requirements on the logic L are:

R1 L is decidable (for satisfiability).

R2 The transition relation for each statement of the programming language can be expressed

as a two-vocabulary L formula.

Then for a particular program, we are given:

• A finite set of predicates P = {pi ∈ L}, 1 ≤ i ≤ n.

• The transition relation of the system as a two-vocabulary formula ρ ∈ L.
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• The initial condition of the system, Init ∈ L.

• The formula specifying the set of bad states, Bad ∈ L.

Let A be the full predicate-abstraction domain over the predicates P . That is, each element

A ∈ A is an arbitrary Boolean combination of the predicates P . A ∈ A is inductive with respect

to Init and ρ if and only if Init⇒A and A ∧ ρ⇒(A)′. (ϕ)′ renames the vocabulary of constant

symbols and relation symbols occurring in ϕ from {c, . . . , r, . . .} to {c′, . . . , r′, . . .}. ϕ is (ϕ)′

stripped of primes.

If the logic L is propositional logic, then Algorithm 23 is an instance of IC3 (Bradley, 2011).

This presentation is a simplification of more advanced variants (Bradley, 2011; Eén et al., 2011;

Hoder and Bjørner, 2012). For instance, the presentation omits inductive generalization, although

the implementation of the framework does implement inductive generalization (Itzhaky et al.,

2014). Furthermore, this simplified presentation brings out the fact that the PDR algorithm is

really an analysis framework that is parameterized on the set of abstraction predicates P .

The algorithm employs an unbounded arrayR, where each frame R[i] ∈ A over-approximates

the set of concrete states after executing the loop at most i times. The algorithm maintains an

integer N , called the frame counter, such that the following invariants hold for all 0 ≤ i < N :

1. Init is a subset of all R[i], i.e., Init⇒R[i].

2. The safety requirements are satisfied, i.e., R[i]⇒¬Bad.

3. Each of the R[i+ 1] includes the states in R[i], i.e., R[i]⇒R[i+ 1].

4. The successors of R[i] are included in R[i+ 1], i.e., for all σ, σ′ if σ |= R[i] and 〈σ, σ′〉 |= ρ,

then σ′ |= R[i+ 1].

Some terminology used in the PDII algorithm:

• Model(ϕ) returns a model σ satisfying ϕ if it exists, and None if it doesn’t.

• The abstraction of a model σ, denoted by βA(σ), is the cube of predicates from P that hold

in σ: βA(σ) =
∧
{p | σ |= p, p ∈ P} ∧

∧
{¬q | σ |= ¬q, q ∈ P}.
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• Let ϕ ∈ L be a formula, and let A ∈ A be a value in the unprimed or primed vocabulary.

CheckA(ϕ,A) returns a pair (r,A1) such that

– if ϕ ∧A is satisfiable, then r = sat and A1 is the abstraction of a concrete state in the

unprimed vocabulary. That is, if the given A is in the unprimed vocabulary, then

βA(σ) for some σ |= ϕ ∧A; else if A is in the primed vocabulary, then A1 = βA(σ) for

some (σ, σ′) |= ϕ ∧A.

– if ϕ ∧A is unsatisfiable, then r = unsat, and A1 is a predicate such that A⇒A1 and

ϕ ∧ A1 is unsatisfiable. The vocabulary of A1 is the same as that of A. If A is in the

primed vocabulary (as in line 10 of Algorithm 24), CheckA drops the primes from A1

before returning the value.

A valid choice for A1 in the unsatisfiable case would be A1 = A (and indeed the algorithm

would still be correct), but ideally A1 should be the weakest such predicate. For instance,

CheckA(false, A) should return (unsat, true). In practice, when ϕ ∧A is unsatisfiable, the

A1 returned is an unsat core of ϕ ∧A constructed exclusively from conjuncts of A. Such an

unsat core is a Boolean combination of predicates in P , and thus is an element of A.

