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Abstract. In static analysis, the semantics of the program is expressed as a set
of equations. The equations are solved iteratively over some abstract domain. If
the abstract domain is distributive and satisfies the ascending-chain condition, an
iterative technique yields the most precise solution for the equations. However,
if the above properties are not satisfied, the solution obtained is typically impre-
cise. Moreover, due to the properties of widening operators, the precision loss is
sensitive to the order in which the state-space is explored.

In this paper, we introduce guided static analysis, a framework for controlling
the exploration of the state-space of a program. The framework guides the state-
space exploration by applying standard static-analysis techniques to a sequence
of modified versions of the analyzed program. As such, the framework does not
require any modifications to existing analysis techniques, and thus can be easily
integrated into existing static-analysis tools.

We present two instantiations of the framework, which improve the precision of
widening in (i) loops with multiple phases and (ii) loops in which the transforma-
tion performed on each iteration is chosen non-deterministically.

1 Introduction

The goal of static analysis is, given a program and a set of initial states, to
compute the set of states that arise during the execution of the program. Due to
general undecidability of this problem, the sets of program states are typically
over-approximated by families of sets that both are decidable and can be effec-
tively manipulated by a computer. Such families are referred to as abstractions
or abstract domains. In static analysis, the semantics of the program is cast as
a set of equations, which are solved iteratively over a chosen abstract domain.
If the abstract domain possesses certain algebraic properties, namely, if the ab-
stract transformers for the domain are monotonic and distribute over join, and
if the domain does not contain infinite strictly-increasing chains, then simple
iterative techniques yield the least fix-point for the set of equations.

However, many useful existing abstract domains, especially those for mod-
eling numeric properties, do not possess the above algebraic properties. As a
result, standard iterative techniques (augmented with widening, to ensure anal-
ysis convergence) tend to lose precision. The precision is lost both due to overly-
conservative invariant guesses made by widening, and due to joining together the
sets of reachable states along multiple paths. In previous work [11], we showed
that the loss of precision can sometimes be avoided by forcing the analysis to ex-
plore the state space of the program in a certain order. In particular, we showed
that the precision of widening in loops with multiple phases can be improved if
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the analysis has a chance to precisely characterize the behavior of each phase
before having to account for the behavior of subsequent phases.

In this paper, we introduce guided static analysis, a general framework for
guiding state-space exploration. The framework controls state-space exploration
by applying standard static-analysis techniques to a sequence of program restric-
tions, which are modified versions of the analyzed program. The result of each
analysis run is used to derive the next program restriction in the sequence, and
also serves as an approximation of a set of initial states for the next analysis run.
Note that existing static-analysis techniques are utilized “as is”, making it easy
to integrate the framework into existing tools. The framework is instantiated by
specifying a procedure for deriving program restrictions.

We present two instantiations of the framework. The first instantiation im-
proves the precision of widening in loops that have multiple phases. This in-
stantiation generalizes the lookahead-widening technique [11]. It operates by
generating program restrictions that incorporate individual loop phases. Also, it
lifts the limitations of lookahead widening, such as the restrictions imposed on
the iteration strategy and on the length of the descending-iteration sequence.

The second instantiation addresses the precision of widening in loops where
the behavior of each iteration is chosen non-deterministically. Such loops natu-
rally occur in the realm of synchronous systems [13, 10] and can occur in imper-
ative programs if some condition within a loop is abstracted away. This instan-
tiation derives a sequence of program restrictions, each of which enables a single
iteration behavior and disables all of the others. At the end, to make the anal-
ysis sound, a program restriction with all behaviors enabled is analyzed. This
strategy allows the analysis to characterize each behavior in isolation, thereby
obtaining more precise results.

In non-distributive domains, the join operation loses precision. To keep the
analysis precise, many techniques propagate sets of abstract values instead of
individual values. Various heuristics are used to keep the cardinalities of propa-
gated sets manageable. The main question that these heuristics address is which
abstract elements should be joined and which must be kept separate. Guided
static analysis is comprised of a sequence of phases, where each phase derives
and analyzes a program restriction. The phase boundaries are natural points for
separating abstract values: that is, within each phase the analysis may propa-
gate a single abstract value; however, the results of different phases need not be
joined together, but may be kept as a set, thus yielding a more precise overall
result. In §5, we show how to extend the framework to take advantage of such
disjunctive partitioning.

We implemented a prototype of guided static analysis with both of the in-
stantiations, and applied them to a set of small programs that have appeared in
recent literature on widening. The first instantiation and its disjunctive exten-
sion were used to analyze the benchmarks from [11]. The results were compared
against those produced by lookahead widening. As expected, the results obtained
by the instantiation were similar to the ones in [11]. However, the results obtained
with the disjunctive extension were much more precise. The second instantiation
was used to analyze the examples from [10]. The obtained results were similar to
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the ones in [10]. However, we believe that our approach is conceptually simpler
because it does not rely on acceleration techniques.

Contributions. In this paper, we make the following contributions:
– we introduce a general framework for guiding state-space exploration; the

framework utilizes existing static-analysis techniques, which makes it easy
to integrate into existing tools.

– we present two instantiations of the framework, which improve the precision
of widening in (i) loops that have multiple phases; (ii) loops in which the
transformations performed on each iteration are selected non-deterministically.

