
A Categorized Bibliography on Incremental Computation

G. Ramalingam and Thomas Reps
University of Wisconsin

1. Introduction

In many kinds of emnputatiomd contexts, modifications of the
input data are to be processed at once so as to have immediate
effect on the output. Because small changes in the input to a com-
putation often cause only small changes in the outpu~ the chal-
lenge is to compute the new output incrementally by updating
parts of the old outpu~ rather than by recomputing the entire out-
put from scratch (as a “batch computation”). Put another way, the
goal is to make use of the solution to one problem instance to find
the solution to a “nearby” problem irtstanee.

The abstract ~oblem of incremental computation can be
phrased as follows: The goal is to compute a function ~ on the
user’s “input” data x—where x is often some data structure, such
as a tree, graph, or matrix-and to keep the output ~ (x) updated
as the input undergoes changes. An incremental algorithm for
computing ~ takes as input the “batch input” x, the “batch output”
~ (x), possibly some auxiliary information, and the change in the
“batch input” Ax. The algorithm computes the new “batch out-
put” ~ (x + Ax), where x + Ax denotes the modified input, and
updates the auxiliary information as necessary.

F~om the s~dpoint of the progr amming-languages emnrmm-
ity, interest in incremental computation stems horn the following
four resesrch topics:

● The creation of languages with facilities that support incre-
mented computation (for the purpose of providing language
support for interactive systems, in which input undergoes
modifications).

● Incremental computation as a paradigm for program optimiza-
tion, particularly loop optimization in very-high-level
languages.

o The development of irteremental language-processing algo-
rithms (for use in interactive progr amming tools).

● The creation of compilers and programming tools that imple-
ment the above ideas.

In addition to the work that has gone on in these areas of d~ect
irtteresL there is a considerable body of relattxl work on incremen-
tal computation dta~ although less well known in the
progr amrning-languages community, may have much to offer:

o

●

o

Several different criteria have been developed for comparing
the performance of different algorithms for an incremental-
eomputation problem.
There have been a few advances made towmls establishing
general principles of incremental computing (e.g., the work
on dy~”zatwn of static problems).
There are resulta on a hinge number of individual
incremental-computation probl~s; these may provide an
opportunity for extracting new general principles or for gen-
erating new ideas through which language support for irtcre-
mental computation might be provided.

lhis work was supported in patt by a David and Lucile Packard Fellow-
ship for Science and Ertginecdng, by the National Science Foundation
under grant CCR-9 100424, sttd by the Defense Advanced Researeh Pro-
jects Ageney under ARPA Order No. 8856 (monitored by the Office of
Navaf Research under contract NOO014-92-J-1937).

Authors’ address: hputcr Sciences Department, University of
Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706.

E-mail: (ranudi, reps)@cs.wise.edu

This document provides a guide to some of the literature that
has appesmd on incremental computin~ however, it is by no
means a complete list of papers in the sr~ even for the topics
with which we are the most familiar.

The seven points listed above could have served as the organi-
zational principle for this bibliography; however, we chose to fol-
low a different approach to classifying the existing work on incre-
mental computation, attempting to survey the field of incremental
computation per se, rather than just the narrower topic of
incremental-computation research in the programming-languages
community. In so doing, the goal was to expose ties between the
ideas on incremental computation that &veloped out of research
on progr ammirtg languages and progr ammirtg tools, and ideas that
have been developed by researchers in other areas.

2. Assessment of Incremental Algorithms

2.1. Computational Complexity of Incremental Computation

One of the first problems that one must come to grips with when
dealing with algorithms for incremental-computation problems is
that the criteria commonly used to assess the performance of algo-
rithms for batch-computation problems can be unsatisfactory. In
particular, a common way to evaluate the time complexity of a
batch algorithm is to use asymptotic analysis and to express the
cost of the computation as a function of the size of the inpu~ how-
ever, for incremented-amputation problems, this kind of analysis
can have several drawback

o It may fail to distinguish between two different incremental
algorithms for a problem, one of which is clearly superior to
the other. (ht many cases, it even fails to distinguish between
art incremental algorithm and the batch start-over algorithm.)

● For some incremental-computation problems, it can lead to
the (erroneous) conclusion that the batch start-over algorithm
is Optimal.

Some other analysis criteria that can be of utility for
ittcremental-computation problems are given below.

Direct comparison with the batch start-over algorithm

Yellin, D. and Strom, R., “lNC: A language for incremental
computations,” ACM Trans. Program. Lang. Syst. 13(2) pp.
211-236 (April 1991).

Amortized-cost analysis

With amortized-cost analysis, the performance of an algorithm is
averaged over a worst-case sequence of operations. This some-
times leads to an overall time bound that is much smaller than the
worst-case time per operation multiplied by the number of opera-
tions.

Sleator, D.D. and Tarj~ R. E., “A data structure for dynamic
trees,” JOUTM1 of Computer and System Sciences 26 pp.
362-391 (1983).

Tarjan, R.E., “Amortized computational complexity,” SIAM J.
Algebraie Discrete Methods 6(2) pp. 306-318 (April 1985).

502

Competitiveness

Another approach that measures the performance of algorithms
over a sequence of operations is the analysis of algorithms’ com-
pefifiveness. Given an on-line problem (i.e., there is a sequence of
requesta and actions that must be performed on-line in response to
requests, where each action has an associated cost), assume that
there is an adversary with “maximally destructive intent” generat-
ing the requests. The notion of competitiveness assesses the
amount of darnage that the adversmy can inflic~ in the sense of
comparing the performance of an on-line algorithm to the perfor-
mance of art optimal off-line algorithm. The competitive ratw is
the maximum value-over any sequence of requests-of the ratio
between the cost of the on-line algorithm and the cost of art
optimal off-line algorithm. Thus, an algorithm designer seeks a
competitive ratio as small as possible (where the smallest possible
ratio is 1).

What has sparked particular interest in this model for analyzing
on-line algorithms is that it is uossible to use randomness to “inhi-
bit” the fiwer of the advers~. That is, for some problems it is
possible to find random on-line algorithms that have a smaller
competitive ratio than the best deterministic on-line algorithm.

