
A Relational Abstraction for Functions

B. Jeannet1, D. Gopan2, and T. Reps2

1 IRISA; Bertrand.Jeannet@irisa.fr
2 Comp. Sci. Dept., Univ. of Wisconsin; {gopan,reps}@cs.wisc.edu

Abstract. This paper concerns the abstraction of sets of functions for use in
abstract interpretation. The paper gives an overview of existing methods, which
are illustrated with applications to shape analysis, and formalizes a new family
of relational abstract domains that allows sets of functions to be abstracted more
precisely than with known approaches, while being still machine-representable.

1 Introduction

A major strength of abstract interpretation is the ability create complex abstract
domains from simpler ones [2]. In particular, (i) Galois connections can be com-
posed, which allows a complex abstraction to be described as the composition of
simpler ones, offering the ability to identify clearly the different kind of approx-
imations that take place; (ii) given two abstractions for sets of elements, ℘(Di),
i = 1, 2, there exist techniques for abstracting functions of signature D1 → D2

[4].
The starting point for the paper is the abstraction method defined in [8],

which presents a family of abstract domains that are useful when it is desired
to connect storage elements (e.g., elements of arrays and lists) with numeric
quantities. This paper reformulates that abstraction in a more general way—
as a general method of abstracting a set of functions—which allows the basic
idea from [8] to be applied more widely. Moreover, when the new formulation is
compared with previously known ways of abstracting a set of functions, it yields
more precise abstractions. We are just beginning to explore instantiations of the
method that go beyond the ones used in [8].

We formalize a generic abstract-interpretation combinator, which abstract
sets of functions of signature D1 → D2 in a relational way, assuming the existence
of abstractions A1 and A2[n] for ℘(D1) and ℘((D2)

n), respectively (where A1

is of finite cardinality n). The obtained abstract domain is precisely A2[n]. In
contrast to A1, A2[n] may be a complex lattice (relational, infinite, and of infinite
height), like the lattice of octagons [11] or convex polyhedra [5]. This relational

function-abstraction is more precise than the classical approach described in the
literature [4], because of its ability to represent relationships between the images
of different elements mapped by a set of functions. For instance, consider a set
of functions F ⊆ U → R (that may represent a set of possible values for an array
of reals). If all f ∈ F satisfy f(u1) = f(u2), our abstraction is able to preserve
this information in the abstract domain; in that precise sense it may be qualified
as relational (which differs from the usual definition of [10]).

In terms of precision, the relational function-abstraction A2[n] lies in-between
the classical function-abstraction A1 → A2 and its disjunctive completion [3].
The important point is that A2[n] is still finitely representable in the same cir-

cumstances as A1 → A2 (i.e., when A1 → A2 is finitely representable, assuming
a tabulated representation).

The contribution of the paper are as follows:

– we give an overview of the existing approaches to abstracting functions and
relations and analyze the loss of information induced by them;

– we state our new approach to abstracting functions and compare it to existing
ones in terms of expressiveness and implementability;

– we illustrate these different abstractions by considering their use in shape
analysis; as a side-effect, we show how canonical abstraction can be partially
recast in terms of a powerful combination of elementary abstractions, without
resorting to the logical framework of [14].

In contrast to the domain construction and refinement approach (e.g., [12,
6, 7]), which operates on general lattices, our approach explicitly exploits the
functional structure of concrete states.

The remainder of the paper is organized into four sections: Section 2 intro-
duces some terminology and notation. Section 3 reviews the classical abstractions
of functions of signature D1 → D2 and relations between elements of D1 and D2

that were described in [4]. Section 4 describes relational function-abstraction.
Section 5 presents related work and draws some conclusions.

2 Preliminaries

2.1 Lattices and Galois connections

We denote by L(v,⊥,>,t,u) a lattice defined by the set L and the partial order
v, where ⊥, >, t, and u denote the smallest element, the greatest element, the
least upper bound, and the greatest lower bound, respectively. Given any set D,
the powerset ℘(D) is a lattice ordered by set inclusion, and the set of functions
D → L is a lattice ordered by the pointwise ordering: f v g ⇔ ∀d ∈ D : f(d) v
g(d). Given two lattices L1 and L2, L1×L2 is a lattice ordered componentwise,
in which a pair (x1, x2) is identified with ⊥ if either component is ⊥. A function
f : L1 → L2 is strict and total if f(⊥) = ⊥ ∧ f(x) = ⊥ =⇒ x = ⊥, monotonic

if x v y =⇒ f(x) v f(y), and additive if f(x t y) = f(x) t f(y). We denote

these sets of functions by L1
⊥
−→ L2, L1

v
−→ L2, and L1

t
−→ L2, respectively. A

lattice will be called a flat lattice if it is formed by a set of unordered elements
to which a smallest element and a greatest element are added.

A Galois connection C −−−→←−−−α

γ
A between two lattices C and A is defined by

abstraction and concretization functions α : C → A and γ : A → C that satisfy
∀x ∈ C, ∀y ∈ A : x vC γ(y) ⇐⇒ α(x) vA y. In program analysis, C is most
often the powerset of states ℘(S). For any Galois connection: (i) γ◦α is extensive
(i.e., greater than the identity function) and represents the information lost by
the abstraction; (ii) α preserves t, and γ preserves u; (iii) α is one-to-one iff

γ is onto iff γ ◦ α is the identity; in this case, we use the notation C −−−−→←←−−−−
α

γ
A.

If γ ◦ α is the identity, α loses no information and we will consider that C and
A are isomorphic from the information standpoint, which is denoted by C ' A
(although γ may not be one-to-one).

Set-theoretic model

Set of cells Pointer variable z Pointer field n Real-valued field x

Cell z ∈ Cell ∪ {nil} n : Cell→ Cell ∪ {nil} x : Cell→ R

U z : U → B n : U2 → B x : U → R

Universe Unary predicate Binary predicate Real-valued function

Logical model

Fig. 1. Two models of a program state.