– we describe a disjunctive extension of the framework.
– we present an experimental evaluation of our techniques.

Paper organization. §2 defines the basic concepts used in the rest of the
paper; §3 introduces the framework; §4 describes the two instantiations of the
framework; §5 presents the disjunctive extension of the framework; §6 gives the
experimental results; §7 reviews related work.

2 Preliminaries

We assume that a program is specified by a control flow graph (CFG) G = (V, E),
where V is a set of program locations, and E ⊑ V × V is a set of edges that
represent the flow of control. A program state assigns a value to every variable
in the program. We will use Σ to denote the set of all possible program states.
The function ΠG : E → (Σ → Σ) assigns to each edge in the CFG the concrete
semantics of the corresponding program statement. The semantics of individual
statements is trivially extended to operate on sets of states, i.e., ΠG(e)(S) =
{ΠG(e)(s) | s ∈ S}, where e ∈ E and S ⊆ Σ.

Let Θ0 : V → ℘(Σ) denote a mapping from program locations to sets of
states. The sets of program states that are reachable at each program location
from the states in Θ0 are given by the least map Θ⋆ : V → ℘(Σ) that satisfies
the following set of equations:

Θ⋆(v) ⊇ Θ0(v), and Θ⋆(v) =
⋃

〈u,v〉∈E

ΠG(〈u, v〉)(Θ⋆(u)), for all v ∈ V

The problem of computing sets of reachable states is, in general, undecidable.

Static Analysis. Static analysis sidesteps undecidability by using abstraction:
sets of program states are approximated by elements of some abstract domain
D = 〈D, α, γ,⊑,⊤,⊥,⊔〉, where α : ℘(Σ) → D constructs an approximation for
a set of states, γ : D → ℘(Σ) gives meaning to domain elements, ⊑ is a partial
order on D, ⊤ and ⊥ are, respectively, the least and the greatest elements of
D, and ⊔ is the least upper bound operator. The function Π

♯
G : E → (D → D)

gives the abstract semantics of individual program statements.
To refer to abstract states at multiple program locations, we define abstract-

state maps Θ♯ : V → D. The operations α, γ, ⊑, and ⊔ for Θ♯ are point-wise
extensions of the corresponding operations for D.

A static analysis computes an approximation for the set of states that are
reachable from an approximation of the set of initial states according to the ab-
stract semantics of the program. In the rest of the paper, we view static analysis
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x = 0;

y = 0;

while(true)
{

if(x <= 50) y++;
else y--;

if(y < 0) break;

x++;
}
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Fig. 1. Running example: (a) a loop with non-regular behavior; (b) control-flow graph
for the program in (a); (c) the set of program states at n1: the points with integer
coordinates that lie on the dark upside-down “v” form the precise set of concrete
states; the gray triangle gives the best approximation of that set in the polyhedral
domain; (d) the single program state that reaches nx.

as a black box, denoted by Ω, with the following interface: Θ
♯
⋆ = Ω(Π♯

G, Θ
♯
0),

where Θ
♯
0 = α(Θ0) is the initial abstract-state map, and Θ

♯
⋆ is an abstract-state

map that satisfies the following property:

∀v ∈ V :



Θ
♯
0(v) ⊔

⊔

〈u,v〉∈E

Π
♯
G(〈u, v〉)(Θ♯

⋆(u))



 ⊑ Θ♯
⋆(v).

3 Guided Static Analysis

A guided static analysis framework provides control over the exploration of the
state space. Instead of constructing a new analysis by means of designing a new
abstract domain or imposing restrictions on existing analyses (e.g., by fixing
an iteration strategy), the framework relies on existing static analyses “as is”.
Instead, state-space exploration is guided by modifying the analyzed program
to restrict some of its behaviors; multiple analysis runs are performed to explore
all of the program’s behaviors.

The framework is parametrized with a procedure for deriving such program
restrictions. The analysis proceeds as follows: the initial abstract-state map,
Θ

♯
0, is used to derive the first program restriction; standard static analysis is

applied to that program restriction to compute Θ
♯
1, which approximates a set of

program states reachable from Θ
♯
0. Then, Θ

♯
1 is used to derive the second program

restriction, which is in turn analyzed by a standard analysis to compute Θ
♯
2. This

process is repeated until the i-th derived restriction is equivalent to the original
program; the final answer is Θ

♯
i .
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Fig. 2. Program restrictions for the program in Fig. 1: the unreachable portions of each
CFG are shown in gray; (a) the first restriction corresponds to the first loop phase; (b)
the second restriction consists of both loop phases, but not the loop-exit edge; (c) the
third restriction incorporates the entire program.

We use the program in Fig. 1(a) to illustrate guided static analysis frame-
work. The loop in the program has two explicit phases: during the first fifty
iterations both variable x and variable y are incremented; during the next fifty
iterations variable x is incremented and variable y is decremented. The loop ex-
its when the value of the variable y falls below 0. This program is a challenge
for standard widening/narrowing-based numeric analyses because the applica-
tion of the widening operator over-approximates the behavior of the first phase
and initiates the analysis of the second phase with overly-conservative initial
assumptions. As a result, polyhedra-based standard numeric analysis concludes
that at the program point n1 the relationship between the values of x and y is
0 ≤ y ≤ x, and at the program point nx, y = −1 and x ≥ 50. This is imprecise
compared to the true sets of states at those program points (Figs. 1(c) and 1(d)).

