A Categorized Bibliography on Incremental Computation

G. Ramalingam and Thomas Reps
University of Wisconsin

1. Introduction

In many kinds of computational contexts, modifications of the
input data are to be processed at once so as to have immediate
effect on the output. Because small changes in the input to a com-
putation often cause only small changes in the output, the chal-
lenge is to compute the new output incrementally by updating
parts of the old output, rather than by recomputing the entire out-
put from scratch (as a “batch computation”). Put another way, the
goal is to make use of the solution to one problem instance to find
the solution to a “nearby” problem instance.

The abstract problem of incremental computation can be
phrased as follows: The goal is to compute a function f on the
user’s “input” data x—where x is often some data structure, such
as a tree, graph, or matrix—and to keep the output f (x) updated
as the input undergoes changes. An incremental algorithm for
computing f takes as input the “batch input” x, the “batch output”
f (x), possibly some auxiliary information, and the change in the
“batch input” Ax. The algorithm computes the new “batch out-
put” f (x + Ax), where x + Ax denotes the modified input, and
updates the auxiliary information as necessary.

From the standpoint of the programming-languages commun-
ity, interest in incremental computation stems from the following
four research topics:

e The creation of languages with facilities that support incre-
mental computation (for the purpose of providing language
support for interactive systems, in which input undergoes
modifications).

e Incremental computation as a paradigm for program optimiza-
tion, particularly loop optimization in very-high-level
languages.

e The development of incremental language-processing algo-
rithms (for use in interactive programming tools).

¢ The creation of compilers and programming tools that imple-
ment the above ideas.

In addition to the work that has gone on in these areas of direct
interest, there is a considerable body of related work on incremen-
tal computation that, although less well known in the
programming-languages community, may have much to offer:

e Several different criteria have been developed for comparing
the performance of different algorithms for an incremental-
computation problem.

e There have been a few advances made towards establishing
general principles of incremental computing (e.g., the work
on dynamization of static problems).

e There are results on a large number of individual
incremental-computation problems; these may provide an
opportunity for extracting new general principles or for gen-
erating new ideas through which language support for incre-
mental computation might be provided.

This work was supported in part by a David and Lucile Packard Fellow-
ship for Science and Engineering, by the National Science Foundation
under grant CCR-9100424, and by the Defense Advanced Research Pro-
Jects Agency under ARPA Order No. 8856 (monitored by the Office of
Naval Research under contract N00014-92-J-1937).

Authors® address: Computer Sciences Department, University of
Wisconsin—Madison, 1210 W. Dayton St., Madison, WI 53706.

E-mail: {ramali, reps }@cs.wisc.edu

This document provides a guide to some of the literature that
has appeared on incremental computing; however, it is by no
means a complete list of papers in the area, even for the topics
with which we are the most familiar. .

The seven points listed above could have served as the organi-
zational principle for this bibliography; however, we chose to fol-
low a different approach to classifying the existing work on incre-
mental computation, attempting to survey the field of incremental
computation per se, rather than just the narrower topic of
incremental-computation research in the programming-languages
community. In so doing, the goal was to expose ties between the
ideas on incremental computation that developed out of research
on programming languages and programming tools, and ideas that
have been developed by researchers in other areas.

2. Assessment of Incremental Algorithms

2.1. Computational Complexity of Incremental Computation

One of the first problems that one must come to grips with when
dealing with algorithms for incremental-computation problems is
that the criteria commonly used to assess the performance of algo-
rithms for batch-computation problems can be unsatisfactory. In
particular, a common way to evaluate the time complexity of a
batch algorithm is to use asymptotic analysis and to express the
cost of the computation as a function of the size of the input; how-
ever, for incremental-computation problems, this kind of analysis
can have several drawbacks:

e It may fail to distinguish between two different incremental
algorithms for a problem, one of which is clearly superior to
the other. (In many cases, it even fails to distinguish between
an incremental algorithm and the batch start-over algorithm.)

s For some incremental-computation problems, it can lead to
the (erroneous) conclusion that the batch start-over algorithm
is optimal.

Some other analysis criteria that can be of utility for
incremental-computation problems are given below.

Direct comparison with the batch start-over algorithm

Yellin, D. and Strom, R., “INC: A language for incremental
computations,” ACM Trans. Program. Lang. Syst. 13(2) pp.
211-236 (April 1991).

Amortized-cost analysis

With amortized-cost analysis, the performance of an algorithm is
averaged over a worst-case sequence of operations. This some-
times leads to an overall time bound that is much smaller than the
worst-case time per operation multiplied by the number of opera-
tions.