Sleator, D.D. and Tarjm R.E., “Amortized efficiency of list
update and paging roles,” Convnun. of the ACM 28(2) pp.
202-208 (February 1985).

McGeoc~ L.A. and Sleatur, D.D. (eds.), On-Line AlgorithmsJ
American Mathematical Society, Providence, RI (1992).

Ksrp, R.M., “On-line algorithms versus off-line algorithms:
How much is it worth to know the titure?,” pp. 416-429 in ln-
formatwn Processing 92: Proceedings of the IFIP Twelfih
World Computer Congress, ed. J. van Lecuwen,Norti-
Hollan~ Amsterdam (September 1992).

Probabilistic analysis

Ixmchard, G., Randrharimanan~ B., and Schott, R.,
‘Dynamic algorithms in D.E. Knuth’s mo&l: A probabilistic
analysis,” Theoretical Computer Science 93 pp. 201-225
(1992).

Incremental relative lower bounds

BermarL A.M., Paul~ M.C., and Ryder, B.G., “Proving rela-
tive lower bounds for incremental algorithms,” Acts Ir@orma-
tica 27 pp. 665-683 (1990).

Reductions between problems

Reif, J.H., “A topological approach to dynamic graph cormec-
tivity~ Informatwn Processing Letters 25(1) pp. 65-70
(1987).

Boundedness

Because art incremental algorithm makes use of the solution to
one problem instance to find the solution to a “nearby” problem
instance, another alternative to expressing the cost as a function of
the size of the input is to measure the time complexity of an irtcre-
mental algorithm in terms of the sum of the sizes of the changes
in the input and output. An incremental algorithm is said to be
bounded if, for all input data-sets and for all changes that can be
applied to an input datit-se~ the time it takes to update the output
solution dependa only on the size of the change in the input and
outpuL and not on the size of the entire current input. Otherwise,
an incremental algorithm is said to be unbounded. A problem is
said to be bounded (unbounded) if it has (does not have) a
bounded incremental algorithm.

Reps, T., Teitelba~ T., artd Demers, A., “Irtcremental
context-dependent analysis for language-based editttrs~ ACM
Trans. Program. Lang. Syst. S(3) pp. 449477 (July 1983).

Alpeq B., Hoover, R., Rosen, B.K., Sweeney, P.F., and Za-
dec~ F.K., “Incremental evaluation of computational cir-
cuits,” pp. 32-42 in Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, (San Francisco,
CA, Jart. 22-24, 1990), Society for Industrial and Applied
Mathematics, philadelphi~ PA (1990).

Ramaliigam, G. and Reps, T., “On the computational com-
plexity of incremental algorithms,” TR-1033, Computer Sci-
ences llepartmen~ University of WNconsin, Madiaom WI
(August 1991).

Ramtimgsm, G. and Reps, T., “An incremental algorithm for
a generalization of the shortest- th problem,” TR-1087,
Computer Sciences Departmen~ %versity of WEcQrtsin,
Madison, WI (May 1992).

Ramaliigam, G. and Reps, T., “On the complexity of incre-
mental computatio~” Unpublished report+ Computer Sci-
ences Departtnen~ University of Wisconsin, Madiiou WI
(October 1992).

2.2. Measurements of Actual Performance

There have been relatively few papers in which the performance
of an incremental algorithm has been evaluated from an experi-
mental standpoint. The little work that doea exist actually sug-
gests that from a practical standpoint incremental algorithms that
do not have “good” theoretical performance (according to the cri-
teria liited above) can give satisfactory performarm. in real sys-
tems.

Dionne, R., “Etude et extension d’un algorithm de Murch-
hmd~ ZNFOR 16(2) pp. 132-146 (June 1978).

Taylor, G.S. and ousterhou~ J.K., “Magic’s incremental
design-rule checker: pp. 160-165 in Proceedings of the
Twenty-First Design Automatwn Conference, IEEE Computer
Society, Washingto~ DC (1984).

Scot~ W.S. and ousterhou~ J.K., “Plowing: Interactive
stretching and compaction in Magic,” pp. 166-172 in
Proceedings of the Twenty-First Design Automation Confer-
ence, IEEE Computer Society, Washingto~ DC (1984).

Hoover, R., “Incremental graph evaluation,” Ph.D. d~serta-
tion and Tech. Rep. 87-836, Dept. of Computer Science, Cor-
nell University, hhac~ NY (May 1987).

Ryder, B.G., Landi, W., and Pande, H.D., “Profiling an incre-
mental data flow analysis algorithm,” IEEE Transactwns on
Software Engineering SE-lt5(2)(Febmary 1990).

Zaxing, A., “Parallel evaluation in attribute grammar based
systems; Ph.D. dissertation and Tech. Rep. 90-1149, Dept.
of Computer Science, Cornell University, Ithaca NY (Au-
gust 1990).

Harrison, M.A. and Munson, E.V., “Numbering document
components,” Electronic Publishing 4(l)(Jsrtuary 1991).

503

3. Data-Structure Update Problems

3.1. Incremental Updating of Annotations on Graphs and
Trees

One class of incremental-computation problems involves comput-
ing a function ~(x), where x is some data structure (“the sub-
strate”), such as a tree, graph, or matrix, and ~ (x) represents some
annotation of the x data structure-a mapping from more primi-
tive elements that make up x to some space of vahtes (for exam-
ple, a mapping from spreadsheet cells to values). Each annotation
value is a function of other annotation vahtes, often those of
neighboring elements in the substrate data structure. The
incremental-computation problem is to keep the annotation values
updated as the substrate data structure undergoes some changes.

3.1.1. Selective Recomputation

In seleetive recomputation annotation values that are independent
of changed data are never recomputed. Annotation values that are
dependent on changed data are recomputed, but after eaeh new
annotation value is obtairted, the old and new annotation values
may be compared in order to help determine what further recom-
putations must be ,porfomted.

Incremental updating of attributed derivation trees

Demers, A., Reps, T., and Teitelbaum, T., “Incremental
evaluation for attribute grammars with application to syntax-
directed edhors;’ pp. 105-116 in Conference Record of the
Eighth ACM Symposium on Principles of Prograrmnhg
Languages, (Williamsburg, VA, Jan. 26-28, 1981), ACM,
New York, NY (1981).