Any Galois connection C −−−→←−−−α

γ
A can be refined by considering the disjunctive

completion of A [2], which corresponds to ℘(A) equipped with an inclusion order
that takes into account the order of A. This refinement allows the disjunction of
abstract properties in A to be represented exactly, instead of using tA, which
usually loses information (i.e., in general, one has γ(x tA y) w γ(x) tC γ(y)).

We denote by ℘(A) −−−−→←−−−−
α∨

γ∨

A the Galois connection between the disjunctive

completion of a lattice and itself. A is said to be disjunctive if it isomorphic to
its disjunctive completion.

As mentioned in the introduction, Galois connections can be composed. We
use [σ, ς] to denote the composition of a connection σ followed by a connection
ς (so that we have α[σ,ς] = ας ◦ ασ).

The existence of a Galois connection between two lattices L1 and L2 defines
the following pre-order: L1 � L2 ⇔ L1 −−−→←−−−α

γ
L2. Given a concrete lattice C, the

set of all (equivalence class of) lattices that abstract it, ordered by �, is itself a
lattice with top element C (see for instance Fig. 2).

2.2 Shape Analysis and Modeling Program States

This section provides background on the semantic domains used in shape anal-
ysis; this material will be used later in the paper to illustrate several aspects of
the different approaches to abstracting sets of functions.

The aim of shape analysis is to analyze the properties of programs that
manipulate heap-allocated storage and perform destructive updating of pointer-
valued fields [14]. The goal is to recover shape descriptors that provide informa-
tion about the characteristics of the data structures that a program’s pointer
variables can point to. Typically, work on shape analysis considers an imper-
ative language that is equipped with an operational semantics defined using a
transition relation between program states.

At a given control point, a program state s ∈ S is defined by the values of the
local variables and the heap. At each control point, the set of possible concrete

properties on states is thus ℘(S). The collecting semantics of programs is defined
as a system of equations on the lattice of concrete properties.

We now describe two ways in which a state s can be modeled (cf. Fig. 1).

– The set-theoretic model is perhaps more intuitive. We consider a fixed set
Cell of memory cells. The value of a pointer variable z is modeled by an
element z ∈ Cell ∪ {nil}, where nil denotes the null value. If cells have
a pointer-valued field n, the values of n-fields are modeled by a function

n : Cell → Cell ∪ {nil} that associates with each memory cell the value of
the corresponding field.

– [14] models a state using the tools of logic: the set of cells is replaced by a
universe U of individuals; the value of a program variable z is defined by
a unary predicate on U ; and the value of a field n is defined by a binary
predicate on U2. Integrity constraints are used to capture the fact that, for
instance, a unary predicate z that represents what program variable z points
to can have the value “true” for at most one memory cell [14].
A real-valued field x can be modeled by a real-valued function on U .

We use the term “predicate of arity n” for a Boolean function Un → B. A
predicate can also be seen as a relation belonging to ℘(Un).

We use Pn to denote the set of predicates symbols of arity n, and R to
denote the set of real-valued function symbols. With such notation, the concrete
state-space considered is:3

S = (U → B)|P1| × (U2 → B)|P2| × (U → R)|R| (1)

A concrete property in ℘(S) is thus a relation between functions.
Because U is of unbounded size, concrete properties belonging to C = ℘(S)

have to be abstracted. The idea behind canonical abstraction [14] is to partition
U into a finite set of equivalence classes U], and to introduce an unknown value
1/2 (or top element) to the Boolean set, yielding T = {0, 1, 1/2}, so that a
predicate p : U → B is abstracted by an object p] : U] → T.

Example 1. In [14] and in Eqn. (1), the basic sets in use are the universe D1 = U ,
the set of Booleans D2 = B, and the set of reals D3 = R. The universe U is
partitioned using an equivalence relation ', resulting in U] = U/ '. We use
π : U → U] to denote the corresponding projection function. We then obtain a
Galois connection

℘(U) −−−→←−−−α

γ
(U])>⊥

where (U])>⊥ is the flat domain U] completed with top and bottom elements,
γ(⊥) = ∅, γ(>) = U , and γ(u]) = π−1(u]). Booleans are not abstracted, i.e.,
the domain ℘(B) is abstracted by itself. In most cases, we will not consider the
abstractions of reals. In the sequel, U] will implicitely denote (U])>⊥. 2

3 Classical abstractions of functions and relations

We recall from [4] the classical abstractions of functions of signature D1 →
D2 and relations between elements of D1 and D2 that can be built from two
Galois connections ℘(D1) −−−→←−−−

α1

γ1

A1 and ℘(D2) −−−→←−−−
α2

γ2

A2. Our notation is mainly

taken from [4]. We also make some observations in Sec. 3.3 about exploiting the
interplay between functions and relations to obtain suitable abstractions.

We first describe two useful isomorphisms used in the sequel.

3 Eqn. (1) is really the concrete state-space that one would have if the techniques of
[14] were combined with those of [8]. To simplify Eqn. (1), we have omitted nullary
predicates, which would be used to model Boolean-valued variables, and nullary
functions, which would be used to model real-valued variables.

℘(D1 → D2)

D1 → ℘(D2)
'

℘(D1)
⊥,v
−−→ ℘(D2)

A1
⊥,v
−−→ ℘(D2)

D1 → A2

'

℘(D1)
⊥,v
−−→ A2

A1
⊥,v
−−→ A2

%

δ
π

π δ

ϕ

φ

℘(D1 ×D2)
'

℘∅,∪(℘(D1)× ℘(D2))

℘∅,∪(A1 ×A2) ℘(D1)× ℘(D2)

A1 ×A2

ρ

∨

'

(a) for sets of functions (b) for relations

L1 L2 means that L1 � L2

L1 L2 means that L1 is the disjunctive completion of L2.
Fig. 2. Lattice of abstract domains for functions and relations.