Guided static analysis, when applied to the program in Fig. 1(a) consecutively
derives three program restrictions shown in Fig. 2: (a) consists to the first phase
of the program; (b) incorporates both phases, but excludes the edge that leads
out of the loop; (c) includes the entire program. Each restriction is formed by
substituting abstract transformers associated with certain edges in the control
flow graph with more restrictive transformers (in this case, with ⊥̄, which is
equivalent to removing the edge from the graph). We defer the description of
the procedure for deriving these restrictions to §4.1.

Fig. 3(a) illustrates the operation of guided static analysis. Θ
♯
0 approximates

the set of initial states of the program. The standard numeric analysis, when
applied to the first restriction (Fig. 2(a)), yields the abstract-state map Θ

♯
1, i.e.,

Θ
♯
1 = Ω(Π♯

1, Θ
♯
0). Note, that the invariant for the first loop phase (0 ≤ x = y ≤

51) is captured precisely. Similarly, Θ
♯
2 is computed as Ω(Π♯

2, Θ
♯
1), and Θ

♯
3 is
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Fig. 3. Guided static analysis results for the program in Fig. 1(a); (a) the sequence
of abstract states that are computed by analyzing the program restrictions shown
in Fig. 2; Θ♯

3 is the overall result of the analysis; (b) the abstract states that are
obtained by analyzing the acyclic version of the program, which are used to construct
the program restrictions in Fig. 2 (see §4.1).

computed as Ω(Π♯
3, Θ

♯
2). Since the third restriction is equivalent to the program

itself, the analysis stops, yielding Θ
♯
3 as the overall result. Note that Θ

♯
3 is more

precise than the solution computed by the standard analysis: it precisely captures
the loop invariant at program point n1 and the upper bound for the value of
x at node nx. In fact, Θ

♯
3 corresponds to the least fix-point for the program in

Fig. 1(a) in the polyhedral domain.

3.1 Formal Description

We start by extending the partial order of the abstract domain to abstract
transformers and to entire programs. The order is extended in a straightforward
fashion.

Definition 1. Let f, g : D → D be two abstract transformers, let G = (V, E) be

a control-flow graph, and let Π
♯
1, Π

♯
2 : E → (D → D) be two programs specified

6



over G. Then we say that (i) f⊑̄g iff ∀d ∈ D : f(d) ⊑ g(d); and (ii) Π
♯
1⊑̇Π

♯
2 iff

∀e ∈ E : Π
♯
1(e)⊑̄Π

♯
2(e).

A program restriction is a version of a program Π♯ in which some abstract
transformers under-approximate (⊑̄) those of Π . The aim is to make a standard
analysis (applied to the restriction) explore only a subset of reachable states of
the original program. Note, however, that, if widening is used by the analyzer,
there are no guarantees that the explored state space would be smaller (because
widening is, in general, not monotonic).

Definition 2 (Program Restriction). Let G = (V, E) be a control-flow graph,
and Π♯ : E → (D → D) be a program specified over G. We say that Π♯

r : E →
(D → D) is a restriction of Π♯ if Π♯

r⊑̇Π♯

To formalize guided static analysis, we need a notion of a program trans-
former: that is, a procedure Λ that, given a program and an abstract state,
derives a corresponding program restriction. We allow a program transformer to
maintain internal states, the set of which will be denoted I. We assume that the
set I is defined as part of Λ.

Definition 3 (Program transformer). Let Π♯ be a program, let Θ♯ : V → D

be an arbitrary abstract-state map, and let I ∈ I be an internal state of the
program transformer. A program transformer, Λ, computes a restriction of Π♯

with respect to Θ♯, and modifies its internal state, i.e.:

Λ(Π♯, I, Θ♯) = (Π♯
r , Ir), where Π♯

r⊑̇Π♯ and Ir ∈ I.

To ensure the soundness and the convergence of the analysis, we require that
the program transformer possess the following property: the sequence of program
restrictions generated by a non-decreasing chain of abstract states must converge
to the original program in finitely many steps.

Definition 4 (Chain Property). Let (Θ♯
i ) be a non-decreasing chain, s.t.,

Θ
♯
0 ⊑ Θ

♯
1 ⊑ ... ⊑ Θ

♯
k ⊑ .... Let (Π♯

i ) be a sequence of program restrictions derived

from (Θ♯
i ) as follows:

(Π♯
i+1, Ii+1) = Λ(Π♯, Ii, Θ

♯
i )

where I0 is the initial internal state for Λ. We say that Λ satisfies the chain
property if there exists a natural number n such that Π

♯
i = Π♯, for all i ≥ n.

The above property is not burdensome: any mechanism for generating pro-
gram restrictions can be forced to satisfy the property by introducing a threshold
and returning the original program after the threshold has been exceeded.