Sleator, D.D. and Tarjan, R.E., “A data structure for dynamic
trees,” Journal of Computer and System Sciences 26 pp.
362-391 (1983).

Tarjan, R.E., “Amortized computational complexity,” STAM J.
Algebraic Discrete Methods 6(2) pp. 306-318 (April 1985).

502



Competitiveness

Another approach that measures the performance of algorithms
over a sequence of operations is the analysis of algorithms’ com-
petitiveness. Given an on-line problem (i.e., there is a sequence of
requests and actions that must be performed on-line in response to
requests, where each action has an associated cost), assume that
there is an adversary with “maximally destructive intent” generat-
ing the requests. The notion of competitiveness assesses the
amount of damage that the adversary can inflict, in the sense of
comparing the performance of an on-line algorithm to the perfor-
mance of an optimal off-line algorithm. The competitive ratio is
the maximum value—over any sequence of requests—of the ratio
between the cost of the on-line algorithm and the cost of an
optimal off-line algorithm. Thus, an algorithm designer seeks a
competitive ratio as small as possible (where the smallest possible
ratio is 1).

What has sparked particular interest in this model for analyzing
on-line algorithms is that it is possible to use randomness to “inhi-
bit” the power of the adversary. That is, for some problems it is
possible to find random on-line algorithms that have a smaller
competitive ratio than the best deterministic on-line algorithm.

Sleator, D.D. and Tarjan, R.E., “Amortized efficiency of list
ate and paging rules,” Commun. of the ACM 28(2) pp.
202-208 (February 1985).

McGeoch, L.A. and Sleator, D.D. (eds.), On-Line Algorithms,
American Mathematical Society, Providence, RI (1992).

Karp, R.M,, “On-line algorithms versus off-line algorithms:
How much is it worth to know the future?,” pp. 416-429 in In-
formation Processing 92: Proceedings of the IFIP Twelfth
World Computer Congress, ed. J. van Leeuwen,North-
Holland, Amsterdam (September 1992).

Probabilistic analysis

Louchard, G., Randrianarimanana, B., and Schott, R.,
“DPynamic algorithms in D.E. Knuth’s model: A probabilistic
analysis,” Theoretical Computer Science 93 pp. 201-225
(1992).

Incremental relative lower bounds

Berman, A.M.,, Paull, M.C., and Ryder, B.G., “Proving rela-
tive lower bounds for incremental algorithms,” Acta Informa-
tica 27 pp. 665-683 (1990).

Reductions between problems

Reif, J.H., “A topological approach to dynamic graph connec-
tivity,” Information Processing Letters 25(1)pp. 65-70
(1987).

Boundedness

Because an incremental algorithm makes use of the solution to
one problem instance to find the solution to a “nearby” problem
instance, another alternative to expressing the cost as a function of
the size of the input is to measure the time complexity of an incre-
mental algorithm in terms of the sum of the sizes of the changes
in the input and output. An incremental algorithm is said to be
bounded if, for all input data-sets and for all changes that can be
applied to an input data-set, the time it takes to update the output
solution depends only on the size of the change m the input and
output, and not on the size of the entire current input. Otherwise,
an incremental algorithm is said to be unbounded. A problem is
said to be bounded (unbounded) if it has (does not have) a
bounded incremental algorithm.

Reps, T., Teitelbaum, T. and Demers, A., “Incremental
context-dependent analysis for language-based editors,” ACM
Trans. Program. Lang. Syst. 5(3) pp. 449-477 (July 1983).

Alpem, B., Hoover, R., Rosen, BK., Sweeney, P.F., and Za-
deck, FK., “Incremental evaluation of computational cir-
cuits,” pp. 32-42 in Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, (San Francisco,
CA, Jan. 22-24, 1990), Society for Industrial and Applied
Mathematics, Philadelphia, PA (1990).

Ramalingam, G. and Reps, T., “On the computational com-
plexity of incremental algorithms,” TR-1033, Computer Sci-
ences Department, University of Wisconsin, Madison, WI
(August 1991).

Ramalingam, G. and Reps, T., “An incremental algorithm for
a generalization of the shortest-path problem,” TR-1087,
Computer Sciences Department, {‘Jlniversity of Wisconsin,
Madison, WI (May 1992).

Ramalingam, G. and Reps, T., “On the complexity of incre-
mental computation,” Unpublished report, Computer Sci-
ences Department, University of Wisconsin, Madison, WI
(October 1992).