I now give a more detailed explanation of Algorithm 23. Each R[i], i ≥ 0 is initialized to

true (lines 2 and 10), and R[−1] is false. N is initialized to 0 (line 3). At line 5, the algorithm

checks whether R[i] = R[i+ 1] for some 0 ≤ i < N . If true, then an inductive invariant proving

unreachability of Bad has been found, and the algorithm returns valid (line 6).

At line 7, the algorithm checks whetherR[N ]∧Bad is satisfiable. If it is unsatisfiable, it means

that R[N ] excludes the states described by Bad, and the frame counter N is incremented (line 9).

Otherwise, A ∈ A represents an abstract state that satisfies R[N ] ∧ Bad. PDII then attempts to

reduce R[N ] to try and exclude this abstract counterexample by calling reduceA(N,A) (line 12).

The reduce algorithm (Algorithm 24) takes as input an integer j, 0 ≤ j ≤ N , and an abstract

stateA ∈ A such that there is a path starting fromA of lengthN−j that reaches Bad. Algorithm 24

tries to strengthen R[j] so as to exclude A. At line 1, reduce first checks whether Init ∧ A is
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satisfiable. If it is satisfiable, then there is an abstract trace of length N − j from Init to Bad, using

the transition relation ρ. The call to Model at line 3 checks whether there exists a concrete model

corresponding to the abstract counterexample. ρk denotes k unfoldings of the transition relation

ρ; ρ0 is true. (Bad)′×k denotes k applications of the renaming operation (·)′ to Bad. If no such

concrete model is found, then the abstraction was not precise enough to prove the required

property (line 5); otherwise, a concrete counterexample to the property is returned (line 7).

Now consider the case when Init∧A is unsatisfiable on line 1. A1 ∈ A returned by the call to

CheckA is such that Init ∧A1 is unsatisfiable; that is, Init⇒¬A1.

The while-loop on lines 8–14 checks whether the (N − j)-length path to Bad can be extended

backward to an (N − j + 1)-length path. In particular, it checks whether R[j − 1] ∧ ρ ∧ (A)′ is

satisfiable. If it is satisfiable, then the algorithm calls reduce recursively on j − 1 and A2 (line 14).

If no such backward extension is possible, the algorithm exits the while loop (line 12). Note that

if j = 0, CheckA(R[j − 1] ∧ ρ,A) returns (unsat, true), because R[−1] is set to false.

The conjunction of (¬A1 ∨ ¬A2) to R[i], 0 ≤ i ≤ j, in the loop on lines 15–16 eliminates

abstract counterexample A while preserving the required invariants on R. In particular, the

invariant Init⇒R[i] is maintained because Init⇒¬A1, and hence Init⇒(R[i] ∧ (¬A1 ∨ ¬A2)).

Furthermore, A2 is the abstract state from which there is a (spurious) path of length N − j to Bad.

By the properties of CheckA, ¬A1 and ¬A2 are each disjoint from A, and hence (¬A1 ∨ ¬A2) is

also disjoint from A. Thus, conjoining (¬A1 ∨ ¬A2) to R[i], 0 ≤ i ≤ j eliminates the spurious

abstract counterexampleA. Lastly, the invariantR[i]⇒R[i+1] is preserved because (¬A1∨¬A2)

is conjoined to all R[i], 0 ≤ i ≤ j, and not just R[j].

Formally, the output of PDIIA(Init, ρ,Bad) is captured by the following theorem. The proof

of Theorem 12.1 is based on the observation that, when “abstraction failure” is reported by

reduceA(j, A), the set of models σi |= R[i] (j ≤ i < N ) represents an abstract error trace.

