
Abstract Error Projection

Akash Lal1, Nicholas Kidd1, Thomas Reps1, and Tayssir Touili2

1 University of Wisconsin, Madison, Wisconsin, USA. {akash,kidd,reps}@cs.wisc.edu
2 LIAFA, CNRS & University of Paris 7, Paris, France. touili@liafa.jussieu.fr

Abstract. In this paper, we extend model-checking technology with the notion of
an error projection. Given a program abstraction, an error projection divides the
program into two parts: the part outside the error projection is guaranteed to be
correct, while the part inside the error projection can have bugs. Subsequent au-
tomated or manual verification effort need only be concentrated on the part inside
the error projection. We present novel algorithms for computing error projections
using weighted pushdown systems that are sound and complete for the class of
Boolean programs and discuss additional applications for these algorithms.

1 Introduction

Software model checkers extract a model from a program using a finite abstrac-
tion of data states and then perform reachability analysis on the model. If a
property violation is detected, it reports the result back to the user, usually in
the form of a counterexample on a failed run, or goes on to refine its abstraction
and check again. This technique has been shown to be useful both for finding
program errors and for verifying certain properties of programs. It has been
implemented in a number of model checkers, including SLAM [2], BLAST [11],
and MAGIC [6]. Our goal is to extend the capabilities of model checkers to make
maximum possible use of a given abstraction during the reachability check for
helping subsequent analysis.

We accomplish this by computing error projections and annotated error pro-
jections. An error projection is the set of program nodes N such that for each
node n ∈ N , there exists an error path that starts from the entry point of the
program and passes through n. By definition, an error projection describes all
of the nodes that are members of paths that lead to a specified error in the
model, and no more. This allows an automated program-analysis tool or human
debugger to focus their efforts on only the nodes in the error projection: every
node not in the error projection is correct (with respect to the property being
verified). Model checkers such as SLAM can then focus their refinement effort
on the part of the program inside the projection.

Annotated error projections are an extension of error projections. An anno-
tated error projection adds to each node n in the error projection two annota-
tions: 1) A counterexample that passes through n; 2) a set of abstract stores
(memory-configuration descriptors) that describes the conditions necessary at n

for the program to fail. The goal is to give back to the user—either an auto-
mated tool or human debugger—more of the information discovered during the
model-checking process.

From a theoretical standpoint, an error projection solves a combination of
forward and backward analyses. The forward analysis computes the set of pro-
gram states Sfwd that are reachable from program entry; the backward analysis

computes the set of states Sbck that can reach an error at certain pre-specified
nodes. Under a sound abstraction of the program, each of these sets provides a
strong guarantee: only the states in Sfwd can ever arise in the program, and only
the states in Sbck can ever lead to error. Error projections ask the natural ques-
tion of combining these guarantees to compute the set of states Serr = Sfwd∩Sbck

containing all states that can both arise during program execution, and lead to
error. In this sense, an error projection is making maximum use of the given
abstraction—by computing the smallest envelope of states that may contribute
to program failure.

Computation of this intersection turns out to be non-trivial because the two
sets may be infinite. In §4 and §5, we show how to compute this set efficiently
and precisely for common abstractions used for model checking. We use weighted
pushdown systems (WPDSs) [5, 21] as the abstract model of a program, which
can, among other abstractions, faithfully encode Boolean programs [22]. The
techniques that we use seem to be of general interest, and apart from the appli-
cation of finding error projections, we discuss additional applications in §7.

The contributions of this paper can be summarized as follows:

• We define the notions of error projection and annotated error projection.
These projections divide the program into a correct and an incorrect part
such that further analysis need only be carried out on the incorrect part.

• We give a novel combination of forward and backward analyses for multi-
procedural programs using weighted automata and use it for computing (an-
notated) error projections (§4 and §5). We also show that our algorithms can
be used for solving various problems in model checking (§7).

• Our experiments show that we can efficiently compute error projections (§6).

The remainder of the paper is organized as follows: §2 motivates the diffi-
culty in computing (annotated) error projections and illustrates their utility. §3
presents the definitions of weighted pushdown systems and weighted automata.
§4 and §5 give the algorithms for computing error projections and annotated er-
ror projections, respectively. §6 presents our initial experiments. §7 covers other
applications of our algorithms. §8 discusses related work.

2 Examples

Consider the program shown in Fig. 1. Here x is a global unsigned integer vari-
able, and assume that procedure foo does not change the value of x. Also assume
that the program abstraction is a Boolean abstraction in which integers (only x

in this case) are modeled using 8 bits, i.e., the value of x can be between 0 and
255 with saturated arithmetic. This type of an abstraction is used by Moped

[22], and happens to be a precise abstraction for this example.
The program has an error if node error is reached. The error projection is

shaded in the figure. The paths on the left that set the value of x to 5 or 8 are
correct paths. An error projection need not be restricted to a single trace (which
would be the case if foo had multiple paths). An annotated error projection will
additionally tell us that the value of x at node n inside foo has to be 9 on an
error path passing through this node. Note that the value of x can be 5 or 8 on
other paths that pass through n, but they do not lead to the error node.

2

start

x = 5 x = 8 x = 9

call foo

ret. foo

call foo

ret. foo

call foo

ret. foo

if(x == 10)

error

x = x + 2 x = x + 3 x = x + 1

fooenter

fooexit

…

n1

c1

r1

n4

n

n2

c2

r2

n5

n3

c3

r3

n6

n7

f1

f2

(1) 〈p, start〉 →֒ 〈p, n1〉 id
(2) 〈p, n1〉 →֒ 〈p, c1〉 {(, 5)}
(3) 〈p, c1〉 →֒ 〈p, f1 r1〉 id
(4) 〈p, r1〉 →֒ 〈p, n4〉 id
(5) 〈p, n4〉 →֒ 〈p, n7〉 {(i, i + 2)}
(6) 〈p, start〉 →֒ 〈p, n2〉 id
(7) 〈p, n2〉 →֒ 〈p, c2〉 {(, 8)}
(8) 〈p, c2〉 →֒ 〈p, f1 r2〉 id
(9) 〈p, r2〉 →֒ 〈p, n5〉 id
(10) 〈p, n5〉 →֒ 〈p, n7〉 {(i, i + 3)}
(11) 〈p, start〉 →֒ 〈p, n3〉 id
(12) 〈p, n3〉 →֒ 〈p, c3〉 {(, 9)}
(13) 〈p, c3〉 →֒ 〈p, f1 r3〉 id
(14) 〈p, r3〉 →֒ 〈p, n6〉 id
(15) 〈p, n6〉 →֒ 〈p, n7〉 {(i, i + 1)}
(16) 〈p, n7〉 →֒ 〈p, error〉 {(10, 10)}
(17) 〈p, f1〉 →֒ 〈p, n〉 id
(18) 〈p, n〉 →֒ 〈p, f2〉 id
(19) 〈p, f2〉 →֒ 〈p, ε〉 id

(a) (b)

Fig. 1. (a) An example program and (b) its corresponding WPDS. Weights, shown in
the last column, are explained in §3.