– For any set D and lattice L, we have (D → L) −−−−→←←−−−−
α

γ
(℘(D)

⊥,v
−−→ L):

α(F)(X) =
⊔

d∈X

F (d) , γ(F])(d) = F]({d})

This isomorphism allows to use directly the Galois connection ℘(D1) −−−→←−−−
α1

γ1

A1 to abstract the domain of functions D1 → D2.
– For any sets D1 and D2, we have the isomorphism ℘(D1 × D2) −−−−→←←−−−−

α

γ

℘∅,∪(℘(D1) × ℘(D2)), which allows to code relations on elements by rela-
tions on sets of elements:

α(R) =

{

(X1, X2)

∣

∣

∣

∣

∀d1 ∈ X1, ∃d2 ∈ X2 : (d1, d2) ∈ R
∀d2 ∈ X2, ∃d1 ∈ X1 : (d1, d2) ∈ R

}

γ(R]) = {(x, y) | ({x}, {y}) ∈ R]}

℘∅,∪(L1 × L2) denotes the set of relations R ⊆ L1 × L2 that satisfies
• (⊥, x2) ∈ R =⇒ x2 = ⊥, as well as the converse.
• (x1, x2) ∈ R ∧ (y1, y2) ∈ R =⇒ (x1 t y1, x2 t y2) ∈ R (this corresponds

to a kind of upward-closure).

3.1 Classical abstraction of a functional space

Fig. 2(a) shows classical abstract domains for sets of functions and their re-
lationships. The first abstraction % consists in abstracting a set of functions
F ⊆ D1 → D2 by a single function F] : D1 → ℘(D2) (or, equivalently, by a
relation between D1 and D2):

α%(F)(d1) = {f(d1) | f ∈ F} , f ∈ γ%(F
]) ⇔ ∀d1 : f(d1) ∈ F](d1)

In words, α%(F) collects, for each argument in D1, the set of its images by
the functions in F . Consequently, this abstraction loses the possible relationship
between f(d1) and f(d′1) that may hold for f ∈ F .

Example 2. A set of real-valued functions of signature U → R is abstracted with
α% by an element of U → ℘(R). Fig. 4 of Section 4 depicts concrete value A1,
which is abstracted by value D = α%(A1). The relationship f(u2) = f(u1) + 1
that holds in A1 is lost in D. 2

One can then abstract the equivalent transformer F : ℘(D1)
⊥,v
−−→ ℘(D2) with

a function F] : A1
⊥,v
−−→ A2 by abstracting both the domain and the codomain:

αϕ(F) = α2 ◦ F ◦ γ1 , γϕ(F) = γ2 ◦ F] ◦ α1

One can also abstract separately the domain (abstraction δ) and the codomain
(pointwise abstraction π) to obtain two intermediate abstractions. The full com-
position of these Galois connections is the Galois connection φ = [%, ϕ] = [%, [δ, π]]

= [%, [π, δ]] between ℘(D1 → D2) and A1
⊥,v
−−→ A2.

Let us take a closer look at the abstractions δ and π. Under δ, a function
F : D1 → ℘(D2) is abstracted by a function A1 → ℘(D2) as follows: the image
for an element a ∈ A1 is computed by unioning together the images of the
elements of D1 represented by a:

αδ(F)(a) =
⋃

α1(d)=a

F (d)

An application of this abstraction is illustrated in Fig. 4 (E = αδ(D)). Under
pointwise abstraction π, a function F : D1 → ℘(D2) is abstracted by representing
the images of F by their abstraction in A2: απ(F) = α2 ◦ F .

Example 3. If we consider the basic Galois connections described in Example 1, a
set of unary predicates of signature U → B is abstracted with φ by an element of

(U])>⊥
⊥,v
−−−→ ℘(B). The fact that canonical abstraction [14] can represent exactly

both false and true values of predicates (i.e., it is conservative in both values)
can be understood if you see unary predicates as ordinary functions abstracted
this way. The same holds for binary predicates in U 2 → B. 2

Remark 1. In practice, the abstraction A1 of the domain D1 of functions is often
a flat lattice induced by a partitioning of D1.

Remark 2. If A1
⊥,v
−−−→ A2 is to be implemented, each of its elements has to be

finitely representable. This implies that A2 should be finitely representable, and

A1 should be finite, as in Example 3; in this case A1
⊥,v
−−−→ A2 ' (A2)

n, where n
is the size of the partition used to define A1.

It is not necessary to have an n+1st dimension to represent the image of ⊥A1
,

which is ⊥A2
. When A1 is built as in Example 3, the image of >A1

does not carry
any additional information, because γ1(

⊔

a1∈A1\{>A1
}) =

⋃

a1∈A1\{>A1
} γ1(a1) =

D1. However, when the latter property does not hold, one should introduce one
additional dimension to the abstract domain for the image of >A1

3.2 Classical abstraction of a relation

A binary relation between elements belonging to D1 and D2, respectively, is
an element of ℘(D1 × D2). Fig. 2(b) shows classical abstractions for relations.
Roughly speaking, the right-hand side of Fig. 2(b) abstracts a relation between
concrete elements as a pair of sets, and then abstracts the pair of sets component-
wise.

The left-hand side of Fig. 2(b) abstracts a relation between concrete ele-
ments using a relation between abstract elements. The abstraction ℘∅,∪(℘(D1)×

℘(D2)) −−−→←−−−
αρ

γρ

℘∅,∪(A1 ×A2) is defined by:

αρ(R) = {(α1(X1), α2(X2)) | (X1, X2) ∈ R} (2)

γρ(R
]) = {(X1, X2) | ∃(a1, a2) ∈ R] : X1 ⊆ γ1(a1) ∧X2 ⊆ γ2(a2)} (3)

℘∅,∪(A1 × A2) can also be obtained by disjunctive completion of A1 × A2. An
observation similar to Remark 1 holds when choosing A1 and A2 for building
℘∅,∪(A1 ×A2).