Reps, T., “Optimal-time incremental semantic analysis for
syntax-directed editors,” pp. 169-176 in Conference Record of
the Ninth ACM Symposium on Principles of Programnu”ng
Languages, (Albuquerque, NM, January 25-27, 1982), ACM,
New York, NY (1982).

Reps, T., Teitelbaum, T., and Demers, A., ‘Tneremental
contextdependent analysis for language-based editors,” ACM
Trans. Program. Lung. Syst. 5(3) pp. 449477 (July 1983),

Reps. T., Generating Langwzge-Based Envirowrumts, The
M.I.T. Press, Cambridge, MA (1984).

Yeh, D., “On incremental evaluation of ordered attributed
gT~~S,” BIT 23 pp. 308-320 (1983).

Jones, L. and Simo~ J., “Hierarchical VLSI design systems
based on attribute grammars,” pp. 58-69 in Conference
Record of the Thirteenth ACM Symposium on Principles of
Programming Languages, (St. Petersburg, FL, Jan. 13-15,
1986), ACM, New York, NY (1986).

Reps, T., Marceau, C., and Teitelbaum, T., “Remote attribute
updating for language-based editors,” pp. 1-13 in Conference
Record of the Thirteenth ACM Swnoosium on Principles of
Prograrr&dng Lunguages, (St. Pet~rsburg, FL, Jan.’ 13-15,
1986), ACM, New York, NY (1986).

Kaplan, S. and Kaiser, G., “Incremental attribute evaluation in
distributed language-based editors,” pp. 121-130 in Proceed-
ings of the Fijih ACIU Symposium on Principles of Distributed
Computing, (1986).

Hoover, R. and Teitelbaum, T., “Efficient incremental evalua-
tion of aggregate values in attribute grammars,” Proceedings
of the SIGPL4N 86 Symposium on Compiler Constructwn,
(Palo Alto, CA, June 25-27, 1986), ACM SIGPLAN Notices
21(7) pp. 39-50 (July 1986).

Hoover, R., “Incremental graph evaluation,” Ph.D. disserta-
tion and Teeh. Rep. 87-836, Dept. of Computer Science, Cor-
nell University, Ithaca, NY (May 1987).

ParigoL D., ‘Transformations, r%luation incr6merttale et op-
timization des gramrnaires attribu&s: Le systime FNC-2,”
These de Doctorat, L’Universit4 Paris XI, Centre D’Orsay,
Orsay, France (1988).

Kaiser, G.E., “Incremental dynamic semantics for language-
bssed progr amrning environments,” ACM Trans. Program.
Lang. Syst. 11(2) pp. 169-193 (April 1989).

Teitelbaum, T. and Chapman, R., “Higher-order attribute
grammars and editing environments,” Proceedings of the
ACM SIGPLAN 90 Conference on Programming Language
Design and Implernentatwn, (White Plains, NY, June 20-22,
1990), ACM SIGPLAN Notices 25(6) pp. 197-208 (June
1990).

Zaring, A., “Parallel evaluation in attribute grammar based
systems,” Ph.D. dissertation and Tech. Rep. 90-1149, Dept.
of Computer Science, Cornell University, Ithac& NY (Au-
gust 1990).

The incremental circuit-annotation problem

Pardo, R.K. and Landa~ R., “Process and apparatus for con-
verting a source program into an object program,” U.S. Patent
No. 4,398,249, United States Patent Office, Washington, DC
(August 9, 1983).

Alpem, B., Hoover, R., Rosin B.K., Sweeney, P.F., and Za-
deck, F. K., “Incremental evaluation of computational cir-
cuits,” pp. 32-42 in Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, (San Francisco,
CA, Jan. 22-24, 1990), Society for Indus~ial and Applied
Mathematics, Philadelphia+ PA (1990).

Ramalingam, G. and Reps, T., “On the computational com-
plexity of irtcremerttrd algorithms,” TR-1033, Computer Sci-
ences DepsrtmenL University of Wisumsin, Madiio~ WI
(August 1991).

Ramalingarn, G. and Reps, T., “On the complexity of incre-
mental cmmputation~ Unpublished reporL Computer Sci-
ences Dep~tmenL University of Wisconsin, Madiso~ WI
(October 1992).

Incremental data-jlow analysis

Rosem B.K., “Linear cost is sometimes quadratic,” pp.
117-124 in Conference Record of the Eighth ACM Symposium
on Principles of Programming Lunguages, (Williamsburg,
VA, January 26-28, 1981), ACM, New York, NY (1981).

Ryder, B., “Incremental data flow analysis based on a unified
model of elimination algorithms,” Ph.D. dissertation and
Tech. Rep. DCS-TR-1 17, Rutgers University, New
Brunswick NJ (September 1982).

504

Ghodzsi, V., “Incremental analysis of uromtns,” Ph.D.
dissertatio~ Dept. of Computer science, Uni~ersi~ of Cen-
tral Florid% Orlando, FL (1983).

Zadeck, F.K., “Incremental data flow analysis in a structured
program e.dhor,” Ph.D. dissertatio~ Mathematical Sciences
Dept., Rice University, Houston, TX (October 1983).

Zadeck, F.K., “Tncrernental data flow analysis in a structured
program edhor~ Proceedings of the SIGPLAN 84 Symposium
on Compiler Construction, (Montreal, Can., June 20-22,
1984), ACM SIGPLAN Notices 19(6) pp. 132-143 (June
1984).

Cooper, K.D. and Kennedy, K., “The impact of interprocedur-

al analysis and optimization in the Rn programming environ-
men~” ACM Trans. Program. Lang. Syst. 8(4) pp. 491-523
(October 1986).

Burke, M., “An interval-based approach to exhaustive and in-
cremental interprocedural data flow analysis,” Res. Rep. RC
12702, IBM T.J. Watson Research Center, Yorktown
Heights, NY (April 1987).