2.2. Measurements of Actual Performance

There have been relatively few papers in which the performance
of an incremental algorithm has been evaluated from an experi-
mental standpoint. The little work that does exist actually sug-
gests that from a practical standpoint incremental algorithms that
do not have “good” theoretical performance (according to the cri-
teria listed above) can give satisfactory performance in real sys-
tems.

Dionne, R., “Etude et extension d’un algorithme de Murch-
land,” INFOR 16(2) pp. 132-146 (June 1978).

Taylor, G.S. and Ousterhout, J.K., “Magic’s incremental
design-rule checker,” pp. 160-165 in Proceedings of the
Twenty-First Design Automation Conference, IEEE Computer
Society, Washington, DC (1984).

Scott, W.S. and Ousterhout, JK., “Plowing: Interactive
stretching and compaction in Magic,” pp. 166-172 in
Proceedings of the Twenty-First Design Automation Confer-
ence, IEEE Computer Society, Washington, DC (1984).

Hoover, R., “Incremental graph evaluation,” Ph.D. disserta-
tion and Tech. Rep. 87-836, Dept. of Computer Science, Cor-
nell University, Ithaca, NY (May 1987).

Ryder, B.G., Landi, W., and Pande, H.D., “Profiling an incre-
mental data flow analysis algorithm,” IEEE Transactions on
Software Engineering SE-16(2)(February 1990).

Zaring, A., “Paralle] evaluation in attribute grammar based
systems,” Ph.D. dissertation and Tech. Rep. 90-1149, Dept.
of Computer Science, Cornell University, Ithaca, NY (Au-
gust 1990).

Harrison, M.A. and Munson, E.V., “Numbering document
components,” Electronic Publishing 4(1)(January 1991).

503



3. Data-Structure Update Problems

3.1. Incremental Updating of Annotations on Graphs and
Trees

One class of incremental-computation problems involves comput-
ing a function f(x), where x is some data structure (“the sub-
strate”), such as a tree, graph, or matrix, and f (x) represents some
annotation of the x data structure—a mapping from more primi-
tive elements that make up x to some space of values (for exam-
ple, a mapping from spreadsheet cells to values). Each annotation
value is a function of other annotation values, often those of
neighboring elements in the substrate data structure. The
incremental-computation problem is to keep the annotation values
updated as the substrate data structure undergoes some changes.

3.1.1. Selective Recomputation

In selective recomputation, annotation values that are independent
of changed data are never recomputed. Annotation values that are
dependent on changed data are recomputed, but after each new
annotation value is obtained, the old and new annotation values
may be compared in order to help determine what further recom-
putations must be performed.

Incremental updating of attributed derivation trees

Demers, A., Reps, T., and Teitelbaum, T., “Incremental
evaluation for attribute grammars with application to syntax-
directed editors,” pp. 105-116 in Conference Record of the
Eighth ACM Symposium on Principles of Programming
Languages, (Williamsburg, VA, Jan. 26-28, 1981), ACM,
New York, NY (1981).

Reps, T., “Optimal-time incremental semantic analysis for
syntax-directed editors,” pp. 169-176 in Conference Record of
the Ninth ACM Symposium on Principles of Programming
Languages, (Albuquerque, NM, January 25-27, 1982), ACM,
New York, NY (1982).

Reps, T., Teitelbaum, T. and Demers, A., “Incremental
context-dependent analysis for language-based editors,” ACM
Trans. Program. Lang. Syst. 5(3) pp. 449477 (July 1983).

Reps, T., Generating Language-Based Environments, The
M.LT. Press, Cambridge, MA (1984).

Yeh, D., “On incremental evaluation of ordered attributed
grammars,” BIT 23 pp. 308-320 (1983).

Jones, L. and Simon, J., “Hierarchical VLSI design systems
based on attribute grammars,” pp. 58-69 in Conference
Record of the Thirteenth ACM Symposium on Principles of
Programming Languages, (St. Petersburg, FL, Jan. 13-15,

1986), ACM, New York, NY (1986).

Reps, T., Marceau, C., and Teitelbaum, T., “Remote attribute
updating for language-based editors,” pp. 1-13 in Conference
Record of the Thirteenth ACM Symposium on Principles of
Programming Languages, (St. Petersburg, FL, Jan. 13-15,
1986), ACM, New York, NY (1986).