Definition 5 (Guided Static Analysis). Let Π♯ be a program, and let Θ
♯
0

be an initial abstract-state map. Also, let I0 be an initial internal state for the
program transformer Λ. Guided static analysis performs the following sequence
of iterations:

Θ
♯
i+1 = Ω(Π♯

i+1, Θ
♯
i ), where (Π♯

i+1, Ii+1) = Λ(Π♯, Ii, Θ
♯
i),

until Π
♯
i+1 = Π♯. The analysis result is Θ

♯
⋆ = Θ

♯
i+1 = Ω(Π♯

i+1, Θ
♯
i) = Ω(Π♯, Θ

♯
i).

7



Let us show that if the program transformer satisfies the chain property,
the above analysis is sound and converges in a finite number of steps. Both
arguments are trivial:

Soundness. Let Π♯
a be an arbitrary program and let Θ♯

a be an arbitrary
abstract-state map. Due to the soundness of Ω, the following holds: Θ♯

a ⊑

Ω(Π♯
a, Θ♯

a). Now, let (Π♯
i ) be a sequence of programs and let (Θ♯

i ) be a sequence
of abstract-state maps computed according to the procedure in Defn. 5. Since
each Θ

♯
i is computed as Ω(Π♯

i , Θ
♯
i−1), clearly, the following relationship holds:

Θ
♯
0 ⊑ Θ

♯
1 ⊑ ... ⊑ Θ

♯
k ⊑ ....

Since Λ satisfies the chain property, there exists a number n such that Π
♯
i =

Π♯ for all i ≥ n. The result of the analysis is computed as

Θ♯
⋆ = Θ♯

n = Ω(Π♯
n, Θ

♯
n−1) = Ω(Π♯, Θ

♯
n−1)

and, since Θ
♯
0 ⊑ Θ

♯
n−1 (i.e., the n-th iteration of the analysis computes a set of

program states reachable from an over-approximation of the set of initial states,
Θ

♯
0), it follows that guided static analysis is sound.

Convergence. Convergence follows trivially from the above discussion: since
Π♯

n = Π♯ for some finite number n, guided static analysis converges after n

iterations.

4 Framework Instantiations

The framework of guided static analysis is instantiated by supplying a suitable
program transformer, Λ. This section presents two instantiations that are aimed
at recovering precision lost due to the use of widening.

4.1 Widening in loops with multiple phases

As was illustrated in §3, multiphase loops pose a challenge for standard analysis
techniques. The problem is that standard techniques are not able to invoke
narrowing after the completion of each phase to refine the analysis results for
that phase. Instead, narrowing is invoked at the very end of the analysis when
the accumulated precision loss is too great for precision to be recovered.

In previous work, we proposed a technique called lookahead widening that
addressed this problem [11]. Lookahead widening propagated a pair of abstract
values through the program: the first value was used to “lock” the analysis
within the current loop phase; the second value computed the solution for the
current phase and refined it with a narrowing sequence. When the second value
converged, it was moved into the first value, thereby allowing the next loop
phase to be considered. To make lookahead widening work in practice, certain
restrictions were placed on the iteration strategy used by the analysis; also, the
length of the descending-iteration sequence was limited to one. Furthermore,
very short loop phases caused precision loss if the first value allowed the analysis
to exit the current loop phase before the second value was able to converge.

In this section, we present an instantiation of the guided static analysis
framework that generalizes lookahead widening and lifts the above restrictions
and limitations. To instantiate the framework, we need to construct a program
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transformer, Λphase, that derives program restrictions that isolate individual
loop phases (as shown in Fig. 2). Intuitively, given an abstract-state map, we
would like to include into the generated restriction the edges that are immedi-
ately exercised by that abstract state, and exclude the edges that require several
loop iterations to become active.

To define the program transformer, we again rely on the application of a

standard static analysis to a modified version of the program. Let Π̂♯ denote
the version of Π♯ from which all backedges have been removed. Note that the

program Π̂♯ is acyclic and thus can be analyzed efficiently and precisely. The
program transformer Λphase(Π

♯, Θ♯) is defined as follows (no internal states are
maintained, so we omit them for brevity):

Π♯
r(〈u, v〉) =

{

Π♯(〈u, v〉) if Π♯(〈u, v〉)(Ω(Π̂♯, Θ♯)(u)) 6= ⊥
⊥̄ otherwise

In practice, we first analyze the acyclic version of the program: Θ̂♯ = Ω(Π̂♯, Θ♯).
Then, for each edge 〈u, v〉 ∈ E, we check whether that edge should be included in

the program restriction: if the edge is active (that is, if Π♯(〈u, v〉)(Θ̂♯(u)) yields
a non-bottom value), then the edge is included in the restriction; otherwise, it
is omitted.

Fig. 3(b) illustrates this process for the program in Fig. 1(a). Π̂♯ is con-
structed by removing the edge 〈n6, n1〉 from the program. The first column in

Fig. 3(b) shows the result of analyzing Π̂♯ with Θ
♯
0 used as the initial abstract-

state map. The transformers associated with the edges 〈n1, n3〉, 〈n3, n4〉, and
〈n4, nx〉 yield ⊥ when applied to the analysis results. Hence, these edges are ex-

cluded from the program restriction Π
♯
1 (see Fig. 2(a)). Similarly, the abstract-

state map shown in the second column of Fig. 3(b) excludes the edge 〈n4, nx〉

from the restriction Π
♯
2. Finally, all of the edges are active with respect to the

abstract-state map shown in the third column. Thus, the program restriction Π
♯
3

is equivalent to the original program.
Note that the program transformer Λphase, as defined above, does not satisfy

the chain property from Defn. 4: arbitrary non-decreasing chains of abstract-
state maps may not necessarily lead to the derivation of program restrictions
that are equivalent to the original program. However, note that the process is
bound to converge to some program restriction after a finite number of steps.
To see this, note that each consecutive program restriction contains all of the
edges included in the previously generated restrictions, and the overall number
of edges in the program’s CFG is finite. Thus, to satisfy the chain property, we
make Λphase return Π♯ after convergence is detected.