Burke, M. and Ryder, B., “Incremental iterative data flow
analysis algorithms,” Res. Rep. RC 13170, IBM T.J. Watson
Resemch Center, Yorktown Heights, NY (October 1987),

Canon, M. and Ryder, B., “Incremental data flow update via
attribute and dominator updates,” pp. 274-284 in Conference
Record of the Fijieenth ACM Symposium on Princ~les of
Programming Languages, (Ssn Diego, CA, January 13-15,
1988), ACM, New York, NY (1988).

Ryder, B.G. and Paull, M. C., “Incremental data flow analysis
algorithms,” ACM Trans. Program. Lang. Syst. 10(1) pp.
1-50 (January 1988).

Marlowe, T.J., “Data flow analysis and incremental iteratio~”
Ph.D. dissertation and Tech. Rep. DCS-TR-255, Rutgers
University, New Brunswick, NJ (October 1989).

Marlowe, T.J. and Ryder, B.G., “An efficient hybrid algo-
rithm for incremental data flow analysis,” pp. 184-196 in
Cor$erence Record of the Seventeenth ACM Symposium on
Principles of Programming Languages, (San Francisco, CA,
Jan. 17-19, 1990), ACM, fiew York, NY (1990).

Rosene, C.M., “Incremental dependence analysis,” Ph.D.
dissertation and Tech Rep. CRPC-TR90044, Center for
Research on Parallel Computation, Rice University, Housto~
TX (March 1990).

Ramalingam, G. and Reps, T., “On the computational com-
plexity of incremental algorithms,” TR-1033, Computer Sci-
ences Department, University of Wisconsin, Madison, WI
(August i991).

Maintaining shortest distances and other path problem in
graphs

Murchland, J.D., “The effect of increasing or decreasing the
length of a single arc on all shortest distances in a graph”
Tech. Rep. LBS-TNT-26, London Business School, Trsn-
sport Network Theory Unit, hmdon, UK (1967).

Loubal, P., “A network evahtation procedurq” Highway
Research Record 205 pp. 96-109 (1967).

Rodionov, V., “The parametric problem of shortest dis-
tances,” US.S.R. Computational math. and math. Phys.
8(5) pp. 336-343 (1968).

Halder, A.K., “The method of competing links,” Traqorfa-
tion Science 4 pp. 36-51 (1970).

Dionne, R., “Etude et extension d’on al orithme de Murch-
$land; JNFOR 16(2) pp. 132-146 (June 19 8).

Cheston, G.A., “Incremental algorithms in graph theory;
Ph.D. dissertation and Tech. Rep. 91, Dept. of Computer Sci-
ence, University of Toronto, Toronto, Canada (March 1976).

Goto, S. and Sangiovarmi-VincentelE A., “A new shortest
path updating algorithm,” Networh 8(4) pp. 341-372 (1978).

Rohnert, H., “A dynamization of the all “ least cost path

rproblem: pp. 279-286 in Proceedings o SIACS 8S: Second
Annual Symposium on Theoretical Aspects o Computer Sci-

5fence, (Sadxuecken, W. Ger., Jan. 3-5, 198), Lecture Notes
in Computer Science, Vol. 18Z ed. K. Mehlhom,Springer-
Verlag, New York NY (1985).

Even, S. snd Gazit, H., “Updating distances in dynamic
graphs,” Methods of Operations Research 49 pp. 371-387
(1985).

Lm, C.-C. and Chang, R.-C., “On the dynamic shortest path
problem,” Journal of Information Processing 13(4)(1990).

Ausiello, G., It.aliano, G. F., Spaccameliz A.M., and Nanni, U.,
“Incremental algorithms for minimal length paths,” Journal of
Algorithms 12 pp. 615-638 (1991).

Ramalingam, G. and Reps, T., “On the computational com-
plexity of incretnentrd algorithms,” TR-1033, Computer Sci-
ences Depiwtmen~ University of Wisconsin, MadisorL WI
(August 1991).

Ranxdingam, G. and Reps, T., “An incremental algorithm for
a generalization of the shortest-path problerm” TR-1087,
Comuuter Sciences lkuwttnen~ UniversiW of Wwconsin,
Mad~on, WI (May 19Y$.

3.1.2. Differential Updating

In differential updating, rather than recomputing an annotation
value z’= g (y’) in terms of its new argument y’, the old annota-
tion value z = g(y) is updated by some difference Az computed as
a function of y, y’, g, and z.

Koenig, S. and Paige, R., “A transformational framework for
the automatic control of derived da@” pp. 306-318 in
Proceedings of the Seventh International Conference on Very
?;~, Data Bases, (Cannes, France, September 1981),

Shmueli, O. and Itai, A., “Maintenance of view%” pp.
240-255 in Proceedings of the ACM SIGMOD 84 Cottjkrence,
(Boston, MA, 1984), ACM, New York NY (1984).

505

Horwi@ S., “Generating lsngusge-bssed editors: A .
relatiorudly-attributed approach” Ph.D. dissertation, Dept. of
Computer Science, Cornell University, hhac~ NY (August
1985).

Horwitq S. and Teitelbaum, T., “Generating edhing environ-
ments based on relations and attributes,” ACM Trans. Pro- .
gram. Lang. Syst. 8(4) pp. 577-608 (October 1986).

Yell@ D. and Strom, R., “INC: A language for incrernentrd
computationsfl ACM Trans. Program. Lang. Syst. 13(2) pp. .
211-236 (April 1991).

3.13. Other Incremental Expression-Evaluation Algorithms

Several of the algorithms for incremental expression-evaluation -
problems do not fit in either of the above two categories.

Pugh, W.W., “Incremental computation and the incremental
evaluation of functional progrtuns,” Ph.D. dissertation and .
Tech. Rep. 88-936, Dept. of Computer Science, Cornell
University, hhac~ NY (August 1988).

Pugk W. and Teitelbanm, T., “Incremental computation via
function csching~ pp. 315-328 in Conference Record of the
Sixteenth ACM Symposium on Principles of Progr~”ng
Lunguages, (Austi TX, Jan. 11-13, 1989), ACM, New .
York, NY (1989).