Kaplan, S. and Kaiser, G., “Incremental attribute evaluation in
distributed language-based editors,” pp. 121-130 in Proceed-
ings of the Fifth ACM Symposium on Principles of Distributed
Computing, (1986).

504

Hoover, R. and Teitelbaum, T., “Efficient incremental evalua-
tion of aggregate values in attribute grammars,” Proceedings
of the SIGPLAN 86 Symposium on Compiler Construction,
(Palo Alto, CA, June 25-27, 1986), ACM SIGPLAN Notices
21(7) pp. 39-50 (July 1986).

Hoover, R., “Incremental graph evaluation,” Ph.D. disserta-
tion and Tech. Rep. 87-836, Dept. of Computer Science, Cor-
nell University, Ithaca, NY (May 1987).

Parigot, D., “Transformations, évaluation incrémentale et op-
timizations des grammaires attribuées: Le systéme FNC-2,”
These de Doctorat, L’Université Paris XI, Centre D’Orsay,
Orsay, France (1988).

Kaiser, G.E., “Incremental dynamic semantics for language-
based programming environments,” ACM Trans. Program.
Lang. Syst. 11(2) pp. 169-193 (April 1989).

Teitelbaum, T. and Chapman, R., “Higher-order attribute
grammars and editing environments,” Proceedings of the
ACM SIGPLAN 90 Conference on Programming Language
Design and Implementation, (White Plains, NY, June 20-22,
1%0), ACM SIGPLAN Notices 25(6) pp. 197-208 (June
1990).

Zaring, A., “Parallel evaluation in attribute grammar based
systems,” Ph.D. dissertation and Tech. Rep. 90-1149, Dept.
of Computer Science, Comell University, Ithaca, NY (Au-
gust 1990).

The incremental circuit-annotation problem

Pardo, R.K. and Landau, R., “Process and apparatus for con-
verting a source program into an object program,” U.S. Patent
No. 4,398,249, United States Patent Office, Washington, DC
(August 9, 1983).

Alpem, B., Hoover, R., Rosen, B.K., Sweeney, P.F., and Za-
deck, F.X., “Incremental evaluation of computational cir-
cuits,” pp. 32-42 in Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, (San Francisco,
CA, Jan. 22-24, 1990), Society for Industrial and Applied
Mathematics, Philadelphia, PA (1990).

Ramalingam, G. and Reps, T., “On the computational com-
plexity of incremental algorithms,” TR-1033, Computer Sci-
ences Department, University of Wisconsin, Madison, WI
(August 1991).

Ramalingam, G. and Reps, T., “On the complexity of incre-
mental computation,” Unpublished report, Computer Sci-
ences Department, University of Wisconsin, Madison, WI
{October 1992).

Incremental data-flow analysis

Rosen, B.K., “Linear cost is sometimes quadratic,” pp.
117-124 in Cory”erence Record of the Eighth ACM Symposium
on Principles of Programming Languages, (Williamsburg,
VA, January 26-28, 1981), ACM, New York, NY (1981).

Ryder, B., “Incremental data flow analysis based on a unified
model of elimination algorithms,” Ph.D. dissertation and
Tech. Rep. DCS-TR-117, Rutgers University, New
Brunswick, NJ (September 1982).



Ghodssi, V., “Incremental analysis of programs,” Ph.D.
dissertation, Dept. of Computer Science, University of Cen-
tral Florida, Orlando, FL (1983).

Zadeck, F K., “Incremental data flow analysis in a structured
program editor,” Ph.D. dissertation, Mathematical Sciences
Dept., Rice University, Houston, TX (October 1983).

Zadeck, F.K., “Incremental data flow analysis in a structured
program editor,” Proceedings of the SIGPLAN 84 Symposium
on Compiler Construction, (Montreal, Can., June 20-22,
1984), ACM SIGPLAN Notices 19(6)pp. 132-143 (June
1984).

Cooper, K.D. and Kennedy, K., “The impact of interprocedur-
al analysis and optimization in the R® programming environ-
ment,” ACM Trans. Program. Lang. Syst. 8(4) pp. 491-523
(October 1986).

Burke, M., “An interval-based approach to exhaustive and in-
cremental interprocedural data flow analysis,” Res. Rep. RC
12702, IBM T.J. Watson Research Center, Yorktown
Heights, NY (April 1987).

Burke, M. and Ryder, B., “Incremental iterative data flow
analysis algorithms,” Res. Rep. RC 13170, IBM T.J. Watson
Research Center, Yorktown Heights, NY (October 1987).