It is non-trivial to conclude the above value of x for node n. An interprocedu-
ral forward analysis starting from start will show that the value of x is in the set
{5, 8, 9} at node n. A backward interprocedural analysis starting from error con-
cludes that the value of x at n has to be in the set {7, 8, 9}. Intersecting the sets
obtained from forward and backward analysis only gives an over-approximation
of the annotated error projection values. In this case, the intersection is {8, 9},
but x can never be 8 on a path leading to error. The over-approximation occurs
because, in the forward analysis, the value of x is 8 only when the call to foo

occurs at call site c2, but in the backward analysis the path starting at n with
x = 8 and leading to error must have had the call to foo from call site c1.

Such a complication also occurs while computing (non-annotated) error pro-
jections: to see this, assume that the edge leading to node n is predicated by the
condition if(x!=9). Then, node n can be reached from start, and there is a
path starting at n that leads to error, but both of these cannot occur together.
Formally, a node is in the error projection if and only if the associated value set
computed for the annotated projection is non-empty. In this sense, computing
an error projection is a special case of computing the annotated version. We
still discuss error projections separately because (i) computing them is easier, as
we see later (computing annotations requires one extra trick), and (ii) they can
very easily be cannibalized by existing model checkers such as SLAM in their
abstraction-refinement phase: when an abstraction needs to be refined, only the
portion inside the error projection needs to be rechecked. We illustrate this point
in more detail in the next example.

Fig. 2 shows an example program and several abstractions that SLAM might
produce. This example is given in [3] to illustrate the SLAM refinement process.

3

numUnits : int;

level : int;

void getUnit() {

[1] canEnter: bool := F;

[2] if (numUnits = 0) {

[3] if (level > 10) {

[4] NewUnit();

[5] numUnits := 1;

[6] canEnter := T;

}

} else

[7] canEnter := T;

[8] if (canEnter)

[9] if (numUnits = 0)

[10] assert(F);

else

[11] gotUnit();

}

void getUnit() {

[1] ...

[2] if (?) {

[3] if (?) {

[4] ...

[5] ...

[6] ...

}

} else

[7] ...

[8] if (?)

[9] if (?)

[10] ...

else

[11] ...

}

nU0: bool;

void getUnit() {

[1] ...

[2] if (nU0) {

[3] if (?) {

[4] ...

[5] nU0 := F;

[6] ...

}

} else

[7] ...

[8] if (?)

[9] if (nU0)

[10] ...

else

[11] ...

}

nU0: bool;

void getUnit() {

[1] cE: bool := F;

[2] if (nU0) {

[3] if (?) {

[4] ...

[5] nU0 := F;

[6] cE := T;

}

} else

[7] cE := T;

[8] if (cE)

[9] if (nU0)

[10] ...

else

[11] ...

}

P B1 B2 B3

Fig. 2. An example program P and its abstractions as Boolean programs. The “· · · ”
represents a “skip” or a no-op. The part outside the error projection is shaded in each
case.

SLAM uses predicate abstraction to create Boolean programs that abstract the
original program. Boolean programs are characterized as imperative programs
with procedure calls and only Boolean variables (and no heap). The Boolean
programs produced as a result of predicate abstraction have one Boolean vari-
able per predicate that tracks the value of that predicate in the program. SLAM
creates successive approximations of the original program by adding more pred-
icates. We show the utility of error projections for abstraction refinement.

First, we describe the SLAM refinement process. In Fig. 2, the property of
interest is the assertion on line 10. We want to verify that line 10 is never reached
(because the assertion always fails). The first abstraction B1 is created without
any predicates. It only reflects the control structure of P . Reachability analysis
on B1 (assuming getUnit is program entry) shows that the assertion is reach-
able. This results in a counterexample, whose subsequent analysis reveals that
the predicate {numUnits = 0} is important. Program B2 tracks that predicate
using variable nU0. Reachability analysis on B2 reveals that the assertion is still
reachable. Now predicate {canEnter = T} is added, to produce B3, which tracks
the predicate’s value using variable cE. Reachability analysis on B3 reveals that
the assertion is not reachable, hence it is not reachable in P .

The advantage of using error projections is that the whole program need
not be abstracted when a new predicate is added. Analysis on B1 and B2 fails
to prove that the whole program is correct, but error projections may reveal
that at least some part of the program is correct. The parts outside the error

4

projections (and hence correct) are shaded in the figure. Error projection on B1

shows that line 11 cannot contribute to the bug, and need not be considered
further. Therefore, when constructing B2, we need not abstract that statement
with the new predicate. Error projection on B2 further reveals that lines 3 to 6
and line 7 do not contribute to the bug (the empty else branch to the conditional
at line 3 still can). Thus, when B3 is constructed, this part need not be abstracted
with the new predicate. B3, with the shaded region of B2 excluded, reduces to a
very simple program, resulting in reduced effort for its construction and analysis.

Annotated error projections can further reduce the analysis cost. Suppose
there was some code between lines 1 and 2, possibly relevant to proving the
program to be correct, that does not modify numUnits. After constructing B2,
the annotated error projection would tell us that in this region of code, nU0 can
be assumed to be true, because otherwise the assertion cannot be reached. This
might save half of the theorem prover calls needed to abstract that region of
code when using multiple predicates.

While this example did not require an interprocedural analysis, placing any
piece of code inside a procedure would necessitate its use. Because Boolean
programs are a common abstract model used by model checkers, we devise tech-
niques to compute error projections precisely and efficiently on them. For this,
we use weighted pushdown systems.