Field, J. and Teitelbanm, T., “Incremental reduction in the
lambda calculus,” in Conference Record of the 1990 ACM
Symposium on Lisp and Functional Progr~”ng, (Nice,
Frsnce, June 1990), ACM, New York, NY (1990).

Field, J., “Incremental reduction in the lambda calculus and
related reduction systems,” Ph.D. dissertation, Dept. of Com-
puter Science, Cornell University, Ithac% NY (May 1991).

Cohere R.F. and Tamassi~ R., “Dynamic expression trees and
their applications,” pp. 52-61 in Proceedings of the Second
Annual ACM-SIAM Symposium on Discrete Algorithms, (San
Francisco, CA, Jan. 28-30, 1991), Society for Industrial and
Applied Mathematics, Philadelphia, PA (1991).

3.2. Other Dynamic Graph Problems

Chestom G.A., “Incremental algorithms in graph theory,”
Ph.D. dissertation and Tech. Rep. 91, Dept. of Computer Sci-
ence, University of Toronto, Toronto, Canada (March 1976).

Even, S. and Shiloack Y., “An on-line edgedeletion prob-
lem,” J. ACM 28(1) pp. 14 (January 1981).

Fredenckso~ G., “Data structures for on-line updating of
minimum spanning trees,” SIAM J. Computing 14 pp.
781-798 (1985).

Italiano, G.F., “Amortized efficiency of a path retrieval data
structure,” Theoretical Computer Science 48 pp. 273-281
(1986). 3.3.

La Poutr6, J.A. and van LeeuweL J., “Maintenance of transi-
tive closures and &ansitive reductions of graphs,” pp. 106-120
in Graph-Theoretic Concepts in Computer Science: Proceed-
ings of the 14th Interruztwnal Workshop (1988), kcture
Notes in Computer Science, (1988).

Italiano, G.F., “Fmdmg paths and deleting edges in directed
acyclic graphs,” I#ormation Processing L.4tters 223pp. 5-11
(1988).

Yellin, D.M., “A dynamic transitive closure algorithm,”
Research Reporg IBM T.J. Watson Research Center, York-
town Heights, NY (1988).

Di Battis@ G. and Tsmassi~ R., “Incremental plsnsri test-
2ing,” pp. 436441 in Proceedings of the Thirtieth IEE Sym-

posium on Foundatwns of Computer Science, IEEE Computer
Society, Washington, DC (1989).

Buchsbaum, A.L., Kanellskis, P.C., and Vitter, J.S., “A data
structure for arc insertion and regular path finding,” pp. 22-31
in Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, (San Francisco, CA, Jan. 22-24, 1990),
Society for Industrial and Applied Mathematics, Philadel-
phia, PA (1990).

Yannakakis, M., “Graph-theoretic methods in database
theory,” pp. 230-242 in Proceedings of the Symposium on
Principles of Database Systems, (1990).

FredericksOn, G., “Ambivalent data structures for dynamic 2-
edge-cormectivity and k smallest spanning trees,” pp. 632-641
in Proceedings of the Thirty-Second IEEE Symposium on
Foundatwns of Computer Science, JEEE Computer Society,
Washington, DC (1991).

Gali~ Z. and Italisno, G.F,, “Fully dynamic algorithms for
edge-connectivity problemsfl pp. 317-327 in Proceedings of
the Twenty-Third Annual ACIU Symposium on Theory of
Computing, ACM, New York, NY (1991).

Kanevsky, A., Tamsssi~ R., Di Battis@ G., and Chen, J.,
“On-line maintenance of the four-connected components of a
graph” pp. 793-801 in Proceedings of the Thirty-Second
IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Washingto~ DC (1991).

La Poutr6, J.A., “Maintenance of tricormected components of
graphs,” pp. 354-365 in Proceedings of the Nineteenth Inter-
natwnal Collquium on Automata, Languages, and Progrmn-
ming, (1992).

Eppstein, D., Galil, Z., Italiano, G.F., and Nissenzweig, A.,
“Sparsiiication – A technique for speeding up dynamic graph
algorithms,” in Proceedings of the Thirty-third IEEE Sympo-
sium on Founaktions of Computer Science, (Pittsburgh, PA,
Oct. 25-27, 1992), IEEE Computer Society, Washington, DC
(1992).

Dyrtamization of Static Data-Structure Problems

Reif, J.H., “A topological approach to dynamic graph connec- Dym”zation of mtdti-dimensional searching problems
tivity,” Informatwn Processing Letters 25(1) pp. 65-70
(1987). Bentley, J.L., “Decomposable searching problems: It$orma-

tion Processing Letters 8 pp. 244-251 (1979).

506

Bentley, J.L. and Saxe, J.B., “Decomposable searching prob-
lems E Static-todymnic transformations,” Journal of Algo-
rithm 1 pp. 301-358 (1980).

Overtnars, M.H., The Design of Dym”c Data Structures,
Lecture Notes in Computer Science, Vol. 156, Springer-
Verlag, New YorlG NY (1983).

MeMho~ K., Data Structures and Algorithm 3: Multi-
DimerKwnal Searching and Computational Geometry,
Springer-Verlag, Berlin (1984).

Dynanu”zation of grqoh problems

Eppstein, D., Galil, Z., Italisno, G.F., and Nissenzweig, A.,
“Sparsification - A technique for speeding up dynamic graph
algorithms,” in Proceedings of the Thirty-third IEEE Sympo-
sium on Foundations of Computer Science, (Pittsburgh PA
Oct. 25-27, 1992), IEEE Computer Society, Washington DC
(1992).

3.4. Finite DMferencing

Earley, J,, “High-level operations in automatic programming,”
Proceedings of the ACM SIGPLAN Symposium on Very High
Level Lunguages, (March 1974), ACM SIGPLAN Notices
9(4)(April 1974).

Earley, J,, “High-level iterators and a method for automatical-
ly designing data structure representation” J. Corrywter
Languages 1(4) pp. 321-342 (1976).

Fong, A. and Unman, J., “Induction variables in very high
level languages,” pp. 104-112 in Co~erence Record of the
Third ACM Symposium on Principles of Progrmuning
Lzmguages, (Atlsn@ GA, Jan. 19-21, 1976), ACM, New
York NY (1976).