Theorem 12.1. Given (i) the set of abstraction predicates P = {pi ∈ L}, 1 ≤ i ≤ n where L is a

decidable logic, and the full predicate-abstraction domain A over P , (ii) the initial condition Init ∈ L,

(iii) a transition relation ρ expressed as a two-vocabulary formula in L, and (iv) a formula Bad ∈ L
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specifying the set of bad states, PDIIA(Init, ρ,Bad) terminates, and reports either

1. valid if there exists A ∈ A s.t. (i) Init⇒A, (ii) A is inductive, and (iii) A⇒¬Bad,

2. a concrete counterexample trace, which reaches a state satisfying Bad, or

3. an abstract trace, if the inductive invariant required to prove the property cannot be expressed as an

element of A.

Proof. The first two cases are trivial: if PDIIA terminates returning some R[j], j < N , then

Init⇒R[j] by virtue of Init⇒R[0] and R[i]⇒R[i+ 1] for every i < N , and R[j]⇒¬Bad or the

check at line 7 would have failed. Also, R[j − 1] ≡ R[j] so R[j] is inductive.

If PDIIA returns a set of concrete states, then they have to be a concrete counterexample trace,

because they are a model of Init ∧ ρN−j ∧ (Bad)′×(N−j) (line 3 of reduceA).

For the third case, we show that if the check on the first line of “reduce” is “sat”, then there

exists a chain of concrete states, σj σj+1 · · · σN , such that σj |= Init, σN |= Bad, and for any

j ≤ i < N there exist two concrete states σ, σ′ satisfying:

• σ ∈ γ(βA(σi))

• σ′ ∈ γ(βA(σi+1))

• 〈σ, σ′〉 |= ρ

The key point is that, because the given abstraction can never distinguish any two states in

γ(βA(σi)), the chain σj σj+1 · · ·σN cannot be excluded by the abstract domainA, no matter what

Boolean combination of the predicates ofP is used. Moreover, the chainβA(σj)βA(σj+1) · · · βA(σN )

is an abstract trace that leads from an initial state to an error state.

Notice that the chain above may not be a concrete trace, there can be “breaks” between

adjacent σis, within the same abstract element.

Construction of (σi)i=j...N : Follow the chain of recursive calls to “reduce” with index values

N down to j. The parameter A is always a cube of the form βA(σ); take one σ |= A for each
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call, forming a series that we denote by σj , σj+1, etc. We show that this series satisfies the above

properties: At each call except the innermost, “reduce” made a recursive call at line 7, which

means that R[j − 1] ∧ ρ ∧ (A)′ was satisfiable; the returned cube A2 becomes βA(σj−1). Let

〈σ, σ′〉 |= R[j − 1] ∧ ρ ∧ (A)′, then σ |= A2 = βA(σj−1); σ′ |= A = βA(σj); and 〈σ, σ′〉 |= ρ as

required.

12.2 Chapter Notes

The research presented in this chapter was done in collaboration with Shachar Itzhaky, Niko-

laj Bjorner, Mooly Sagiv, and Thomas Reps. In this chapter, I have presented my primary

contribution—that is, the formulation of the generalized PDII framework (Algorithms 23 and 24).

The implementation of this generalized PDII framework, its instantiation to shape analysis of

programs manipulating singly linked lists, and the experimental evaluation of this instantiation

was mainly carried out by Shachar Itzhaky and Nikolaj Bjorner. Because I did not play a major

role in those aspects of the research, I chose to omit them from the thesis.

Key to instantiating the PDII framework for shape analysis of programs manipulating singly

linked lists was the recent development of the AFR and EAR logics for expressing properties of

linked lists (Itzhaky et al., 2013). AFR is used to define abstraction predicates, and EAR is used to

express the language semantics. AFR is a decidable, alternation-free fragment of first-order logic

with transitive closure (FOTC). When applied to list-manipulation programs, atomic formulas of

AFR can denote reachability relations between memory locations pointed to by pointer variables,

where reachability corresponds to repeated dereferences of next or prev fields. One advantage of

AFR is that it does not require any special-purpose reasoning machinery: an AFR formula can be

converted to a formula in “effectively propositional” logic, which can be reduced to SAT solving.