Those principles seem natural when D1 and D2 are simple sets without struc-
ture, but the notation may seem rather heavy. However, the power of these com-
binators for relations is that they can be used when, for instance, D1 and D2

are sets of functions that are in turn abstracted using the principles described
in Section 3.1.

Example 4. Considering the state-space S described in Equation (1), if we ab-
stract functions with φ and relations over functions with ρ, we obtain the Galois
connection

℘(S) −−→←−− ℘∅,t

(

(

U] → ℘(B)
)|P1|

×
(

(U])2 → ℘(B)
)|P2|

×
(

(U] → ℘(R)
)|R|

)

(Codomains of functions are not abstracted here, and abstract values are not
finitely representable.) 2

3.3 Exploiting classical abstractions

There is an interplay between the abstraction methods for functions and the
abstraction methods for relations, because functions can be coded as relations
and conversely. For instance, a function D1 → D2 can be coded as a relation
in ℘(D1 × D2). A relation in ℘(D1 × D2) can in turn be viewed as a Boolean
function D1×D2 → B. Each view induces a different abstract domain using the
abstractions of the previous sections, as shown in Fig. 3.

Example 5. Coming back to Example 3, if we view a data-structure field as a
function U → U rather than a binary relation U × U → B, as in [13, 1], we will
abstract ℘(U → U) by U] → ℘(U]) ' U] × U] → B.4

This abstraction is not conservative with respect to the value “true”. That
is, with this abstraction, “false” means “false”, but “true” means “maybe true”.
An equivalent abstraction can be obtained when starting from ℘(U 2 → B) by
abstracting ℘(B) by conflating the values true and > [14, Section 8.2]. 2

4 Here the domain U is abstracted by U], and the codomain U by the more precise
disjunctive completion ℘(U]).

Viewing a function as: D1 ×D2 → B D1 → D2 ℘(D1 ×D2)

Abstracting sets of functions with:

Resulting abstract domains: A1 ×A2 → ℘(B) A1 → A2 A1 ×A2

φ φ [ρ,∨]

� �

Fig. 3. Different ways of coding a set of functions, and the resulting abstractions.

Generally speaking, abstraction methods for functions are more precise than
abstraction methods for relations, as illustrated by Fig. 3. If we want to abstract
relations in ℘(D1 ×D2), viewing them as Boolean functions D1 ×D2 → B and
abstracting them with A1 ×A2 → ℘(B) instead of ℘(A1 ×A2) allows to specify
that some pairs of elements are definitely related.

Of course, the most suitable coding does not depend only on the induced
abstraction, but also on the operations on functions (or relations) that are used
for specifying the fixpoint equations to be solved. For instance, both concrete and
abstract function application operations are defined in the most straightforward
way when viewing a function as an element in D1 → D2.

4 Relational Function-Abstraction

If we consider a set of functions of type f : U → R, and if we abstract it with
the technique of Section 3.1 using convex polyhedra [5] for abstracting ℘(R), we
would obtain U] → Pol[1] ' U] → Interval. That is, we would associate to each
abstract individual an interval. This is not what is proposed in [8], where an
abstract value is a convex polyhedron, where each dimension corresponds to an
abstract individual.

In this section, we formalize such an approach in more general terms; we
analyze carefully the different kinds of abstractions that are performed; and we
compare the approach to the classical approach described in Section 3.1.

4.1 Real-valued functions

To provide some intuition, we first instantiate the abstraction scheme for func-
tions f : U → R. The universe U is partitioned by a projection function
π : U → U]. The cardinality of U] is denoted by |U]| = n.

Our aim is the following: starting from the lattice ℘(U → R), we want to
abstract it by a lattice of the form ℘(U] → R), for which many relational ab-
stractions exist, instead of considering the lattice U] → ℘(R) obtained by the
classical technique, which is not relational at all.

The abstraction proposed in [8] can be decomposed as follows:

℘(U → R)
µ
−−→ ℘(U] → ℘(R))

η
−−→ ℘(U] → R) → Pol[n]

' '
℘
(

℘(R)n
)

℘(Rn)

The two isomorphisms mentioned in the above equation will be used later to
encode functions as vectors: a function f ∈ (U] → D) ' Dn can be seen as a

vector of elements of D by rewriting it as 〈f(u]
1), . . . , f(u]

n)〉.
Fig. 4 illustrates the three abstraction steps, which are defined in detail below.

1. ℘(U → R) −−−→←−−−
αµ

γµ

℘(U] → ℘(R)) is defined by

αµ({f}) = {〈X1, . . . , Xn〉 | Xi = f ◦ π−1(u]
i)} , αµ(F) =

⋃

f∈F

αµ({f})

γµ({f]}) = {f | ∀u : f(u) ∈ f](π(u))} , γµ(F]) =
⋃

f]∈F]

γµ({f]})

where f is lifted to sets in the expression f ◦ π−1. This Galois connection

can be seen as the composition ℘(U → R)
[%,δ]
−−−→ U] → ℘(R) depicted in

Fig. 2(a) refined by a disjunctive completion. This explains the fact that γµ

preserves t.

Intuitively, this abstraction does not merge functions together; as illustrated
by abstract value B1 in Fig. 4, it only merges the values f(u) and f(u′)
when u and u′ are projected to the same abstract individual u]. Because
U] → ℘(R) is ordered, a value in ℘(U] → ℘(R)) is completely characterized
by its maximal elements with respect to the U] → ℘(R) ordering. (In Fig. 4,
we only show maximal elements.)

2. ℘(U] → ℘(R)) −−−→←−−−
αη

γη

℘(U] → R)
' '

℘(℘(R)n) ℘(Rn)

is somewhat subtle:

αη(F) =
⋃

〈X1,...,Xn〉∈F

X1 × . . .×Xn (4)

γη(F]) = {〈X1, . . . , Xn〉 | X1 × . . .×Xn ⊆ F]} (5)

Note that in the right-hand-side lattice, ℘(U] → R), each dimension corre-
sponds to a real instead of a set of reals. The subtle point in Eqn. (5) is that
the set of vectors F] is undercovered by a union of Cartesian products.