Fong, A., “Elimination of cunurton subexpressions in very
high level languages; pp. 48-57 in Conference Record of the
Fourth ACM Symposium on Princ@es of Programming
Lunguages, (Los Angeles, CA, January 17-19, 1977), ACM,
New York, NY (1977).

Fong, A., “Inductively computable constructs in very high
level languages,” pp. 21-28 in Conference Record of the Sixth
ACM Symposium on Principles of Programming Languages,
(San Antonio, TX, Jan. 29-31, 1979), ACM, New York NY
(1979).

Paige, R. and Koenig, S., “Ftite dtiferencing of computable
expressions,” ACM Trans. Program. Lung. Syst. 4(3) pp.
402454 (July 1982).

Goldberg, A. and Paige, R., “Stream processing: in Co#er-
ence Record of the 1984 ACM Symposium on Lisp and Func-
tional Programming, (Aus~ TX, August 6-8, 1984), ACM,
New York, NY (1984).

Psige, R., “Progrsmmirtg with invariants,” IEEE So@are
3(1) pp. 56-69 (January 1986).

4. Incremental Formal Systems

4.1. Incremental Reduction

Incremental fmtional progr~”ng

Lombsrdi, L.A. and Raphael, B., “Lisp as the language for an
incremental computer,” pp. 204-219 in The Progr~”ng
Language Lisp: Its Operatwn and A placations, wI. E.C.
Berkeley and D.G. Bobrow,The M.L’I! Press, Cambridge,
MA (1964).

Lombsrdi, L.A., “Incremental computation,” pp. 247-333 in
Advances in Computers, Vol. 8, ed. F.L. Alt and M.
Rubmoff,Acadetnic Press (1967).

Sundaresh, R.S. and Hudak, P., “Incremental computation via
partial evaluation,” in Conference Record of the Eighteenth
ACM Symposium on Principles of Programming g Languages,
(Orlando, FL, January 1991), ACM, New York, NY (1991).

Sundsresh, R. S., “Building incremental programs using par-
tial evaluation,” Proceedings of the SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Mamptda-
tion (PEPM 91), (New Haven, CT, June 17-19, 1991), ACM
SZGPLANNotices 26(9) pp. 83-93 (September 1991).

Sundsresh, R. S., “Incremental computation via arial evalua-
ksIRR-889,tiorL” Ph.D. dissertation and Res. Rep. YALEU

Dept. of Computer Science, Yale University, New Haven,
CT (December 1991).

Field, J. and Teitelbaum, T., ‘Incremental reduction in the
lambda calculus; in Cor@erence Record of the 1990 ACM
Symposium on Lisp and Functional Programrnin g, (Nice,
France, June 1990), ACM, New York, NY (1990).

Field, J., “Jncremerttal reduction in the lambda crdculus and
related reduction svsterns.” Ph.D. dxsertation. DepL of Com-
puter Science, Co~ell U~versity, Ithac% ~ (M~y 1991).

Incremental parsing

Ghezzi, C. and Mandrioli, D., “Incremental parsing,” ACM
Trans. Program. Lang. Syst. l(l) pp. 58-70 (July 1979).

Ghezzi, C. and Msndrioli, D., “Augmenting parsers to support
incrementality,” Journal of the ACM 27(3) pp. 564-579 (Oc-
tober 1980).

Wegm~ M., “Parsing for structural editors,” pp. 320-327 in
Proceedings of the Twenty-First IEEE S mposium on Foun-
datwns of Computer Science (Syracus% !4Y, October 1980),
IEEE Computer Society, Washington, DC (1980).

Jalili, F. and Gallier, J., “Building friendly parsers; pp.
196-206 in Conference Record of the Ninth ACM Symposium
on Principles of Programming Languages, (Albuquerque,
NM, Jan. 25-27, 1982), ACM, New York NY (1982).

Kaiser, G.E. and Kant, E., “Incremental parsing without a
parser;’ Journal of Systems and Soy%vare 5(2) pp. 121-144
(May 1985).

507

Algebraic laws offunctional algebra

MacLennan, B.J., “Preliminary investigation of a calculus of
functional differences: Fixed differences: Report NPS52-86-
010, Computer Science Department Naval Postgraduate
School, Monterey, CA (February 1986).

MacLennan, B.J., “An algebraic approach tu a calculus of
functional differences: Fixed differences and integrals,” Re-
port NPS52-87-041, Computer Science Depmtmen~ Naval
Postgraduate School, Monterey, CA (September 1987).

MacLennan, B.J., “A calculus of functional differences and
integrals,” Unpublished llr~ Department of Computer Sci-
ence, University of Tennessee, Knoxville, TN ().

4.2. Truth Maintenance

Doyle, J., “A truth maintenance system,” Artificial Intelli-
gence 12 pp. 231-272 (1979).

Doyle, J., “A glimpse of truth maintenance,” in Artificial In-
telligence: An M.I.T. Perspective, ed. P.H. Winston and R.H.
Brown,The M.I.T. Press, Cambridge, MA (1979).

Perlis, D., “Bibliography of literature on non-monotonic rea-
soning,” (Source unknown), (1984).

de Kleer, J., “An assumption-based TMS,” Artificial Intelli-
gence 28 pp. 127-162 (1986).

de Kleer, J., “Extending the ATMS,” Artificial Intelligence
28 pp. 163-196 (1986).

de Kleer, J., “Problem solving with the ATMS,” Arti@ial In-
telligence 28 pp. 197-224 (1986).

McAllister, D., “Truth maintenance,” UD. 92-104 in Proceed-
ings of the Eighth National Confere;e on Artificial Intelli-
gence, (Bostou MA July 29 – August 3, 1990), A&M
Press/l’he M.I.T. Press, Cambridge, MA (1990).

4.3. Incremental Deduction

Shmueli, O., Tsur, S., and Zfira, H., “Rule support in Prolog,”
(Source UnknOWn), (1984).