4.2 Widening in loops with non-deterministically chosen behavior

Another challenge for standard analysis techniques is posed by loops in which the
behavior of each iteration is chosen non-deterministically. Such loops often arise
when modeling and analyzing synchronous systems [13, 10], but they may also
arise in the analysis of imperative programs when a condition of an if statement in
the body of the loop is abstracted away (e.g., if variables used in the condition are
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volatile bool m, sec;

d = t = s = 0;

while(true)

{
if(sec) {

t++; s = 0;

}

else if(m) {
if(s < c) {

d++; s++;
}

}
}
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s ≤ d ≤ c × t + s

0 ≤ d ≤ c

(d)

s ≤ d ≤ c × t + s

0 ≤ s ≤ c

(e)

Fig. 4. A model of a speedometer with the assumption that maximum speed is c meters
per second [10] (c is a positive constant): (a) a program; (b) control-flow graph for the
program in (a); (c) abstract state at n1 after Π♯

1 (edge 〈n1, n2〉 disabled) is analyzed;
(d) abstract state at n1 after Π♯

2 (edge 〈n1, n4〉 disabled) is analyzed; (e) abstract state
at n1 after Π♯

3 = Π♯ is analyzed.

not modeled by the analysis). These loops are problematic due to the following
two reasons:

– the analysis may be forced to explore multiple iteration behaviors at the
same time (e.g., simultaneously explore multiple arms of a non-deterministic
conditional), making it hard for widening to predict the overall behavior of
the loop accurately;

– narrowing is not effective in such loops: narrowing operates by filtering an
over-approximation of loop behavior through the conditional statements in
the body of the loop; in these loops, however, the relevant conditional state-
ments are buried within the arms of a non-deterministic conditional, and the
join operation at the point where the arms merge cancels the effect of such
filtering.

Fig. 4(a) shows an example of such loop: the program models a speedometer
with the assumption that the maximum speed is c meters per second (c > 0
is an arbitrary integer constant) [10]. Variables m and sec model signals raised
by a time sensor and a distance sensor, respectively. Signal sec is raised every
time a second elapses: in this case, the time variable t is incremented and the
speed variable s is reset. Signal m is raised every time a distance of one meter
is traveled: in this case, both the distance variable d and the speed variable s

are incremented. Fig. 4(b) shows the CFG for the program: the environment
(i.e., the signals issued by the sensors) is modeled non-deterministically (node
n1). The invariant that we desire to obtain at node n1 is d ≤ c × t + s, i.e., the
distance traveled is bound from above by the number of elapsed seconds times
the maximum speed plus the distance traveled during the current second.

Standard polyhedral analysis, when applied to this example, simultaneously
explores both arms of the non-deterministic conditional and yields the following
sequence of abstract states at node n1 during the first k iterations (we assume
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that k < c):
{ 0 ≤ s ≤ d ≤ (k − 1) × t + s, t + d ≤ k }

The application of widening extrapolates the above sequence to { 0 ≤ s ≤ d }
(i.e., by letting k go to ∞). Narrowing refines the result to { 0 ≤ s ≤ c, s ≤ d }.
Thus, unless the widening delay is greater than c, the result obtained with stan-
dard analysis is imprecise.

To improve the analysis precision, we would like to analyze each of the loop’s
behaviors in isolation. That is, we would like to derive a sequence of program
restrictions, each of which captures exactly one of the loop behaviors and sup-
presses the others. This can be achieved by making each program restriction
enable a single outgoing edge outgoing from a node where the control is chosen
non-deterministically and disable the others. After all single-behavior restric-
tions are processed, we can ensure that the analysis is sound by analyzing a
program restriction where all of the outgoing edges are enabled.

For the program in Fig. 4(a), we construct three program restrictions: Π
♯
1 en-

ables edge 〈n1, n4〉 and disables 〈n1, n2〉, Π
♯
2 enables edge 〈n1, n2〉 and disables

〈n1, n4〉, Π
♯
3 enables both edges. Figs. 4(c), 4(d), and 4(e) show the abstract

states Θ
♯
1(n1), Θ

♯
2(n1), and Θ

♯
3(n1) computed by guided static analysis instan-

tiated with the above sequence of program restrictions. Note that the overall
result of the analysis in Fig. 4(e) implies the desired invariant.

We formalize the above strategy as follows. Let Vnd ⊆ V be a set of nodes
at which loop behavior is chosen. An internal state of the program transformer
keeps track of which outgoing edge is to be enabled next for each node in Vnd.
One particular scheme for achieving this is to make an internal state I map each
node v ∈ Vnd to a non-negative integer: if I(v) is less then the out-degree of v,
then I(v)-th outgoing edge is to be enabled; otherwise, all outgoing edges are to
be enabled. The initial state I0 maps all nodes in Vnd to zero.