That is, in contrast to much previous work on shape analysis, this PDR-based method makes

use of a general purpose SMT solver, Z3 (de Moura and Bjørner, 2008) (rather than specialized

tools developed for reasoning about linked data structures, e.g., (Sagiv et al., 2002; Distefano
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et al., 2006; Berdine et al., 2007; Garg et al., 2013)). The reader is encouraged to read Itzhaky et al.

(2014) to learn more about this application of the PDII framework to shape analysis.
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Chapter 13

Conclusion

This chapter summarizes the results developed during my dissertation research, and presents

my contributions to advancing the field.

The thesis explored the use of abstraction in two areas of automated reasoning: verification

of programs, and decision procedures for logics. Chapter 1 laid the groundwork for the thesis

by viewing these two research areas through the lens of abstraction. Many of the applications

discussed in the thesis dealt with verification of machine code, a burgeoning subfield of program

verification (Chapter 2).

The unifying theme behind the thesis is the concept of symbolic abstraction (Reps et al., 2004):

Given a formula ϕ in logic L and an abstract domain A, the symbolic abstraction of

ϕ, denoted by α̂(ϕ), is the strongest consequence of ϕ expressible in A.

Symbolic abstraction bridges the gap between abstraction and logic, and many of the operations

required by an abstract interpreter can be implemented using symbolic abstraction (Section 3.2.3).

Furthermore, this thesis showed how the concept of symbolic abstraction brings forth the

connection between abstract interpretation (Cousot and Cousot, 1977) and decision procedures

for logics.

Instead of summarizing each individual chapter, I chose to present the results for the three

research threads discussed in this thesis: abstract interpretation (Section 13.1), machine-code
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verification (Section 13.2), and decision procedures (Section 13.3). Note that because some of the

chapters touch on more than one research thread, there is some repetition of text between the

sections in this chapter.

13.1 Abstract Interpretation

The contributions of the thesis in the field of abstract interpretation are:

• New algorithms for performing symbolic abstraction (Chapters 5 and 6).

• New algorithms for computing inductive invariants for programs (Chapters 7 and 12).

• A new abstract domain for bit-vector inequalities implemented using symbolic abstraction

(Chapter 8).

Chapter 4 reviewed two prior algorithms for performing symbolic abstraction:

• The RSY algorithm: a framework for computing α̂ that applies to any logic and abstract

domain that satisfies certain conditions (Reps et al., 2004).

• The KS algorithm: an algorithm for computing α̂ that applies to QFBV logic and the domain

E2w of affine equalities (Elder et al., 2011).

Both algorithms compute α̂(ϕ) via successive approximation from “below”, computing a se-

quence of successively “larger” approximations to the set of states described by ϕ. Section 4.3

presented an empirical comparison of the RSY and KS algorithms that showed that the KS

algorithm was ten times faster than the RSY algorithm. The main insight from this experiment

was that, while the KS algorithm invokes the decision procedure more often, each of the calls to

the decision procedure is significantly less expensive, compared to that in the RSY algorithm.
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In Chapter 5, I used the insights gained from the algorithms presented in Chapter 4 to design

a new framework for symbolic abstraction that

• is parametric and is applicable to any abstract domain that satisfies certain conditions

(similar to the RSY algorithm)

• uses a successive-approximation algorithm that is parsimonious in its use of the decision

procedure (similar to the KS algorithm)

• is bilateral; that is, it maintains both an under-approximation and a (non-trivial) over-

approximation of the desired answer, and hence is resilient to timeouts: the procedure

can return the over-approximation if it is stopped at any point (unlike the RSY and KS

algorithms).

In contrast, neither the RSY algorithm nor KS algorithm is resilient to timeouts. A decision-

procedure query—or the cumulative time for the algorithm—might take too long, in which case

the only safe answer that can be returned is >.

The key insight behind the new bilateral framework for symbolic abstraction, denoted by α̃l,

was the notion of an abstract consequence (Definition 5.1).