3. ℘(Rn)
γPol← Pol[n] is the abstraction of sets of vectors by convex polyhedra (in

this particular case, because Pol[n] is not a complete lattice, the abstraction
must be formalized using a weaker relationship than Galois connection).
Other numerical lattices could be used in place of Pol[n].

To focus on the abstraction of the domain U , in the following discussion and
in Fig. 4 we ignore the abstraction of codomain ℘(R)—i.e., we assume that the
codomain is not abstracted. (Using the notation of Fig. 2(a), we are redefining
φ to be the abstraction [%, δ].)

Intuitively, the composition of abstractions 1. and 2. allows capturing rela-
tionships between the images of the different arguments of the functions, when
they belong to different equivalence classes. In contrast, with the abstraction φ
of Fig. 2(a), such relationships are lost (due to the abstraction %).

Example 6. In Fig. 4, the abstraction of concrete value A1 using relational
function-abstraction is abstract value C. C concretizes to concrete value A3.
Inspection of A3 reveals that abstract value C preserves from A1 the properties

U , U], and π : U → U] : U

u1

u2

u3

u4

u
]
1

u
]
2

u
]
34

U]

π

A1 A2 A3 A4
(3 functions) (6 functions) (8 functions) (36 functions)

8

>

>

>

<

>

>

>

:

u1 7→
u2 7→
u3 7→
u4 7→

2

6

6

4

1
2
4
4

3

7

7

5

,

2

6

6

4

1
2
5
5

3

7

7

5

,

2

6

6

4

2
3
5
6

3

7

7

5

9

>

>

>

=

>

>

>

;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

u1 7→
u2 7→
u3 7→
u4 7→

2

6

6

4

1
2
4
4

3

7

7

5

,

2

6

6

4

1
2
5
5

3

7

7

5

,

2

6

6

4

2
3
x

y

3

7

7

5

x,y∈{5,6}

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

u1 7→
u2 7→
u3 7→
u4 7→

2

6

6

4

1
2
x

y

3

7

7

5

x,y∈{4,5}

,

2

6

6

4

2
3
x

y

3

7

7

5

x,y∈{5,6}

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

x∈{1,2}
y∈{2,3}
2

6

6

4

x

y

z

w

3

7

7

5

z,w∈{4,5,6}

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

℘(U → R)

B1 B2
8

>

<

>

:

u
]
1 7→

u
]
2 7→

u
]
34 7→

2

4

{1}
{2}
{4}

3

5,

2

4

{1}
{2}
{5}

3

5,

2

4

{2}
{3}
{5, 6}

3

5

9

>

=

>

;

8

>

<

>

:

u
]
1 7→

u
]
2 7→

u
]
34 7→

2

4

{1}
{2}
{4, 5}

3

5,

2

4

{2}
{3}
{5, 6}

3

5

9

>

=

>

;

℘(U] → ℘(R))

C
8

>

<

>

:

u
]
1 7→

u
]
2 7→

u
]
34 7→

2

4

1
2
4

3

5,

2

4

1
2
5

3

5,

2

4

2
3
5

3

5,

2

4

2
3
6

3

5

9

>

=

>

;

℘(U] → R) Relational function-abstraction
D

8

>

>

>

<

>

>

>

:

u1 7→
u2 7→
u3 7→
u4 7→

2

6

6

4

{1, 2}
{2, 3}
{4, 5}
{4, 5, 6}

3

7

7

5

9

>

>

>

=

>

>

>

;

U → ℘(R))

E
8

>

<

>

:

u
]
1 7→

u
]
2 7→

u
]
34 7→

2

4

{1, 2}
{2, 3}
{4, 5, 6}

3

5

9

>

=

>

;

U] → ℘(R)) Standard abstraction

αµ

αη

α%

αδ

γφ

α∨

γµ γµ

γη

α%

Fig. 4. Different abstractions of the concrete set of functions A1 and the loss of infor-
mation induced by them (shown by concrete values A2, A3, and A4). Abstract value
C (whose concretization is A3) is the abstract value obtained with relational function-
abstraction Φ, whereas abstract value E (whose concretization is A4) is the abstract
value obtained by the abstraction φ of Section 3.1.

f(u2) = f(u1) + 1 and ∀u ∈ {u3, u4} : f(u1) + 3 ≤ f(u) ≤ f(u1) + 4. However,
C loses the property of A1 that whenever f(u1) = 1, f(u3) = f(u4).

In contrast, by using the abstraction φ of Section 3.1, we obtain the abstract
(functional) value E, from which one can only deduce weaker properties, as shown
by its concretization A4. A3 is of cardinality 8, whereas A4 is of cardinality 36.
2

To study the loss of information induced by abstraction η (i.e., abstraction-
step 2. above), let us consider the expression γη ◦ αη:

γη ◦ αη(F) =

〈X1, . . . , Xn〉

∣

∣

∣

∣

∣

∣

X1 × . . .×Xn ⊆
⋃

〈Y1,...,Yn〉∈F

Y1 × . . .× Yn

In words, this means that (γη ◦ αη)(F) adds to F Cartesian products that un-
derapproximate unions of Cartesian products.

Example 7. In Fig. 4, we have B2 = (γη ◦αη) (B1). The information that when-
ever f(u1) = 1, f(u3) = f(u4) is lost. More generally, η will lose relational
information about f(u) and f(u′) when u and u′ are merged together. 2

4.2 Generalization

In this section, we generalize the results of Section 4.1 by considering the ab-
straction of functions of signature D1 → D2. We also analyze the effect of the
abstracting codomain D2.