If iteration behavior can be chosen at multiple points (e.g., the body of the
loop contains a chain of non-deterministic conditionals), the following problem
arises: an attempt to isolate all possible loop behaviors may generate exponen-
tially many program restrictions. In the prototype implementation, we resort to
the following heuristic: simultaneously advance the internal states for all reach-
able nodes in Vnd. This strategy ensures that the number of generated program
restrictions is linear in |Vnd|; however, some loop behaviors will not be isolated.

Let degout(v) denote the out-degree of node v; also, let edgeout(v, i) denote
the i-th edge outgoing from v, where 0 ≤ i < degout(v). The program transformer
Λnd(Π

♯, I, Θ♯) is defined as follows:

Π♯
r(〈u, v〉) =







⊥̄ if

[

u ∈ Vnd, Θ♯(u) 6= ⊥, I(u) < degout(u)
and 〈u, v〉 6= edgeout(u, I(u))

]

Π♯(〈u, v〉) otherwise

The internal state of Λnd is updated as follows: for all v ∈ Vnd such that Θ♯(v) 6=
⊥, Ir(v) = I(v) + 1; for the remaining nodes, Ir(v) = I(v).

As with the first instantiation, the program transformer defined above does
not satisfy the chain property. However, the sequence of program restrictions
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generated according to Defn. 4 is bound to stabilize in a finite number of steps.
To see this, note that once node v ∈ Vnd becomes reachable, at most degout(v)+1
program restrictions can be generated before exhausting all of the choices for
node v. Thus, we can enforce the chain property by making Λnd return Π♯ once
the sequence of program restrictions stabilizes.

5 Disjunctive Extension

A single iteration of guided static analysis extends the current approximation for
the entire set of reachable program states (represented with a single abstract-
domain element) with the states that are reachable via the new program be-
haviors introduced on that iteration. However, if the abstract domain is not
distributive, using a single abstract-domain element to represent the entire set
of reachable program states may degrade the precision of the analysis. A more
precise solution can potentially be obtained if, instead of joining together the
contributions of individual iterations, the analysis represents the contribution of
each iteration with a separate abstract-domain element.

In this section, we extend guided static analysis to perform such disjunctive
partitioning. To isolate a contribution of a single analysis iteration, we add an
extra step to the analysis. That step takes the current approximation for the
set of reachable program states and constructs an approximation for the set of
states that immediately exercise the new program behaviors introduced on that
iteration. The resulting approximation is used as a starting point for the standard
analysis run performed on that iteration. That is, an iteration of the analysis now
consists of three steps: the algorithm (i) derives the (next) program restriction
Π♯

r ; (ii) constructs an abstract-state map Θ♯
r that forces a fix-point computation

to explore only the new behaviors introduced in Π♯
r ; and (iii) performs a fix-point

computation to analyze Π♯
r , using Θ♯

r as the initial abstract-state map.
We start by defining the analysis history Hk, a sequence of abstract-state

maps obtained by the first k ≥ 0 iterations of guided static analysis. Hk maps
an integer i ∈ [0, k] to the result of the i-th iteration of the analysis. Hk ap-
proximates the set of program states reached by the first k analysis iterations:
γ(Hk) =

⋃k
i=0

γ(Hk(i)).
The introduction of the analysis history necessitates a change in the defini-

tion of a program transformer Λ (Defn. 3): instead of a single abstract domain
element, a program transformer must accept an analysis history as input. We
leave it in the hands of the user to supply a suitable program transformer Λdj.
In our implementation, we used a simple, albeit conservative way to construct
such a program transformer from Λ:

Λdj(Π
♯, I, Hk) = Λ(Π♯, I,

k
⊔

i=1

Hk(i)).

For the program in Fig. 1, Λdj derives the same program restrictions as the ones
derived by plain guided static analysis (see Fig. 2).

Let Π
♯
k be the program restriction derived on the k-th iteration of the anal-

ysis, where k ≥ 1. The set of frontier edges for the k-th iteration consists of the
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edges whose associated transformers are changed in Π
♯
k from Π

♯
k−1

(for conve-

nience, we define Π
♯
0 to map all edges to ⊥̄): Fk =

{

e ∈ E | Π
♯
k(e) 6= Π

♯
k−1

(e)
}

.

For the program in Fig. 1, the sets of frontier edges on the second and third
iterations are F2 = {〈n1, n3〉, 〈n3, n4〉} and F3 = {〈n4, nx〉}.

The local analysis frontier for the k-th iteration of the analysis is an abstract-
state map that approximates the set of states that are immediately reachable
via the edges in Fk:

LFk(v) =
⊔

〈u,v〉∈Fk

[

k−1
⊔

i=0

Π
♯
k(〈u, v〉)(Hk−1(i)(u))

]

.

For the program in Fig. 1, the local analysis frontier on the second iteration
contains a single program state: LF2(n3) = {x = y = 51}, which is obtained by
applying the transformer associated with the edge 〈n1, n3〉 to the abstract state
H1(1)(n1) = {0 ≤ x = y ≤ 51}.