3 Preliminary Definitions

Definition 1. A pushdown system (PDS) is a triple P = (P, Γ, ∆) where P

is a finite set of states, Γ a finite stack alphabet, and ∆ ⊆ P × Γ × P × Γ ∗ a
finite set of rules. A configuration c is a pair 〈p, u〉 where p ∈ P and u ∈ Γ ∗.
The pushdown rules define a transition relation ⇒ on configurations as follows:
If r = 〈p, γ〉 →֒ 〈p′, γ′〉 ∈ ∆, then 〈p, γu〉 ⇒ 〈p′, γ′u〉 for all u ∈ Γ ∗. The reflexive
transitive closure of ⇒ is denoted by ⇒∗. For a set of configurations C, we define
pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′}.

Without loss of generality, we restrict PDS rules to have at most two stack
symbols on the right-hand side.

A PDS is capable of encoding control flow in a program with procedures.
The stack of the PDS simulates the run-time stack of the program, which stores
return addresses of unfinished procedure calls, with the current program location
on the top of the stack. A procedure call is modeled by a PDS rule with two
stack symbols on the right-hand side: it pushes the return address on the stack
before giving control to the called procedure. Procedure return is modeled by a
PDS rule with no stack symbols on the right-hand side: it pops off the top of
the stack and returns control to the address on the top of the stack. With such
a PDS, the transition relation ⇒∗ captures paths in the program with matched
calls and returns [21, 22].

Because the number of configurations of a PDS is unbounded, it is useful to
use finite automata to describe certain infinite sets of configurations.

Definition 2. If P = (P, Γ, ∆) is a pushdown system then a P-automaton

is a finite automaton (Q, Γ,→, P, F) where Q ⊇ P is a finite set of states,

5

→⊆ Q × Γ × Q is the transition relation, P is the set of initial states, and
F is the set of final states. We say that a configuration 〈p, u〉 is accepted by a
P-automaton if the automaton can accept u when it is started in the state p

(written as p
u−→∗ q, where q ∈ F). A set of configurations is regular if some

P-automaton accepts it.

If C is a regular set of configurations then both post∗(C) and pre∗(C) are
also regular sets of configurations [10, 4, 22]. The algorithms for computing post∗

and pre∗ take a P-automaton A as input, and if C is the set of configurations
accepted by A, they produce automata Apost∗ and Apre∗ that accept the set of
configurations post∗(C) and pre∗(C), respectively. In the rest of this paper, all
configuration sets are regular.

A weighted pushdown system (WPDS) is a PDS augmented with a weight
domain that is a bounded idempotent semiring [5, 21]. The weight domain de-
scribes an abstraction with certain algebraic properties.

Definition 3. A bounded idempotent semiring is a quintuple (D,⊕,⊗, 0, 1),
where D is a set whose elements are called weights, 0 and 1 are elements of D,
and ⊕ (the combine operator) and ⊗ (the extend operator) are binary operators
on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D,⊗) is a monoid with the neutral element 1.

2. ⊗ distributes of ⊕, i.e. for all a, b, c ∈ D we have a⊗(b⊕c) = (a⊗b)⊕(a⊗c)
and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c).

3. 0 is an annihilator with respect to ⊗, i.e. for all a ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
4. In the partial order ⊑ defined by ∀a, b ∈ D, a ⊑ b ⇐⇒ a⊕ b = b, there are

no infinite ascending chains.

In abstract-interpretation terminology, weights can be thought of as abstract
transformers, ⊗ as transformer composition, and ⊕ as join. A WPDS is a PDS
augmented with an abstraction (weights) and can be thought of as an abstract
model of a program.

Definition 4. A weighted pushdown system is a triple W = (P ,S, f) where
P = (P, Γ, ∆) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring and f : ∆ → D is a map that assigns a weight to each pushdown rule.

Let σ ∈ ∆∗ be a sequence of rules. Using f , we can associate a value to σ,
i.e. if σ = [r1, . . . , rk], then pval(σ) = f(r1)⊗ . . .⊗ f(rk). Moreover, for any two
configurations c and c′, if σ is a rule sequence that transitions c to c′ then we say
c ⇒σ c′. Reachability problems on PDSs are generalized to WPDSs as follows:

Definition 5. Let W = (P ,S, f) be a WPDS, where P = (P, Γ, ∆), and let
S, T ⊆ P × Γ ∗ be regular sets of configurations. Then the join-over-all-paths

value JOP(S, T) is defined as
⊕

{pval(σ) | s ⇒σ t, s ∈ S, t ∈ T }.

A PDS is a WPDS with the Boolean weight domain ({1, 0},⊕,⊗, 0, 1) and
f(r) = 1 for all rules r ∈ ∆. (JOP(S, T) = 1 iff a configuration in S can reach a
configuration in T .) In §5 we use the weight domain of all binary relations on a
finite set:

6

Definition 6. Let V be a finite set. A relational weight domain on V is
defined as the semiring (D,⊕,⊗, 0, 1) where D = P(V × V) is the set of all
binary relations on V , ⊕ is union, ⊗ is relational composition, 0 is the empty
set, and 1 is the identity relation.

Such domains are useful for describing finite abstractions, e.g., predicate
abstraction, abstraction of Boolean programs, and finite-state safety properties
(a short discussion can be found in [16]). In predicate abstraction, v ∈ V would
be a fixed valuation of the predicates, which in turn represents all memory
configurations in which that valuation holds. Weights are transformations on
these states that represent the abstract effect of executing a program statement.
They can usually be represented succinctly using BDDs. (This is the essence of
Schwoon’s Moped system [22].)

For the program shown in Fig. 1 and an 8-bit integer abstraction (explained in
§2), the WPDS uses a relational weight domain over the set V = {0, 1, · · · , 255}.
The weight {(, 5)} is shorthand for the set {(i, 5) | i ∈ V }; {(i, i + 1)} stands
for {(i, i+1) | i ∈ V } (with saturated arithmetic); and id stands for the identity
relation on V .

Solving for the JOP value in WPDSs. There are two algorithms for finding
the JOP value, called poststar and prestar, based on forward and backward
reachability, respectively [21]. These algorithms operate on weighted automata
defined as follows.