Our assumptions are as follows: Suppose that we have a Galois connection

℘(D1) −−−→←−−−
α1

γ1

A1, where A1 is a finite lattice with |A1| = n. Actually, this as-

sumption is only needed for the third abstraction step of Def. 1. In addition,
suppose that for any k, we have a Galois connection ℘((D2)

k) −−→←−− A2[k], where
A2[k] is a k-dimensional abstract domain. We use A2 to denote A2[1]. We also
assume that ∀k ≥ 1 : A2[k + 1] � A2[k] × A2[1]. If the inequality is actually
an equality, A2[k] = (A2)

k is said to be not relational [10] (for instance, inter-
vals on reals). If the inequality is strict, A2[k] is relational (for instance, convex
polyhedra)

Definition 1 (Relational function-abstraction Φ). The relational function-
abstraction Φ is defined by the composition of the following three abstractions:

℘(D1 → D2)
µ
−−→ ℘(A1

⊥,v
−−−→ ℘(D2))

η
−−→ ℘(A1\{⊥}→ D2)

α2[|A1|]
−−−−−−→ A2[|A1|]

where

1. ℘(D1 → D2) −−−−→←−−−−
αµ

γµ

℘(A1
⊥,v
−−−→ ℘(D2)) is defined by

αµ(F) =
⋃

f∈F

{f] | ∀a1 : f](a1) = f(γ1(a1))} (6)

γµ(F]) =
⋃

f]∈F]

{f | ∀d1 : f(d1) ∈ f](α1(d1))} (7)

2. ℘(A1
⊥,v
−−−→ ℘(D2)) −−−−→←−−−−

αη

γη

℘(A1\{⊥}→ D2) is defined by5

αη(F) =
⋃

f∈F

{f] | ∀a1 : f](a1) ∈ f(a1)} (8)

γη(F]) = {f | ∀f] ∈ (A1 → D2) :
(

∀a1, f
](a1) ∈ f(a1)

)

⇒ f] ∈ F]} (9)

3. The last abstraction is the abstraction of sets of D2-valued vectors by A2[n].

Notice that if we drop the assumption that A2 is finite, we still provide an original
method for abstracting ℘(D1 → D2) with ℘(A1\{⊥}→ D2). We identify below
an important class of properties preserved by this abstraction, generalizing the
properties mentioned in Example 6.

Theorem 1 (Relational properties preserved by the abstraction [µ, η]).
Let P1 ⊆ (D1)

2 and P2 ⊆ (D2)
2 be binary relations on D1 and D2, and let

Ψ[P1,P2] ∈ ℘(D1 → D2) be a property on functions defined by

Ψ[P1,P2] = {f : D1 → D2 | ∀(d1, d
′
1) ∈ P1, (f(d1), f(d′1)) ∈ P2}.

Assume that P1 is preserved by the abstraction ℘(D1) −−−→←−−−
α1

γ1

A1 as follows:

(d1, d
′
1) ∈ P1 ⇒ (γ1 ◦ α1)(d1)× (γ1 ◦ α1)(d

′
1) ⊆ P1.

Let F ⊆ Ψ[P1,P2]. Then (γ[µ,η] ◦ α[µ,η])(F) ⊆ Ψ[P1,P2]; i.e., property Ψ[P1,P2] is

preserved by the abstraction [µ, η].

Example 8. Coming back to Example 6 and Fig. 4, let P1 = {(u1, u3), (u1, u4)}
and P2 = {(x, y) | x + 3 ≤ y ≤ x + 4}. Then the property Ψ[P1,P2] is ∀u ∈
{u3, u4} : f(u1)+3 ≤ f(u) ≤ f(u1)+4, which is satisfied by the set of functions
A1. Because P1 is preserved by the abstraction ℘(U) −−→←−− U], and A3 is equal to
(γ[µ,η] ◦ α[µ,η])(A1), A3 also satisfies Ψ[P1,P2].

The above theorem is generalizable to k-ary relations P1 and P2 for k ≤ |A1|.
Also, the theorem implies that if, in addition, the relation P2 is preserved by the
abstraction α2[|A1|], then the property Ψ[P1,P2] is preserved by the full relational
function-abstraction Φ. This is the case in the example above if one uses octagons,
for instance.

Proof. Let P
]
1 = {(a1, a

′
1) ∈ (A1)

2 | ∃d1 ∈ γ1(a1), ∃d
′
1 ∈ γ1(a

′
1) : (d1, d

′
1) ∈ P1}. Notice

that, due to the assumption on P1, P1 is fully defined by P
]
1 . Then

αµ(Ψ[P1,P2]) =

f : A1 → ℘(D2)

˛

˛

˛

˛

∀(a1, a
′
1) ∈ P

]
1 , ∀(d2, d

′
2) ∈ f(a1)× f(a′

1) :
(d2, d

′
2) ∈ P2

ff

α[µ,η](Ψ[P1,P2]) = {f : A1 → D2 | ∀(a1, a
′
1) ∈ P

]
1 : (f(a1), f(a′

1)) ∈ P2}

γη ◦ α[µ,η](Ψ[P1,P2]) =

8

>

>

<

>

>

:

f : A1 → ℘(D2)

˛

˛

˛

˛

˛

˛

˛

˛

∀f] : A1 → D2 :
“

∀a1, f
](a1) ∈ f(a1)

”

⇒
“

∀(a1, a
′
1) ∈ P

]
1 : (f](a1), f

](a′
1)) ∈ P2

”

9

>

>

=

>

>

;

5 We confess that Eqn. (9), which is derived from the definition of αη, is difficult to
understand. However, this formulation is more general than Eqn. (5); i.e. it can be
used when A1 is not finite.