Some program states in the local analysis frontier may have already been
explored on previous iterations. The global analysis frontier refines the local
frontier by taking the analysis history into consideration. Ideally, we would like
to compute

GFk(v) = α(γ(LFk(v)) −

k−1
⋃

i=0

γ(Hk−1(i)(v))),

where “−” denotes set difference. However, this is hard to compute in practice.
In our implementation, we take a simplistic approach and compute:

GFk(v) =

{

⊥ if LFk(v) ∈ {Hk−1(i)(v) | 0 ≤ i ≤ k − 1}
LFk(v) otherwise

For the program in Fig. 1, GF2 = LF2.

Definition 6 (Disjunctive Extension). Let Π♯ be a program, and let Θ
♯
0 be

an abstract state that approximates the initial configuration of the program. Also,
let I0 be an initial internal state for the program transformer, Λdj. The disjunc-
tive extension of guided static analysis computes the set of reachable states by
performing the following iteration,

H0 =
[

0 7→ Θ
♯
0

]

and Hi+1 = Hi ∪
[

(i + 1) 7→ Ω(Π♯
i+1, GFi+1)

]

,

where (Π♯
i+1, Ii+1) = Λdj(Π

♯, Ii, Hi),

until Π
♯
i+1 = Π♯. The result of the analysis is given by Hi+1.

Fig. 5 illustrates the application of the disjunctive extension to the program
in Fig. 1(a). The analysis precisely captures the behavior of both loop phases.
Also, the abstract value computed for program point nx exactly identifies the
set of program states reachable at nx. Overall, the results are significantly more
precise than the ones obtained with plain guided static analysis (see Fig. 3).

13



Node GF1 = Θ♯
0 Ω(Π♯

1, GF1) GF2 Ω(Π♯
2, GF2) GF3 Ω(Π♯

3, GF3)

ne ⊤ ⊤ ⊥ ⊥ ⊥ ⊥

n1 ⊥
x

y
51

51

⊥
x

y

50

52 102

⊥ ⊥

n2 ⊥
x

y

50

50

⊥ ⊥ ⊥ ⊥

n3 ⊥ ⊥
x

y
51

51

x

y
51

51 102

⊥ ⊥

n4 ⊥
x

y
51

50

1

⊥
x

y

102

-1

50

51

⊥ ⊥

n5 ⊥
x

y
51

50

1

⊥
x

y

101

50

51

⊥ ⊥

n6 ⊥
x

y
51

51

1

1

⊥
x

y

50

52 102

⊥ ⊥

nx ⊥ ⊥ ⊥ ⊥ x

y

-1

102

x

y

-1

102

Fig. 5. Disjunctive extension of guided static analysis: the analysis trace for the pro-
gram in Fig. 1(a); for each analysis phase, the global frontier and the resulting abstract
state are shown. Note that the set of abstract values computed for program point nx

describes the true set of states reachable at nx (see Fig. 1(d)).

6 Experimental Results

We implemented a prototype of guided static analysis. The prototype uses a
polyhedra-based numeric analysis built on top of a weighted pushdown system
library, wpds++ [15], as the base static analysis. It relies on the Parma Poly-
hedral Library [2] to manipulate polyhedral abstractions. A widening delay of 4
was used in all of the experiments. The performance of each analysis run is mea-
sured in steps: each step corresponds to a single abstract-transformer application.
Speedups (overheads) are reported as the percent of extra steps performed by
the baseline analysis (evaluated analysis), respectively.

We applied the instantiation from §4.1 to the set of benchmarks that were
used to evaluate policy-iteration techniques [5] and lookahead widening [11].
Tab. 1 shows the results we obtained. With the exception of “test6”, the re-
sults from GSA and lookahead widening are comparable: the precision is the
same, and the difference in running times can be attributed to implementa-
tion choices. This is something we expected, because GSA is a generalization
of the lookahead-widening technique. However, GSA yields much better results
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LA GSA Disjunctive GSA
steps phases steps prec. speedup(%) phases steps prec. speedup(%)

test1 58 2 54 - 7.9 2 42 - 22.2
test2 56 2 56 - - 2 42 - 25.0
test3 58 1 44 - 24.1 1 42 - 4.5
test4 210 6 212 - -1.0 6 154 - 27.4
test5 372 3 368 - 1.1 3 406 1/3 -10.3
test6 402 3 224 3/3 44.3 3 118 2/3 47.3
test7 236 3 224 - 3.4 3 154 4/4 31.3
test8 106 4 146 - -37.7 3 114 - 21.9
test9 430 4 444 - -3.3 4 488 4/4 -9.9
test10 418 4 420 - -0.5 4 246 5/5 41.4

Table 1. Experimental results: loops with multiple phases (§4.1): GSA is compared
against lookahead widening (LA); Disjunctive GSA is compared against GSA. steps

is the total number of steps performed by each of the analyses; phases is the number
of GSA phases; prec reports precision improvement: “-” indicates no improvement,
k/m indicates that sharper invariants are obtained at k out of m “interesting” points
(interesting points include loop heads and exit nodes);