Definition 7. Given a WPDS W = (P ,S, f), a W-automaton A is a P-
automaton, where each transition in the automaton is labeled with a weight. The
weight of a path in the automaton is obtained by taking an extend of the weights
on the transitions in the path in either a forward or backward direction. The
automaton is said to accept a configuration c = 〈p, u〉 with weight w, written as
A(c), if w is the combine of weights of all accepting paths for u starting from state
p in the automaton. We call the automaton a backward W-automaton if the
weight of the path is read backwards and a forward W-automaton otherwise.

For simplicity, we call a W-automaton a weighted automaton. The poststar
algorithm takes a backward weighted automaton A as input and produces an-
other backward weighted automaton poststar(A), such that poststar(A)(c) =⊕

{A(c′) ⊗ pval(σ) | c′ ⇒σ c}. Similarly, the prestar algorithm takes a for-
ward weighted automaton A and produces prestar(A) such that prestar(A)(c) =⊕

{pval(σ) ⊗A(c′) | c ⇒σ c′}.
We briefly describe how the prestar algorithm works. The interested reader is

referred to [21] for more details, and an efficient implementation of the algorithm.
The algorithm takes a weighted automaton A as input, and adds weighted transi-
tions to it until no more can be added. The addition of transitions is based on the
following rule: for a WPDS rule r = 〈p, γ〉 →֒ 〈q, γ1γ2 · · · γn〉 with weight f(r) and
transitions (q, γ1, q1), (q1, γ2, q2), · · · , (qn−1, γn, qn) with weights w1, w2, · · · , wn,
add the transition (p, γ, qn) to A with weight w = f(r) ⊗ w1 ⊗ · · · ⊗ wn. If this
transition already exists with weight w′, change the weight to w ⊕ w′. This al-
gorithm is based on the intuition that if the automaton accepts configurations

7

c and c′ with weights w and w′, respectively, and rule r allows the transition
c′ ⇒ c, then the automaton is changed to accept c′ with weight w′ ⊕ (f(r)⊗w).
Termination follows from the fact that the number of states of the automaton
does not increase (hence, the number of transitions is bounded), and that the
weight domain satisfies the ascending-chain condition.

An important algorithm for reading out weights from weighted automata
is called path summary defined as follows: path summary(A) = ⊕{A(c) | c ∈
P × Γ ∗}. We briefly outline this algorithm for a forward weighted automaton.
It is based on a standard fixpoint-finding algorithm. It associates a weight l(q)
to each state q of A: Initialize the weight of each non-initial state in A to 0
and each initial state to 1; add each initial state to a worklist. Next, repeatedly
remove a state, say q, from the worklist and propagate its weight forwards: i.e.,
if there is a transition (q, γ, q′) with weight w, then update the weight of state
q′ as l(q′) := l(q′) ⊕ (l(q) ⊗ w); if the weight on q′ changes, then add it to the
worklist. This is repeated until the worklist is empty. Then path summary(A) is
the combine of l(q) for each final state q.

n id
r1 {(_,5)}

r2 {(_,8)}

r3 {(_,9)}

n id r1 {(8,10)}

r2 {(7,10)}

r3 {(9,10)}

Fig. 3. Parts of the poststar and
prestar automaton, respectively.

Using path summary, we can calculate
A(C) =

⊕
{A(c) | c ∈ C} as follows: Let AC

be an (unweighted) automaton that accepts
C. Intersect A and AC to obtain a weighted
automaton A′.3 Then it is easy to see that
A(C) = path summary(A′). Using this, we
can solve for JOP. Let AS and AT be (un-
weighted) automata that accept the sets S

and T , respectively. Then JOP(S, T) = poststar(AS)(T) = prestar(AT)(S).
For the program shown in Fig. 1, parts of the automata produced by post-
star({start}) and prestar(error Γ ∗) are shown in Fig. 3 (only the part im-
portant for node n is shown).4 Using these, we get JOP({start}, n Γ ∗) =
{(, 5), (, 8), (, 9)} and JOP(n Γ ∗, error Γ ∗) = {(7, 10), (8, 10), (9, 10)}. Here,
(γ Γ ∗) stands for the set {γ c | c ∈ Γ ∗}.

4 Computing an Error Projection

Let us now define an error projection using WPDSs as our model of programs.
Usually, a WPDS created from a program has a single PDS state. Even when
this is not the case, the states can be pushed inside the weights to get a single-
state WPDS. We use this to simplify the discussion: PDS configurations are just
represented as stacks (Γ ∗).

Also, we concern ourselves with assertion checking. We assume that we are
given a target set of control configurations T such that the program model
exhibits an error only if it can reach a configuration in that set. One way of

3 Intersection of a weighted automaton with an unweighted one is carried out the
same way as for two unweighted automata, except that the weights of the weighted
automaton are copied over to the resultant automaton.

4 Intuitively, for the poststar automaton, the weight on a transition labeled with γ is
the net transformer to go from the entry of the procedure containing γ to γ. For the
prestar automaton, it is the transformer to go from γ to the exit of the procedure.

8

accomplishing this is to convert every assertion of the form “assert(E)” into
a condition “if(!E) then goto error” (assuming !E is expressible under the
current abstraction), and instantiate T to be the set of configurations (error Γ ∗).
We also assume that the weight abstraction has been constructed such that a
path σ in the PDS is infeasible if and only if its weight pval(σ) is 0. Therefore,
under this model, the program has an error only when it can reach a configuration
in T with a path of non-0 weight.

Definition 8. Given S, the set of starting configurations of the program, and a
target set of configurations T , a program node γ ∈ Γ is in the error projection

EP(S, T) if and only if there exists a path σ = σ1σ2 such that pval(σ) 6= 0 and
s ⇒σ1 c ⇒σ2 t for some s ∈ S, c ∈ γΓ ∗, t ∈ T .

We calculate the error projection by computing a constrained form of the
join-over-all-paths value, which we call a weighted chopping query.

Definition 9. Given regular sets of configurations S (source), T (target), and
C (chop); a weighted chopping query is to compute the following weight:

WC(S, C, T) =
⊕

{v(σ1σ2) | s ⇒σ1 c ⇒σ2 t, s ∈ S, c ∈ C, t ∈ T }

It is easy to see that γ ∈ EP(S, T) if and only if WC(S, γ Γ ∗, T) 6= 0.
We now show how to solve these queries. First, note that WC(S, C, T) 6=
JOP(S, C) ⊗ JOP(C, T). For example, in Fig. 1, if foo was not called from c3,
and S = {start}, T = (error Γ ∗), C = (n Γ ∗) then JOP(S, C) = {(, 5), (, 8)}
and JOP(C, T) = {(7, 10), (8, 10)}, and their extend is non-empty, whereas
WC(S, C, T) = ∅. This is exactly the problem mentioned in §2.