Chapter 6 presented an algorithm for symbolic abstraction that is based on much different

principles from the RSY, KS, and bilateral algorithms. The latter frameworks use an inductive-

learning approach to learn from examples. In contrast, the symbolic-abstraction framework dis-

cussed in Chapter 6 uses a deductive approach, and is based on the following two insights:

• Each of the key components in Stålmarck’s method (Sheeran and Stålmarck, 2000), an

algorithm for satisfiability checking of propositional formulas, can be explained in terms

of concepts from the field of abstract interpretation. In particular, I showed that Stål-

marck’s method can be viewed as a general framework, which I call Stålmarck[A], that is

parameterized by an abstract domain A and operations on A.
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• When viewed through the lens of abstraction, there is a connection between this generalized

Stålmarck’s method and symbolic abstraction. In particular, to check whether a formula ϕ

is unsatisfiable, Stålmarck[A] computes α̂(ϕ).

This new algorithm for symbolic abstraction based on Stålmarck’s method approaches its result

from “above”, and is denoted by α̃↓. Because the method approaches its result from “above”,

if the computation takes too much time, it can be stopped to yield a safe result—i.e., an over-

approximation to the best abstract operation—at any stage, similar to the bilateral framework

(Chapter 5). Section 6.4.1 presented an empirical comparison between the Stålmarck-based

algorithm (α̃↓), and the bilateral algorithm (α̃↓), which showed that α̃↓ is faster and more precise

compared to α̃l.

Chapters 7 and 12 present two different algorithms for computing inductive invariants for a

program. Chapter 7 presents a framework for computing best inductive A-invariants, which is

based on the following insights:

• The BII problem reduces to the problem of applying P̂ost.

• The problem of applying P̂ost reduces to the problem of symbolic abstraction.

This work provided insight on fundamental limits in abstract interpretation. Furthermore, the

BII algorithm presented is also practical: Santini is an invariant-generation tool based on the

principles of symbolic abstraction. The performance of the Corral model checker (Lal et al., 2012)

improved when using invariants supplied by Santini, compared to using invariants supplied by

Houdini (Flanagan and Leino, 2001); see (Thakur et al., 2013, Section 5). This experiment shows

that symbolic abstraction provides a powerful tool that can be used to implement automatically

a correct and precise invariant generator that uses an expressive abstract domain.

Chapter 12 presents a framework for computing inductive invariants for a program that are

sufficient to prove that a given pre/post-condition holds, which I called the property-directed

inductive-invariant (PDII) framework. The PDII framework computes an inductive invariant that

might not be the best (or most precise), but is sufficient to prove a given program property. In
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case the program does not satisfy the given property, the PDII framework reports a concrete

counter-example to the property. The PDII framework is applicable to the abstract domain of

full predicate abstraction. The advantages of the PDII method are two-fold:

1. The PDII framework obtains the same precision as the best abstract transformer for full

predicate abstraction, without ever constructing the transformers explicitly.

2. The PDII framework is relatively complete with respect to the given abstraction. That is, the

analysis is guaranteed to terminate and either

a) verifies the given property,

b) generates a concrete counterexample to the given property, or

c) reports that the abstract domain is not expressive enough to establish the proof.

Note that outcome c) is a much stronger guarantee than what other approaches provide in

such cases when they neither succeed nor give a concrete counterexample.

The PDII framework is based on the IC3 algorithm (Bradley, 2011) (sometimes called property-

directed reachability (PDR)). An instantiation of the PDII framework to prove shape properties of

programs manipulating singly linked lists can be found in Itzhaky et al. (2014).

Chapter 8 presents the design and implementation of a new abstract domain for bit-vector

inequalities, called the BVI domain. The key insights behind the design of the BVI domain

were:

• We extend the standard vocabulary of an abstract domain with view expressions, which are

w-bit terms expressed in some logic L. Thus, view expressions are capable of holding onto

richer constraints about the program state than the unenriched abstract domain alone.