Program Vars Nodes ND Lookahead GSA Overhead
steps inv. runs phases steps inv. (%)

astree 1 7 1(2) 104 no 2 3 107 yes 2.9
speedometer 3 8 1(2) 114 no 2 3 207 yes 81.6
gas burner 3 8 2(2) 164 no 4 3.5 182.5 3/4 11.3
gas burner II 4 5 1(3) 184 no 6 4 162 4/6 -12.0

Table 2. Experimental results: loops with non-deterministic behavior (§4.2): ND k(m)
gives the amount of non-determinism: k = |Vnd| and m is the out-degree for nodes in
Vnd; runs is the number of GSA runs, each run isolates iteration behaviors in different
order; steps is the total number of analysis steps (for GSA it is the average accross all
runs); phases is the average number of GSA phases; inv. indicates whether the desired
invariant is obtained (for GSA, k/m indicates that the invariant is obtained on k out
of m runs).

for “test6”: in “test6”, the loop behavior changes when the induction variable
is equal to certain values. The changes in behavior constitute short loop phases,
which cause problems for lookahead widening. Also, GSA stabilizes in a fewer
number of steps because simpler polyhedra arise in the course of the analysis.

Tab. 1 also compares the disjunctive extension to plain GSA. Because the
analysis performed in each phase of the disjunctive extension does not have to
reestablish the invariants obtained on previous phases, the disjunctive exten-
sion requires fewer analysis steps for most of the benchmarks. To compare the
precision of the two analyses, we joined the analysis history obtained by the
disjunctive extension for each program location into a single abstract value: for
half of the benchmarks, the resulting abstract values are still significantly more
precise than the ones obtained by plain GSA. Most notably, the two loop in-
variants in “test6” are further sharpened by the disjunctive extension, and the
number of analysis steps is further reduced.
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The instantiation in §4.2 is applied to a set of examples from [3, 10]: “astree”
is the (second) example that motivates the use of threshold widening in [3],
“speedometer” is the example used in §4.2; the two other benchmarks are the
models of a leaking gas burner from [10]. The results are shown in Tab. 2: guided
static analysis was able to establish the desired invariants for all of the examples.
We enumerated all possible orders in which iteration behaviors can be enabled
for these examples. Interestingly, the precision of the analysis on the gas-burner
benchmarks does depend on the order in which the behaviors are enabled. In
the future, we plan to address the issue of finding optimal behavior orders.

7 Related Work

Controlled state-space exploration. Bourdoncle discusses the effect of an
iteration strategy on the overall efficiency of analysis [4]. Lazy abstraction [14]
guides the state-space exploration in a way that avoids performing joins: the
CFG of a program is unfolded as a tree and stabilization is checked by a special
covering relation. The directed automated random testing (DART) technique [9]
restricts the analysis to the part of the program that is exercised by a particular
test input; the result of the analysis is used to generate inputs that exercise
program paths not yet explored. The analysis is carried out dynamically by an
instrumented version of the program. Grumberg et al. construct and analyze a
sequence of under-approximated models by gradually introducing process inter-
leavings in an effort to speed up the verification of concurrent processes [12]. We
believe that the GSA framework is more general than the above approaches. Fur-
thermore, the GSA instantiations presented in this paper address the precision
of widening, which is not addressed by any of the above techniques.
Widening precision. Threshold widening [3] and widening up-to [13] rely on
external invariant guesses supplied by the user or obtained from the program
code with the use of some heuristics or by running a separate analysis. In con-
trast, our instantiations are self-contained: that is, they do not rely on external
invariant guesses. The new control-path heuristic [13] detects the introduction of
new behaviors and delays widening until the introduced behavior is sufficiently
explored. However, it lacks the ability to refine the solution for already-explored
behaviors before the new behavior is introduced. Policy-iteration techniques [5,
8] derive a series of program simplifications by changing the semantics of the
meet operator: each simplification is analyzed with a dedicated analysis. We be-
lieve that our approach is easier to adopt because it relies on existing and well-
understood analysis techniques. Furthermore, policy-iteration techniques are not
yet able to operate on fully-relational abstract domains (e.g., polyhedra). The in-
stantiation in §4.1 is the generalization of lookahead widening [11]: it lifts some of
the restrictions imposed by lookahead widening. Gonnord et al. combine polyhe-
dral analysis with acceleration techniques [10]: complex loop nests are simplified
by “accelerating” some of the loops. The instantiation in §4.2 attempts to achieve
the same effect, but does not rely on explicit acceleration techniques.
Powerset extensions. Disjunctive completion [6] improves the precision of
the analysis by propagating sets of abstract-domain elements. However, to al-
low its use in numeric program analysis, widening operators must be lifted to
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operate on sets of elements [1]. Sankaranarayanan et al. [18] circumvent this
problem by propagating single abstract-domain elements through an elabora-
tion of a control-flow graph (constructed on the fly). ESP [7], TVLA [16], and
the trace-partitioning framework [17] structure abstract states as functions from
a specially-constructed finite set (e.g., set of FSM states [7], or set of valua-
tions of nullary predicates [16]) into the set of abstract-domain elements: at
merge points, only the elements that correspond to the same member of the
set are joined. The disjunctive extension in §5 differs from these techniques in
two aspects: (i) the policy for separating abstract-domain elements is imposed
implicitly by the program transformer; (ii) the base-level static analysis, invoked
on each iteration of GSA, always propagates single abstract-domain elements.
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