A first attempt at solving weighted chopping is to use the identity
WC(S, C, T) =

⊕
{JOP(S, c) ⊗ JOP(c, T) | c ∈ C}. However, this only works

when C is a finite set of configurations, which is not the case if we want to com-
pute an error projection. We can solve this problem using the automata-theoretic
constructions described in the previous section. Let AS be an unweighted au-
tomaton that represents the set S, and similarly for AC and AT . The following
two algorithms, given in different columns, are valid ways of solving a weighted
chopping query.

1. A1 = poststar(AS)
2. A2 = (A1 ∩ AC)
3. A3 = poststar(A2)
4. A4 = A3 ∩ AT

5. WC(S, C, T) = path summary(A4)

1. A1 = prestar(AT)
2. A2 = (A1 ∩ AC)
3. A3 = prestar(A2)
4. A4 = A3 ∩AS

5. WC(S, C, T) = path summary(A4)

The running time is only proportional to the size of AC , not the size of the
language accepted by it. A proof of correctness can be found in [15].

An error projection is computed by solving a separate weighted chopping
query for each node γ in the program. This means that the source set S and the
target set T remain fixed, but the chop set C keeps changing. Unfortunately, the
two algorithms given above have a major shortcoming: only their first steps can
be carried over from one chopping query to the next; the rest of the steps have

9

to be recomputed for each node γ. As shown in §6, this approach is very slow,
and the algorithm discussed next is about 3 orders of magnitude faster.

To derive a better algorithm for weighted chopping that is more suited for
computing error projections, let us first look at the unweighted case (i.e., the
weighted case where the weight domain just contains the weights 0 and 1). Then
WC(S, C, T) = 1 if and only if (post∗(S) ∩ pre∗(T)) ∩ C 6= ∅. This procedure
just requires a single intersection operation for different chop sets. Computation
of both post∗(S) and pre∗(T) have to be done just once. We generalize this
approach to the weighted case.

First, we need to define what we mean by intersecting weighted automata.
Let A1 and A2 be two weighted automata. Define their intersection A1 � A2

to be a function from configurations to weights, which we later compute in the
form of a weighted automaton, such that (A1 �A2)(c) = A1(c)⊗A2(c).

5 Define
(A1 �A2)(C) =

⊕
{(A1 �A2)(c) | c ∈ C}, as before. Based on this definition, if

Apost∗ = poststar(AS) and Apre∗ = prestar(AT), then WC(S, C, T) = (Apost∗ �

Apre∗)(C).
Let us give some intuition into why intersecting weighted automata is hard.

For A1 and A2 as above, the intersection is defined to read off the weight from
A1 first and then extend it with the weight from A2. A naive approach would be
to construct a weighted automaton A12 as the concatenation of A1 and A2 (with
epsilon transitions from the final states of A1 to the initial states of A2) and let
(A1 �A2)(c) = A12(c c). However, computing (A1 �A2)(C) for a regular set C

requires computing join-over-all-paths in A12 over the set of paths that accept
the language {(c c) | c ∈ C} because the same path (i.e., c) must be followed in
both A1 and A2. This language is neither regular nor context-free, and we do not
know of any method that computes join-over-all-paths over a non-context-free
set of paths.

The trick here is to recognize that weighted automata have a direction in
which weights are read off. We need to intersect Apost∗ with Apre∗ , where Apost∗

is a backward automaton and Apre∗ is a forward automaton. If we concatenate
these together but reverse the second one (reverse all transitions and switch
initial and final states), then we get a purely backward weighted automaton and
we only need to solve for join-over-all-paths over the language {(c cR) | c ∈ C}
where cR is c written in the reverse order. This language can be defined using
a linear context-free grammar with production rules of the form “X → γY γ”,
where X and Y are non-terminals. The following section uses this intuition to
derive an algorithm for intersecting two weighted automata.

Intersecting Weighted Automata. Let Ab = (Qb, Γ,→b, P, Fb) be a back-
ward weighted automaton and Af = (Qf , Γ,→f , P, Ff) be a forward weighted
automaton. We proceed with the standard automata-intersection algorithm:
Construct a new automaton Abf = (Qb × Qf , Γ,→, P, Fb × Ff), where we iden-
tify the state (p, p), p ∈ P with p, i.e., the P -states of Abf are states of the

5 Note that the operator � is not commutative is general, but we still call it intersection

because the construction of A1 �A2 resembles the one for intersection of unweighted
automata.

10

form (p, p), p ∈ P . The transitions of this automaton are computed by match-
ing on stack symbols. If tb = (q1, γ, q2) is a transition in Ab with weight wb

and tf = (q3, γ, q4) is a transition in Af with weight wf , then add transition
tbf = ((q1, q3), γ, (q2, q4)) to Abf with weight λz.(wb ⊗ z⊗wf). We call this type
of weight a functional weight and use the capital letter W (possibly subscripted)
to distinguish them from normal weights. Functional weights are special func-
tions on weights: given a weight w and a functional weight W = λz.(w1⊗z⊗w2),
W (w) = (w1 ⊗ w ⊗ w2). The automaton Abf is called a functional automaton.

We define extend on functional weights as reversed function composition.
That is, if W1 = λz.(w1 ⊗ z ⊗w2) and W2 = λz.(w3 ⊗ z ⊗w4), then W1 ⊗W2 =
W2 ◦W1 = λz.((w3 ⊗w1)⊗ z ⊗ (w2 ⊗w4)), and is thus also a functional weight.
However, the combine operator, defined as W1 ⊕ W2 = λz.(W1(z) ⊕ W2(z)),
does not preserve the form of functional weights. Hence, functional weights do
not form a semiring. We now show that this is not a handicap, and we can still
compute Ab � Af as required.