• We construct the BVI domain as a reduced product between the bit-vector affine-equality

domain E2w and the bit-vector interval domain I2w .

• We use symbolic abstraction to implement precise versions of the abstract-domain opera-

tions for BVI.
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13.2 Machine-Code Verification

Chapter 2 discussed the unique challenges and opportunities involved in analyzing machine

code. The contributions of the thesis in the field of machine-code analysis and verification are:

• New techniques for computing abstract transformers used to perform machine-code analy-

sis (Chapters 5 and 6).

• A new abstract domain for bit-vector inequalities (Chapter 8).

• A new model-checking algorithm for stripped machine-code, called MCVETO (Chapter 9).

The use of symbolic abstraction greatly reduces the burden on the analysis writer when

implementing abstract operations required for performing analysis. This benefit is especially

helpful when implementing machine-code analyses, because most machine-code instructions

involve bit-wise operations. Section 1.1 illustrated how existing approaches to computing abstract

transformers based on quantifier elimination are not applicable to machine-code analysis. On the

other hand, computing abstract transformers based on operator-by-operator reinterpretation can

be tedious, error-prone, and not precise (Section 3.1.2). The experiments described in Sections 5.5

and 6.4.1 illustrate how the new algorithms for symbolic abstraction can be used to compute

invariants for x86 machine code.

Chapter 8 described how symbolic abstraction enabled us to define a new abstract domain,

called the Bit-Vector Inequality (BVI) domain, that addresses the following challenges: (1) identify-

ing affine-inequality invariants while handling overflow in arithmetic operations over bit-vector

data-types, and (2) holding onto invariants about values in memory during machine-code analy-

sis. The experiments in Section 9.4 showed that an analysis based on the BVI domain is capable

of proving programs correct that could not be proved correct using existing abstract domains.

Chapter 9 described a new model-checking algorithm for stripped machine-code, called

MCVETO (Machine-Code VErification TOol). MCVETO is able to detect and explore “deviant

behavior” in machine code. An example of such deviant behavior is when the program over-

writes the return address stored on the stack frame. Moreover, MCVETO is capable of verifying
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(or detecting flaws in) self-modifying code (SMC). To the best of my knowledge, MCVETO is the

first model checker to handle SMC. The key insights behind the design of MCVETO are:

• MCVETO adapts directed proof generation (DPG) (Gulavani et al., 2006) for model checking

stripped machine code.

• MCVETO uses trace-based generalization to build and refine an abstraction of the program’s

state space entirely on-the-fly. Trace-based generalization enables MCVETO to handle

instruction aliasing and SMC.

• MCVETO uses speculative trace refinement to identify candidate invariants that can speed up

the convergence of DPG.

The experiments in Section 9.4 showed that MCVETO is able to prove properties of small, but

complicated, programs. The experiments also showed how candidate invariants obtained using

the BVI domain can help speed up the convergence of DPG.

13.3 Decision Procedures

This thesis introduced a new approach for designing and implementing decision procedures

based on the use of abstraction. This abstraction-centric view of decision procedures is called

Satisfiability Modulo Abstraction (SMA). Abstraction provides a new language for the description

of decision procedures, and lead to new insights and new ways of thinking about decision

procedures. Furthermore, the SMA approach is able to reuse abstract-interpretation machinery

to implement decision procedures.
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The contributions of the thesis in the field of decision procedures are:

• An SMA solver based on a generalization of Stålmarck’s method (Sheeran and Stålmarck,

2000) (Chapter 6).

• A new distributed SAT solver, called DiSSolve (Chapter 10).

• An SMA solver for a new fragment of separation logic (Chapter 11).

Chapter 6 presented a new SMA solver that is based on the following two insights:

• Each of the key components in Stålmarck’s method (Sheeran and Stålmarck, 2000), an

algorithm for satisfiability checking of propositional formulas, can be explained in terms

of concepts from the field of abstract interpretation. In particular, I showed that Stål-

marck’s method can be viewed as a general framework, which I call Stålmarck[A], that is

parameterized on an abstract domain A and operations on A.