Msnnil~ H. and Ukkone~ E., “Time parameter and arbitrary
dcunions in the set union problcm~ pp. 3442 in Proceedings
of the First Scandinavian Workrhop on Algorithm Theory
(SWAT 88), Lecture Notes in Computer Science, Vol. 318,
Springer-Verlag, New York, NY (1988).

Incremental deduction for static-semantic analysis

Snelting, G. and Henhap!, W., “Unification in many-sorted
algebras as a device for incremental semantic analysis,” pp.
229-235 in Cor#erence Record of the Thirteewh ACM Sympo-
sium on Principles of Progr~”ng Languages, (St. Peters-
burg, FL, Jan. 13-15, 1986), ACM, New York, NY (1986).

Attali, 1., “Compiling TYPOL with attribute grammars,” pp.
252-272 in Proceedings of the International Workxhop on
Programnu”ng Language Implementation and Logic Program-
ming’ 88, Lecture Notes in Cowuter Science, Vol. 348. cd. P.

Am I. and Franchi-Zannettacci, P., “Unification-free execu-
tion of TYPOL programs by semantic attribute evaluation,”
pp. 160-177 in Proceedings of the Fijth International Confer-
ence and Symposium on Logic Programnu”ng, ed. R. Kowalski
and K. Bowe~The M.I.T. Press, Cambridge, MA (1988).

van der Meulen, E.A., “Deriving incremental implementat-
ions from algelxaic specifications,” Report CS-R9072, Com-
puter Science/Department of Software Technology, Center for
Mathematics and Computer Science (CWf), Amsterdam, The
Netherlands (December 1990).

Ballance, R.A., “Syntactic and semantic checking in
language-based editing systerns~’ Ph.D. d~sertation and Tech.
Rep. UCB/CSD 89/548, Dept. of Electrical Engineering and
Computer Science, University of California-Berkeley,
Berkeley, CA (December 1989).

Balkmce, R.A. and Graham, S.L., “Incremental cmsistency
maintenance for interactive applications,” in Proceedings of
the Eighth Internatwnal Conference on Logic Programming,
(1991).

4.4. Incremental Constraint Solving

Vander Zanden, B. T., “Incremental constmint satisfaction
and its application to graphical interfaces,” Ph.D. dissertation
and Tech. Rep. TR 88-941, Dept. of Computer Science, Cor-
nell University, Ithac% NY (October 1988).

Freeman-Benson, B.N, Maloney, J., and Borning, A., “An in-
cremental constraint solver; Cornrnun. of the ACM 33(1) pp.
54-63 (January 1990).

5. Other Special-Purpose Algorithms

Incremental compilation and linking

Fritzson, P., “preliminary experience from the DICE system,
a d~tributed incremental compiling environment” Proceed-
ings of the ACM SIGSOFHSIGPLAN So@are Engineering
Symposium on Practical So@are Development Environ-
ments, (Pittsburgh, PA, Apr. 23-25, 1984), ACM SIGPLAN
Notices 19(5) pp. 113-123 (May 1984).

Fritzson, P., “Towards a distributed programming environ-
ment based on incremental compilation,” Linlu$ping Studies
in Science and Technology Dissertation No. 109, Dept. of
Comp. and Inf. Sci., Link~ping University, L~+ping,
Sweden (1984).

Schwart?, M:, Delisle, N., and Begwani, V., “Incremental
compilahon m Magpie,” Proceedings of the SIGPLAN 84
Symposium on Compiler Construction, (Montreal, Can., June
20-2~ 1984), ACM SIGPLAN Notices 19(6) pp. 122-131
(June 1984).

Tichy, W .F., “Smart recompilation; ACM Trans. Program.
Lang. Syst. 8(3) pp. 637-654 (July 1986).

Schwanke, R.W. and Kaiser, G. E., ‘Technical Correspon-
dence Smarter remrnpilation~ ACM Trans. Program, Lung.
Syst. 10(4) pp. 617-632 (October 1988).

Der-&XXWL B. I-.orho, and J. ‘Maluszynski,Springer-Verlag,
New York, NY (1988).

508

Tichy, W.F., ‘Technical Correspondence Tichy’s response to
R.W. Schwsnke and G.E. Kaiser’s “Smarter remmuilstion”.”
ACM Trans. Program. Lang. Syst. 10(4) pp. 63$-634 (&-
tober 1988).

Cooper, K.D. and Kennedy, K., “The impact of intcrprocedur-

al analysis and optimization in the R“ programming environ-
men~” ACM Trans. Program. Lang. Syst. 8(4) pp. 491-523
(October 1986).

Burke, M. and Torczon, L., “Interprocedural optimization El-
iminating unnecessary rewmpilation,” ACM Trans. Program.
Lang. Syst., (), (T’o appear.)

Document preparatwn

Chamberlain, D.D., King, J.C., Shnz? D.R., To~ S.J.P., and
Wa&, B.W., “JANUS: An interactive system for document
composition” Proceedings of the ACM SIGPLANISIGOA
Symposium on Text Man@lation, (Portland, OR, June 8-10,
1981), ACM SIGPLANNotices 16(6) pp. 82-91 (June 1981).

Chamberlain, D.D., “Document convergence in an interactive
formatting system; IBM Systems Journal 31(1) pp. 58-72
(January 1987).

Chen, P. and Harrison, M.A., “Multiple representation docu-
ment developmen~” ZEEE Computer 21(1) pp. 15-31 (January
1988).

Chen, P., “A multiple-representation paradigm for document
developmen~” Ph.D. dissertation and Tech. Rep. UCB/CSD
88/436, Dept. of Electrical Engineering and Computer Sci-
ence, University of California-Berkeley, Berkeley, CA
(1988).

Harrison, M.A. and MunsorL E. V., “On integrated bibliogra-
phy processing: Electronic Publishing 2(4) pp. 193-210 (De-
cember 1989).

Harrison, M.A. and Munson, E.V., “Numbering document
components: Electronic Publishing 4(l)(January 1991).

Brooks, K.P., “A two-view document edkor with user-
definable document structure: Technical Report 33, DEC
Systems Research Center, Palo Alto, CA (November 1988).