Because Abf is a product automaton, every path in it of the form (q1, q2)
c−→∗

(q3, q4) is in one-to-one correspondence with paths q1

c−→∗ q3 in Ab and q2

c−→∗ q4

in Af . Using this fact, we get that the weight of a path in Abf will be a function of
the form λz.(wb⊗z⊗wf), where wb and wf are the weights of the corresponding
paths in Ab and Af , respectively. In this sense, Abf is constructed based on the
intuition given in the previous section: the functional weights resemble grammar
productions “X → γY γ” for the language {(c cR)} with weights replacing the
two occurrences of γ, and their composition resembles the derivation of a string
in the language. (Note that in “X → γY γ”, the first γ is a letter in c, whereas
the second γ is a letter in cR. In general, the letters will be given different weights
in Ab and Af .)

Formally, for a configuration c and a weighted automaton A, define the pred-
icate accpath(A, c, w) to be true if there is an accepting path in A for c that
has weight w, and false otherwise (note that we only need the extend opera-
tion to compute the weight of a path). Similarly, accpath(A, C, w) is true iff
accpath(A, c, w) is true for some c ∈ C. Then we have:

(Ab � Af)(c) = Ab(c) ⊗Af (c)
=

⊕
{wb ⊗ wf | accpath(Ab, c, wb), accpath(Af , c, wf)}

=
⊕

{wb ⊗ wf | accpath(Abf , c, λz.(wb ⊗ z ⊗ wf))}
=

⊕
{λz.(wb ⊗ z ⊗ wf)(1) | accpath(Abf , c, λz.(wb ⊗ z ⊗ wf))}

=
⊕

{W (1) | accpath(Abf , c, W)}

Similarly, we have (Ab � Af)(C) =
⊕

{W (1) | accpath(Abf , C, W)} =⊕
{W (1) | accpath(Abf ∩ AC , Γ ∗, W)}, where AC is an unweighted automa-

ton that accepts the set C, and this can be obtained using a procedure similar
to path summary. The advantage of the way we have defined Abf is that we can
intersect it with AC (via ordinary intersection) and then run path summary over
it, as we show next.

Functional weights distribute over (ordinary) weights, i.e., W (w1 ⊕ w2) =
W (w1)⊕W (w2). Thus, path summary(Abf) can be obtained merely by solving an
intraprocedural join-over-all-paths over distributive transformers starting with

11

the weight 1, which is completely standard: Initialize l(q) = 1 for initial states,
and set l(q) = 0 for other states. Then, until a fixpoint is reached, for a transition
(q, γ, q′) with weight W , update the weight on state q′ by l(q′) := l(q′)⊕W (l(q)).
Then path summary(Abf) is the combine of the weights on the final states. Ter-
mination is guaranteed because we still have weights associated with states, and
functional weights are monotonic. Because of the properties satisfied by Abf , we
use Abf as a representation for (Ab � Af).

n [id . z . id]
r1 [{(_,5)} . z . {(8,10)}]

r2 [{(_,8)} . z . {(7,10)}]

r3 [{(_,9)} . z . {(9,10)}]

Fig. 4. Functional automa-
ton obtained after intersect-
ing the automata of Fig. 3.

This allows us to solve WC(S, C, T) =
(Apost∗ � Apre∗)(C). That is, after a prepara-
tion step to create (Apost∗ �Apre∗), one can solve
WC(S, C, T) for different chop sets C just using
intersection with AC followed by path summary,
as shown above. Fig. 4 shows an example. For
short, the weight λz.(w1 ⊗ z ⊗ w2) is denoted by
[w1.z.w2]. Note how the weights get appropriately
paired for different call sites.

It should be noted that this technique applies only to the intersection of a
forward weighted automaton with a backward one, because in this case we are
able to get around the problem of computing join-over-all-paths over a non-
context-free set of paths. We are not aware of any algorithms for intersecting
two forward or two backward automata; those problems remain open.

5 Computing an Annotated Error Projection

An annotated error projection adds more information to an error projection by
associating each node in the error projection with (i) at least one counterexample
that goes through that node and (ii) the set of abstract stores (or memory
descriptors) that may arise on a path doomed to fail in the future. Due to space
constraints, we do not discuss the first part here. It can be found in [15].

For defining and computing the abstract stores for nodes in an error pro-
jection, we restrict ourselves to relational abstractions over a finite set. We can
only compute the precise set of abstract stores under this assumption. In other
cases, we can only approximate the desired set of abstract stores (the approxi-
mation algorithms are given in [15]). Note that the value of WC(S, C, T) does
not say anything about the required set of abstract stores at C: for Fig. 1,
WC(S, n Γ ∗, T) = {(, 10)} but the required abstract store at n is {9}.

Let V be a finite set of abstract stores and (D,⊕,⊗, 0, 1) the relational
weight domain on V , as defined in Defn. 6. For weights w, w1, w2 ∈ D, define
Rng(w) to be the range of w, Dom(w) to be the domain of w and Com(w1, w2) =
Rng(w1) ∩ Dom(w2). For a node γ ∈ EP(S, T), we compute the following subset
of V : Vγ = {v ∈ Com(pval(σ1), pval(σ2)) | s ⇒σ1 c ⇒σ2 t, s ∈ S, c ∈ γΓ ∗, t ∈ T }.
If v ∈ Vγ , then there must be a path in the program model that leads to an error
such that the abstract store v arises at node γ.

An Explicit Algorithm. First, we show how to check for membership in the set
Vγ . Conceptually, we place a bottleneck at node γ, using a special weight, to see
if there is a feasible path that can pass through the bottleneck at γ with abstract

12

store v, and then continue on to the error configuration. Let wv = {(v, v)}. Note
that v ∈ Com(w1, w2) iff w1 ⊗ wv ⊗ w2 6= 0. Let Apost∗ = poststar(AS),Apre∗ =
prestar(AT) and A� be their intersection. Then v ∈ Vγ iff there is a configuration
c ∈ γΓ ∗ such that JOP(S, c) ⊗ wv ⊗ JOP(c, T) 6= 0 or, equivalently, Apost∗(c) ⊗
wv ⊗Apre∗(c) 6= 0. To check this, we use the functional automaton A� again. It
is not hard to check that the following holds for any weight w:

Apost∗(c) ⊗ w ⊗Apre∗(c) =
⊕

{W (w) | accpath(A�, c, W)}
Then v ∈ Vγ iff

⊕
{W (wv) | accpath(A�, γΓ ∗, W)} 6= 0. This is, again, com-

putable using path summary: Intersect A� with an unweighted automaton ac-
cepting γΓ ∗, then run path summary but initialize the weight on initial states
with wv instead of 1.