• When viewed through the lens of abstraction, Stålmarck’s method can be lifted from

propositional logic to richer logics, such as LRA: to obtain a method for richer logics,

instantiate the parameterized version of Stålmarck’s method with richer abstract domains,

such as the polyhedral domain (Cousot and Halbwachs, 1978).

This abstraction-based approach provides new insights into the working Stålmarck’s method. In

particular, at each step, Stålmarck[A] holds some A ∈ A; each of the proof rules employed in

Stålmarck’s method improves A by finding a semantic reduction (Cousot and Cousot, 1979) of A

with respect to ϕ. Furthermore, Section 6.4.2 shows how this generalized Stålmarck’s method

outperforms an existing SMT solver on a family of LRA formulas.

Chapter 10 described a new distributed SAT solver, called DiSSolve, which uses a new proof

rule that combines concepts from Stålmarck’s method with those found in modern DPLL/CDCL

solvers:

1. DiSSolve partitions the search space using k variables in the same fashion that the Dilemma

Rule partitions the search space in Stålmarck’s method.



226

2. Each of the 2k branches can be solved concurrently with the help of a sequential DPLL/CDCL

solver, similar to what is done in the divide-and-conquer approach to parallel SAT solvers.

3. The DPLL/CDCL solver assigned to a branch is allotted a finite amount of time, after

which the DPLL/CDCL solver returns a set of learned clauses. Such a branch-and-merge

approach does not have to as careful about load balancing, unlike the divide-and-conquer

approach.

4. DiSSolve performs a union of the information from all the branches, instead of an inter-

section as done in Stålmarck’s method. Performing a union of clauses is more effective

at pruning the search space compared to computing an intersection: with intersection

only common information learned by every process can be used to prune the search space,

while with union, all of the information learned by each process can be used to prune the

search space. In abstract-interpretation terms, DiSSolve combines the information from

the branches using a meet (u), while the Dilemma Rule in Stålmarck’s method combines

the information using a join (t).

Section 10.2 illustrated the effectiveness of DiSSolve when deployed on a multi-core machine,

and on a cloud-computing platform. Section 10.3 described a natural extension of DiSSolve

from SAT to SMT, and also presented the algorithm using abstract-interpretation terminology.

Chapter 11 described an SMA solver for checking the unsatisfiability of formulas in a new

fragment of separation logic. Separation logic (Reynolds, 2002) is an expressive logic for reasoning

about heap-allocated data structures in programs. The SMA solver uses the abstract domain of

shape graphs—implemented in TVLA (Sagiv et al., 2002)—to represent a set of heap structures.

The SMA solver performs a bottom-up evaluation of the given formula ϕ to compute an abstract

value that over-approximates the set of satisfying models of ϕ. If the over-approximation is the

empty set of shape graphs, then ϕ is unsatisfiable. If ϕ is satisfiable, then the procedure reports

a set of abstract models.

The SMA solver for separation logic is implemented in a tool called SMASLTOV (Satisfiability

Modulo Abstraction for Separation Logic ThrOugh Valuation), which is available at https://www.

https://www.github.com/smasltov-team/SMASLTOV
https://www.github.com/smasltov-team/SMASLTOV
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github.com/smasltov-team/SMASLTOV. Section 11.4 described an evaluation of SMASLTOV on

a set of formulas taken from the literature. To the best of my knowledge, SMASLTOV is able to

establish the unsatisfiability of formulas that cannot be handled by previous approaches.

The wind blew southward, through knotted forests, over shimmering plains and

toward land unexplored. This wind, it was not the ending. There are no endings,

and never will be endings, to the turning of the Wheel of Time.

But it was an ending.
— Robert Jordan and Brandon Sanderson, A Memory of Light

https://www.github.com/smasltov-team/SMASLTOV
https://www.github.com/smasltov-team/SMASLTOV
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