We now show that γη ◦α[µ,η](Ψ[P1,P2]) ⊆ αµ(Ψ[P1,P2]). Let f ∈ γη ◦α[µ,η](Ψ[P1,P2]), and

(a1, a
′
1) ∈ P

]
1 . We have that for any f] : A1 → D2 such that ∀a, f](a) ∈ f(a), then

(f](a1), f
](a′

1)) ∈ P2. It follows that ∀(d2, d
′
2) ∈ f(a1) × f(a′

1)) : (d2, d
′
2) ∈ P2, which

proves that f ∈ αµ(Ψ[P1,P2]). It is easy to show that γµ ◦ αµ(Ψ[P1,P2]) ⊆ Ψ[P1,P2]. Now,
because F ⊆ Ψ[P1,P2] and (γ[µ,η] ◦ α[µ,η]) is monotone, the desired relationship holds:

(γ[µ,η] ◦ α[µ,η])(F) ⊆ (γ[µ,η] ◦ α[µ,η])(Ψ[P1,P2]) ⊆ Ψ[P1,P2]. 2

Example 9. It is instructive to illustrate relational function-abstraction Φ for
the case of Boolean functions in U → B, assuming that the codomain (B) is not
abstracted. We obtain ℘(U] → B) ' ℘(Bn); i.e., an abstract value is a set of
bit-vectors, or, equivalently, a propositional formula. If we use the abstraction
φ, we obtain instead U] → ℘(B) ' ℘(B)n; i.e., an abstract value is a trivector
or a single monomial. This means that in this specific case the abstraction Φ =
[µ, η] reduces to the disjunctive completion µ of the abstraction [%, δ] = φ. In
particular, the abstraction η does not lose any information. This property is not
true in general, as shown by Example 7. 2

We now compare the relational function-abstraction Φ defined above with
φ, the traditional approach to abstracting sets of functions, and its disjunctive
completion.

Theorem 2. We have the following relationships:

℘(A1
⊥,v
−−−→ A2) � A2[|A1|] � (A1

⊥,v
−−−→ A2)

The first inequality reduces to an equality iff A2[|A1|] is disjunctive. The second

inequality reduces to an equality iff A2[|A1|] is not relational.

Proof. Let n = |A1| be the cardinality of A1. We have the isomorphism (A1
⊥,v
−−−→

A2) ' (A2)
n. By hypothesis, ∀k ≥ 1 : A2[k] � (A2)

k.
As a consequence, A2[n] � (A2)

n, which corresponds to the second inequality of
the theorem. The equality and strict-inequality cases follow from the definition of a
relational lattice.

We denote by A2[n] −−−→←−−−α

γ
(A2)

n the Galois connection corresponding to the in-

equality A2[n] � (A2)
n. We now define the Galois connection ℘((A2)

n) −−−→←−−−
α′

γ′

A2[n]

with

α
′(X) = t{γ(a) | a ∈ X} and γ

′(Y) = {a ∈ (A2)
n | γ(a) v Y }

One can easily check that this defines a Galois connection. This proves the first inequal-
ity of the theorem. The equality and strict-inequality cases follow from the definition

of a disjunctive lattice (cf. Section 2.1) and the fact that ℘(A1
⊥,v
−−−→ A2) is trivially

disjunctive. 2

Implementability issues. An abstract lattice, even if not implementable, is
interesting in so far as it may be used as a semantic domain in an abstrac-
tion chain. Here, adopting a pragmatic standpoint, we are interested in knowing

when the three abstract domains ℘(A1
⊥,v
−−−→ A2), A2[|A1|], and (A1

⊥,v
−−−→ A2)

can be used in practice, i.e., when their elements are finitely representable. For

the sake of discussion, assume that A1
⊥,v
−−−→ A2 is finitely representable by an

argument/value table (e.g., A1 is finite and A2 is finitely representable). The do-

main ℘(A1
⊥,v
−−−→ A2) is finitely representable only if A2 is a finite lattice, or an

infinite lattice that does not contain infinite subsets of incomparable elements (or
anti-chains). In contrast, the relational function-abstraction A2[|A1|] is always
finitely representable under our assumptions. In particular,

– A2[|A1|] is finitely representable when A2 is a finite-height lattice. In this
case it is also finite-height.

– A2[|A1|] is finitely representable even when A2 is not a finite-height lattice,
and can be used in practice, provided that A2 is equipped with a widening
operator.

For instance, if D2 = R, A2[n] can be the relational lattice of octagons [11]
or convex polyhedra [5]. If D2 = Σ∗ is a language over an alphabet Σ, A2[n]
can be the relational lattice Reg(Σn) of regular languages over vectors of letters
equipped with a suitable widening operator. Neither of these lattices are finite-
height.

The disussion above assumed that only argument/value tabular representa-
tions are available for functions in A1 → A2. Of course, in particular cases, more
efficient representations may be available that exploit the underlying structure
of the domain and/or codomain. For instance, regular transducers are a very
effective representation of (a subset of) functions on Σ∗ → Σ∗, which has both
infinite domain and codomain.

4.3 Abstracting relations over functions with relational
function-abstraction

The strength of relational lattices is their ability to abstract a powerset of Carte-
sian products more precisely than the abstractions that were discussed in Sec-
tion 3.2, as illustrated by the following example:

Example 10. Suppose that we want to abstract relations between vectors (i.e.,
the concrete domain is C = ℘(Rn×R

m)), where sets of vectors ℘(Rn) and ℘(Rm)
are abstracted by convex polyhedra. The abstraction ρ of Fig. 2(b) results in the
abstract domain ℘(Pol[n]× Pol[m]), which is not finitely representable. The ab-
straction [ρ,∨] results in Pol[n] × Pol[m], which does not capture relationships
between pairs very precisely. It is well-known that the most precise way to ab-
stract C is to use the relational lattice Pol[n + m]. 2

A similar phenomenon arises when abstracting relations over functions with
relational function-abstraction. If we want to abstract a relation in ℘

(

(D1 →

D2)×(D1 → D2)
)

(i.e., a relation between functions that share the same domain
and codomain), we should use A2[2 · |A1|]. In other words, we can exploit the
set-isomorphism (D1 → D2)