This gives us an algorithm for computing Vγ , but its running time would
be proportional to |V |, which might be very large. In the case of predicate
abstraction, |V | is exponential in the number of predicates, but the weights
(transformers) can be efficiently encoded using BDDs. For example, the identity
transformer on V can be encoded with a BDD of size log |V |. To avoid losing
the advantages of using BDDs, we now present a symbolic algorithm.

A Symbolic Algorithm. Let Y = {yv | v ∈ V } be a set of variables.
We switch our weight domain from being V × V to V × Y × V . We write
weights in the new domain with superscript e. Intuitively, the triple (v1, y, v2)
denotes the transformation of v1 to v2 provided the variable y is “true”. Com-
bine is still defined to be union and extend is defined as follows: we

1 ⊗ we
2 =

{(v1, y, v2) | (v1, y, v3) ∈ we
1, (v3, y, v2) ∈ we

2}. Also, 1
e

= {(v, y, v) | v ∈ V, y ∈
Y } and 0

e
= ∅. Define a symbolic identity ide

s as {(v, yv, v) | v ∈ V }. Let
Var(we) = {v | (v1, yv, v2) ∈ we for some v1, v2 ∈ V }, i.e., the set of values
whose corresponding variable appears in we. Given a weight in V × V , define
ext(w) = {(v1, y, v2) | (v1, v2) ∈ w, y ∈ Y }, i.e., all variables are added to the
middle dimension. We will use the middle dimension to remember the “history”
when composition is performed: for weights w1, w2 ∈ V × V , it is easy to prove
that Com(w1, w2) = Var(ext(w1) ⊗ ide

s ⊗ ext(w2)). Therefore, Vγ = Var(we
γ)

where, we
γ =

⊕
{ext(pval(σ1)) ⊗ ide

s ⊗ ext(pval(σ2)) | s ⇒σ1 c ⇒σ2 t, s ∈ S, c ∈
γΓ ∗, t ∈ T }. This weight is computed by replacing all weights w in the func-
tional automaton with ext(w) and running path summary over paths accepting
γΓ ∗, and initializing initial states with weight ide

s. The advantages of this algo-
rithm are: the weight ext(w) can be represented using the same-sized BDD as
the one for w (the middle dimension is “don’t-care”); and the weight ide

s can be
represented using a BDD of size O(log |V |).

For our example, the weight we
n

read off from the functional automaton shown
in Fig. 4 is {(, y9, 10)}, which gives us Vn = {9}, as desired.

6 Experiments

We added the error-projection algorithm to Moped [22], a program-analysis tool
that encodes Boolean programs as WPDSs and answers reachability queries on
them for checking assertions. The Boolean programs may be obtained after per-
forming predicate abstraction or from integer programs with a limited number of

13

bits to represent bounded integers. Although it uses a finite abstraction, the use
of weights to encode abstract transformers as BDDs is crucial for its scalability.
Because we can compute an error projection using just extend and combine, we
take full advantage of the BDD encoding.

We measured the time needed to solve WC(S, nΓ ∗, T) for all program nodes
n using the algorithms from §4: one that uses functional automata and one based
on running two prestar queries (called the double-pre∗ method below). Although
we report the size of the error projection, we could not validate how useful it
was because only the model (and not the source code) was available to us.

The results are shown in Tab. 1. The table can be read as follows: the first
five columns give the program names, the number of nodes (or basic blocks) in
the program, error-projection size relative to program size, and times to compute
post∗(S) and pre∗(T), respectively. The next two columns give the running time
for solving WC(S, nΓ ∗, T) for all nodes n using functionals and using double-
pre∗, after the initial computation of post∗(S) and pre∗(T) was completed. Be-
cause the double-pre∗ method is so slow, we did not run these examples to
completion; instead, we report the time for solving the weighted chop query for
only 1% of the blocks and multiply the resulting number by 100. The last two
columns compare the running time for using functionals (column six) against the
time taken to compute post∗(S) + pre∗(T); and the time taken by the double-
pre∗ method. All running times are in seconds. The experiments were run on a
3GHz P4 machine with 2GB RAM.

WC(S, nΓ ∗, T) Functional vs.

Prog Nodes Error Proj. post∗(S) pre∗(T) Functional Double pre∗ Reach Double pre∗

iscsiprt16 4884 0% 79 1.8 3.5 5800 0.04 1657
pnpmem2 4813 0% 7 4.1 8.8 16000 0.79 1818
iscsiprt10 4824 46% 0.28 0.36 1.6 1200 2.5 750
pnpmem1 4804 65% 7.2 4.5 9.2 17000 0.79 1848
iscsi1 6358 84% 53 110 140 750000 0.88 5357
bugs5 36972 99% 13 2 170 85000 11.3 500

Table 1. Moped results: The WPDSs are models of Boolean programs provided by S.
Schwoon. S is the entry point of the program, and T is the error configuration set. An
error projection of size 0% means that the program is correct.

Discussion. As can be seen from the table, using functionals is about three or-
ders of magnitude faster than using the double-pre∗ method. Also, as shown in
column eight, computation of the error projection compares fairly well with run-
ning a single forward or backward analysis (at least for the smaller programs). To
some extent, this implies that error-projection computation can be incorporated
into model checkers without adding significant overhead.

The sizes of the error projections indicate that they might be useful in model
checkers. Simple slicing, which only deals with the control structure of the pro-
gram (and no weights) produced more than 99% of the program in each case,
even when the program was correct.

The result for the last program bugs5, however, does not seem as encouraging
due to the large size of the error projection. We do not have the source code for
this program, but investigating the model reveals that there is a loop that calls

14

into most of the code, and the error can occur inside the loop. If the loop resets
its state when looping back, the error projection would include everything inside
the loop or called from it. This is because for every node, there is a path from
the loop head that goes through the node, then loops back to the head, with the
same data state, and then goes to error.

This seems to be a limitation of error projections and perhaps calls for similar
techniques that only focus on acyclic paths (paths that do not repeat a program
state). However, for use inside a refinement process, error projections still give
the minimal set of nodes that is sound with respect to the property being verified
(focusing on acyclic paths need not be sound, i.e., the actual path that leads to
error might actually be cyclic in an abstract model).