VZS’I design tools

ousterhou~ J.K., Hamachi, G.T., Ma o, R.N., Scot~ W.S.,
and Taylor, G. S., 1“Magic: A VLS layout system; pp.
152-159 in Proceedings of the Twenty-First Design Automa-
twn Conference, IEEE Computer Society, Washington, DC
(1984).

Taylor, G.S. and ousterhou~ J.K., “Magic’s incremental
design-rule checker,” pp. 160-165 in Proceedings of the
Twenty-First Design Automation Conference, IEEE Computer
Society, Washington DC (1984).

Scott, W.S. and Gusterhou~ J.K., “Plowing: Interactive
stretching and compaction in Magic,” pp. 166-172 in
Proceedings of the Twenty-First Design Automation Cor@er-
ence, IEEE Computer Society, Washington, DC (1984).

6.

Ousterhout, J.K., “Comer stitching: A data-structuring tech-
nique for VLSI layout tools,” IEEE Tratwactwns on
~;8~uter-Aided Design CAD-3(1) pp. 87-100 (January

Implementation Frmneworks

Graph annotation cara specifiationparadigm

Bncklin, D. and Frsrtkston, B., VisiCalc Computer Software
Program for the Apple II and II Plus, Personal Software, Inc.,
Sunnyvale, CA (1979).

Alpem, B., Carle, A., RoseL B., Sweeney, P., and Zadeck,
K., “Graph attribution as a spedication paradigm;’ Proceed-
ings of the ACM SIGSOFTISIGPLAN So&are Engineering
Symposium on Practical Software Development Environ-
ments, (Bostom MA, November 28-30, 1988), ACM SIG-
PLANNotices 24(2) pp. 121-129 (February 1989).

Incremental constraint solvers

Borning, A. H., ‘ThingLab-A constraint-oriented simulation
laboratory,” Ph.D. dissertation, Comp. Sci. Dept., Stanford
UniversiV, snd Tech. Rep. SSL-79-3, Xerox Palo Alto
Research Center, Palo Alto, CA (July 1979).

Konopasek, M. and Jayaramsn, S., The TK!Solver Book,
Osborne/McGraw-Hill, Berkeley, CA (1984).

Systems for generating language-sensitive editors

Reps, T. and Teitdbaum, T., The Synthesizer Generator: A
System for Constructing Lunguage-Based Editors, Springer-
Verlag, New York, NY (1988).

Reps, T. and Teitelbaum, T., The Synthesizer Generator
Reference Manual: Third Edition, Springer-Verlag, New
York, NY (1988),

Borras, P., CIErnen~ D., Despeyroux, T., Jncerpi, J., Kahn, G,,
Lang, B., and Pascual, V., “CENTAUR: The system,”
Proceedings of the ACM SIGSOFTISIGPLAN So@are En-
gineering Symposium on Practical So#ware Development En-
vironments, (Boston, ~ November 28-30, 1988), ACM
SIGPLANNotices 24(2) pp. 14-24 (February 1989).

Bahlke, R. and Snelting, G., ‘The PSG system From formal
language definitions to interactive programming environ-
ments,” ACM Trans. Program. Lang. Syst. 8(4) pp. 547-576
(October 1986).

Bsllance, R.A., Graham, S.L., and Van De Vanter, M.L.,
‘The Pan language-based editing system,” ACM Trans.
So~are Engineering and Methodology l(l) pp. 95-127
(January 1992).

KlinL P. (cd.), “The ASF+SDF Mets-environment user’s
guide,” Draft, Computer Science/Depsrtrnent of Software
Technology, Center for Mathematics and Computer Science
(CWI), Amsterdam, The Netherlands (1992).

Compilation techniques for very high-level imperative languages

Paige, R. and Koenig, S., “Finite differencing of computable
expressions,” ACM Tram. Program. Lung. Syst. 4(3) pp.
402-454 (July 1982).

509

Paige, R., “Transformational progr snuning-applications to
algorithms and systems,” pp. 73-87 in Conference Record of
the Tenth ACM Symposium on Principles of Progrwnming
Lunguages, (Aus@ TX, Jan. 24-26, 1983), ACM, New
York, NY (1983).

Goldberg, A. and Paige, R., “Stream processing,” in Confer-
ence Record of the 1984 ACM Symposium on Lisp and Func-
twrud Progr~”ng, (Austim TX, August 6-8, 1984), ACM,
New York NY (1984).

Paige, R., “Programming with invariants,” IEEE So~are
3(1) pp. 56-69 (January 1986).

Cai, J. and Paige, R., “Binding performance at language
design timep pp. 85-97 in Conference Record of the Four-
teenth ACM Synposium on Principles of Progr~”ng
Languages, (Munick W. Germany, January 1987), ACM,
New York, NY (1987).

Csi, J. and Paige, R., “Program derivation by fixed point com-
putation” Science of Computer Programma”ng 11 pp. 19’7-261
(1988/89).

Csi, J. and Paige, R., “Languages polynomial in the input plus
outpuL” in Proceedings of the Second International Co@er-
ence on Algebraic Methodology and Software Technology
(AMAST), (Iowa City, Iowa, May 22-25, 1991), (1991).

Hoover, R., “Alphonse: Incremental computation as a pro-
amming abstractio~” Proceedings of the ACM SIGP.LAN

~2 Cotierence on Projmunrnirw .Liwwuae Design and Itnole-
mentatwn, (San Franc~co, CAUJune-17-~9, 1992), ACM SIG-
PLAN Notices 27(7) pp. 261-272 (kdy 1992).

7. Other Problems Related to Incremental Computation

Sensitivity analysis

Ber~ekas, D.P., Linear Network Optimization: Algorithms
and Codes, The M.I.T. Press, Cambridge, MA (1991).

Parametric problems

Gallo, G., Grigoriadis, M.D., and Tsrjan, R.E., “A fast
parametric maximum flow algorithm snd applications,” S1’
J. Computing 18(1) pp. 30-55 (February 1989).

Continuous execution

Henderson, P. and Weiser, M., “Continuous execution The
Visiprog environmen~” in Proceedings of the Eighth IEEE
International Conference on So@are Engineering, IEEE,
Computer Society, Washington, DC (1985).

510