2 = D1 → (D2)
2, and then apply relational function-

abstraction:

℘
(

(D1 → D2)× (D1 → D2)
)

= ℘
(

D1 → (D2)
2
)

−−→←−− A2[2 · |A1|]

Example 11. Coming back to Eqn. (1), let us illustrate the principles described
in this paper to obtain a finitely representable abstract domain for ℘(S):

℘(S) = ℘
(

(U → B)|P1| × (U2 → B)|P2| × (U → R)|R|
)

(10)

=
(

(U → B)|P1| × (U2 → B)|P2|
)

→ ℘
(

U → R
|R|

)

(11)

−−→←−−
(

(

U] → ℘(B)
)|P1|

×
(

(U])2 → ℘(B)
)|P2|

)

⊥,v
−−−→ Pol[|R| · |U]|] (12)

The function in Eqn. (11) is abstracted using the function-abstraction ϕ of Fig. 2,
the abstraction [ρ,∨] being used for the domain and the relational function-
abstraction Φ being used for the codomain. Intuitively, we associate a convex
polyhedra to each vector of abstract Boolean functions. 2

5 Related Work and Conclusions

We formalized in this paper a generic abstract-interpretation combinator, which
abstracts sets of functions D1 → D2 in a relational way, assuming the existence
of abstractions A1 and A2[n] for ℘(D1) and ℘((D2)

n), respectively. Viewed from
another angle, we have shown how to give a new semantics—in terms of sets

of functions—to some previously known abstract lattices, such as octagons and
convex polyhedra. This was achieved by developing nonstandard concretization
functions for such domains. As an intermediate step, we formalized the abstrac-
tion of sets of functions D1 → D2 by sets of functions A1 → D2 and identified a
class of properties preserved by this abstraction.

In terms of precision, the abstract domains that we obtain from relational
function-abstraction lie in-between the classical function-abstraction A1 → A2

and its disjunctive completion. The important point is that the abstract domains
obtained from relational function-abstraction are finitely representable in more
general circumstances than the disjunctive completions of classical function-
abstractions. In fact, they are finitely representable in the same circumstances as
classical function-abstraction (i.e., when A1 → A2 is finitely representable with
a tabulated representation).

We focused in this paper on the compositional construction of abstract do-
mains and ignored algorithmic issues, as well as the choice of basic abstract do-
mains. The relational function-abstraction described in the paper has actually
been implemented in [8] in the shape-analysis framework of [14], for abstracting
real-valued fields of dynamically allocated data structures. More recently, [9] has
addressed the problem of abstracting arrays of reals, viewed as functions of sig-
nature [0..n] → R. Both [8] and [9] address the difficult problem of abstracting
the domain U of a function space in a suitable way. It appears than using a fixed
partition of U is useless; instead, [8] and [9] support dynamic partitioning of U .

We compared our solution to the classical solutions described in [4] and their
refinement with the disjunctive-completion method. We review here other re-
finement methods. The tensor product of [12] combines in a relational way
two different abstract domains L1 and L2 that abstract the same concrete
domain C; it is denoted L1 ⊗ L2. The tensor product satifies the equation
℘(S1) ⊗ ℘(S2) = ℘(S1 × S2) for powersets, and extends such an operation to

more general lattices. The reduced cardinal power [2] and reduced relative power
[6] combine L1 and L2 in a different way, by considering lattices of functions
L1 → L2, which captures dependencies, or in a more logical setting, implica-

tions [7]. In the particular case where L1 = L2 = L, this refinement allows to
capture autodependencies, which is in general incomparable with the disjunctive
completion of L. We did not fully explore whether the above refinements can
be used to generate relational function-abstraction Φ from classical abstractions
for functions. However, we believe that even if it were possible, the construction
would be more complicated than our approach:

– the functional structure of concrete states would not be exploited;
– the“syntactic”structure of the obtained abstract lattice (L1⊗L2 or L1 → L2)

would be quite different from A2[n], even if an isomorphism exists.

References

1. D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures.
In Proceedings of the ACM SIGPLAN 1990 conference on Programming language
design and implementation. ACM Press, 1990.

2. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th ACM Symposium on Principles of Programming Languages, POPL’79, San
Antonio, January 1979.

3. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2–3):103–179, 1992.

4. P. Cousot and R. Cousot. Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages), invited paper. In Proc. of the 1994 Int. Conf. on
Computer Languages, Toulouse, France, May 1994. IEEE Computer Society Press.

5. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th ACM Symposium on Principles of Programming
Languages, POPL’78, Tucson (Arizona), January 1978.

6. R. Giacobazzi and F. Ranzato. The reduced relative power operation on abstract
domains. Theoretical Computer Science, 216, 1999.

7. R. Giacobazzi and F. Scozzari. A logical model for relational abstract domains.
ACM Trans. Program. Lang. Syst., 20(5), 1998.

8. D. Gopan, F. DiMaio, N.Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimensions. In Int. Conf. on Tools and Algs. for the Construction and
Analysis of Systems (TACAS’04), volume 2988 of LNCS, 2004.

9. D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array
operations. In 32th ACM Symposium on Principles of Programming Languages,
(POPL’05). ACM press, January 2005.

10. N. Jones and S. Muchnick. Complexity of flow analysis, inducive assertion synthe-
sis, and a language due to Dijkstra. In N. Jones and S. Muchnick, editors, Program
Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

11. A. Miné. The octagon abstract domain. In AST’01 in Working Conference on
Reverse Engineering 2001. IEEE CS Press, October 2001.

12. F. Nielson. Tensor products generalize the relational data flow analysis method.
In Fourth Hungarian Computer Science Conference, 1985.

13. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. In Symposium on Principles of Programming Languages
(POPL’96), pages 16–31, New York, NY, January 1996. ACM Press.

14. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems, 24(3), 2002.