7 Additional Applications

The techniques presented in §4 and §5 give rise to several other applications of
our ideas in model checking. Let BW(wbot, γ) be the weight obtained from the
functional automaton intersected with (γ Γ ∗) and bottleneck weight wbot (as
used in §5). This weight can be computed for all nodes γ in roughly the same
time as the error projection (which computes BW(1, γ)).

Multi-threaded programs. KISS [20] is a system that can detect errors in
concurrent programs that arise in at most two context switches. The two-context-
switch bound enables verification using a sequential model checker. To convert
a concurrent program into one suitable for a sequential model checker, KISS
adds nondeterministic function calls to the main method of process 2 after each
statement of process 1. Likewise it adds nondeterministic function returns after
each statement of process 2. It also ensures that a function call from process
1 to process 2 is only performed once. This technique essentially results in a
sequential program that mimics the behavior of a concurrent program for two
context switches.

Using our techniques, we can extend KISS to determine all of the nodes in
process 1 where a context switch can occur that leads to an error later in process
1. One way to do this is to use nondeterministic calls and returns as KISS does
and then compute the error projection. However, due to the automata-theoretic
techniques we employ, we can omit the extra additions. The following algorithm
shows how to do this:

1. Create A� = Apost∗ � Apre∗ for process 1.
2. Let A2 be the result of a poststar query from main for process 2. Let w =

path summary(A2); w represents the state transformation caused by the
execution steps spent in process 2.

3. For each program node γ of process 1, let wγ = BW(w, γ) be the weight
obtained from functional automaton A� of process 1. If wγ 6= 0 then an
error can occur in the program when the first context switch occurs at node
γ in process 1.

Error reporting. The model checker SLAM [2] used a technique presented
in [1] to identify error causes from counterexample traces. The main idea was
to remove “correct” transitions from the error trace and the remaining transi-

15

tions indicate the cause of the error. These correct transitions were obtained
by a backward analysis from non-error configurations. However, no restrictions
were imposed that these transitions also be reachable from the entry point of
the program. Using annotated error projections, we can limit the correct transi-
tions to ones that are both forward reachable from program entry and backward
reachable from the non-error configurations.

8 Related Work

The combination of forward and backward analysis has a long history in abstract
interpretation, going back to Cousot’s thesis [8]. It has been also been used in
model checking [17] and in interprocedural analysis [13]. In the present paper,
we show how forward and backward approaches can be combined precisely in
the context of interprocedural analysis performed with WPDSs; our experiments
show that this approach is significantly faster than a more straightforward one.

With model checkers becoming more popular, there has been considerable
work on explaining the results obtained from a model checker in an attempt to
localize the fault in the program [7, 1]. These approaches are complimentary to
ours. They build on information obtained from reachability analysis performed
by the model checker and use certain heuristics to isolate the root cause of the
bug. Error projections seek to maximize information that can be obtained from
the reachability search so that other tools can take advantage of this gain in
precision. This paper focused on using error projections inside an abstraction
refinement loop. The third application in §7 briefly shows how they can be used
for fault localization. It would be interesting to explore further use of error
projections for fault localization.

Such error-reporting techniques have also been used outside model checking.
Kremenek et al. [14] use statistical analysis to rank counterexamples found by
the xgcc[9] compiler. Their goal is to present to the user an ordered list of
counterexamples sorted by their confidence rank.

The goal of both program slicing [23] and our work on error projection is
to compute a set of nodes that exhibit some property. In our work, the prop-
erty of interest is membership in an error path, whereas in the case of program
slicing, the property of interest is membership in a path along data and con-
trol dependences. Slicing and chopping have certain advantages—for instance,
chopping filters out statements that do not transmit effects from source s to
target t. These techniques have been generalized by Hong et al. [12], who show
how to perform more precise versions of slicing and chopping using predicate-
abstraction and model checking. However, their methods are intraprocedural,
whereas our work addresses interprocedural analysis.

Mohri et al. investigated the intersection of weighted automata in their work
on natural-language recognition [18, 19]. For their weight domains, the extend
operation must be commutative. We do not require this restriction.

References

1. T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: localizing errors
in counterexample traces. In POPL, 2003.

16

2. T. Ball and S. Rajamani. Automatically validating temporal safety properties of
interfaces. In SPIN, 2001.

3. T. Ball and S. K. Rajamani. Boolean programs: A model and process for software
analysis. Technical Report MSR-TR-2000-14, Microsoft Research, 2000.

4. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model checking. In CONCUR. Springer-Verlag, 1997.

5. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. In POPL, 2003.

6. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In ICSE, 2003.

7. S. Chaki, A. Groce, and O. Strichman. Explaining abstract counterexamples. In
FSE, 2004.

8. P. Cousot. Méthodes itératives de construction et d’approximation de point fixes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse
ès sciences mathématiques, Univ. of Grenoble, 1978.

9. D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In OSDI, 2000.

10. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. Elec. Notes in Theoretical Comp. Sci., 9, 1997.

11. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL,
2002.

12. H. S. Hong, I. Lee, and O. Sokolsky. Abstract slicing: A new approach to program
slicing based on abstract interpretation and model checking. In SCAM, 2005.

13. B. Jeannet and W. Serwe. Abstracting call-stacks for interprocedural verification
of imperative programs. In AMAST, 2004.

14. T. Kremenek, K. Ashcraft, J. Yang, and D. R. Engler. Correlation exploitation in
error ranking. In SIGSOFT FSE, 2004.

15. A. Lal, N. Kidd, T. Reps, and T. Touili. Abstract error projection. Technical
Report 1579, University of Wisconsin-Madison, Jan. 2007.

16. A. Lal and T. Reps. Improving pushdown system model checking. Technical Report
1552, University of Wisconsin-Madison, Jan. 2006.

17. D. Massé. Combining forward and backward analyses of temporal properties. In
PADO, 2001.

18. M. Mohri, F. C. N. Pereira, and M. Riley. Weighted automata in text and speech
processing. In ECAI, 1996.

19. M. Mohri, F. C. N. Pereira, and M. Riley. The design principles of a weighted
finite-state transducer library. In Theoretical Computer Science, 2000.

20. S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In PLDI, 2004.
21. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and

their application to interprocedural dataflow analysis. SCP, 58, 2005.
22. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Tech. Univ. Munich,

2002.
23. M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

17