Carroll, M. and Ryder, B., “Incremental data flow update via
attribute and dominator updates,” pp. 274-284 in Conference
Record of the Fifteenth ACM Symposium on Principles of
Programming Languages, (San Diego, CA, January 13-15,
1988), ACM, New York, NY (1988).

Ryder, B.G. and Paull, M.C., “Incremental data flow analysis
algorithms,” ACM Trans. Program. Lang. Syst. 10(1) pp.
1-50 (January 1988).

Marlowe, T.J., “Data flow analysis and incremental iteration,”
Ph.D. dissertation and Tech. Rep. DCS-TR-255, Rutgers
University, New Brunswick, NJ (October 1989).

Marlowe, T.J. and Ryder, B.G., “An efficient hybrid algo-
rithm for incremental data flow analysis,” pp. 184-196 in
Conference Record of the Seventeenth ACM Symposium on
Principles of Programming Languages, (San Francisco, CA,
Jan. 17-19, 1990), ACM, Igew York, NY (1990).

Rosene, C.M,, “Incremental dependence analysis,” Ph.D.
dissertation and Tech Rep. CRPC-TR90044, Center for
Research on Parallel Computation, Rice University, Houston,
TX (March 1990).

Ramalingam, G. and Reps, T., “On the computational com-
plexity of incremental algorithms,” TR-1033, Computer Sci-
ences Department, University of Wisconsin, Madison, WI
(August 1991).

Maintaining shortest distances and other path problems in
graphs

Murchland, J.D., “The effect of increasing or decreasing the
length of a single arc on all shortest distances in a graph,”
Tech. Rep. LBS-TNT-26, London Business School, Tran-
sport Network Theory Unit, London, UK (1967).

505

Loubal, P, “A network evaluation procedure,” Highway
Research Record 205 pp. 96-109 (1967).

Rodionov, V., “The parametric problem of shortest dis-
tances,” USS.R. Computational math. and math. Phys.
8(5) pp. 336-343 (1968).

Halder, A K., “The method of competing links,” Transporta-
tion Science 4 pp. 36-51 (1970).

Dionne, R., “Etude et extension d’un al%orithme de Murch-
land,” INFOR 16(2) pp. 132-146 (June 1978).

Cheston, G.A., “Incremental algorithms in graph theory,”
Ph.D. dissertation and Tech. Rep. 91, Dept. of Computer Sci-
ence, University of Toronto, Toronto, Canada (March 1976).

Goto, S. and Sangiovanni-Vincentelli, A., “A new shortest
path updating algorithm,” Networks 8(4) pp. 341-372 (1978).

Rohnert, H., “A dynamization of the all pairs least cost path
problem,” pp. 279-286 in Proceedings of] STACS 85: Second
Annual Symposium on Theoretical Aspects of Computer Sci-
ence, (Saarbruecken, W. Ger., Jan. 3-5, 1985), Lecture Notes
in Computer Science, Vol. 182, ed. K. Mehthom,Springer-
Verlag, New York, NY (1985).

Even, S. and Gazit, H., “Updating distances in dynamic
graphs,” Methods of Operations Research 49 pp. 371-387
(1985).

Lin, C.-C. and Chang, R.-C., “On the dynamic shortest path
problem,” Journal of Information Processing 13(4)(1990).

Ausiello, G., Italiano, G.F., Spaccamela, A.M., and Nanni, U.,
“Incremental algorithms for minimal length paths,” Journal of
Algorithms 12 pp. 615-638 (1991).

Ramalingam, G. and Reps, T., “On the computational com-
plexity of incremental algorithms,” TR-1033, Computer Sci-
ences Department, University of Wisconsin, Madison, WI
(August 1991).

Ramalingam, G. and Reps, T., “An incremental algorithm for
a generalization of the shortest-path problem,” TR-1087,
Computer Sciences Department, University of Wisconsin,
Madison, W1 (May 1992).

3.1.2. Differential Updating

In differential updating, rather than recomputing an annotation
value 2z’ =g (y’) in terms of its new argument y’, the old annota-
tion value z = g (y) is updated by some difference Az computed as
a function of y, y’, g, and z.

Koenig, S. and Paige, R., “A transformational framework for
the automatic control of derived data,” pp. 306-318 in
Proceedings of the Seventh International Conference on Very
Large Data Bases, (Cannes, France, September 1981),
(1981).

Shmueli, O. and Itai, A., “Maintenance of views,” pp.
240-255 in Proceedings of the ACM SIGMOD 84 Conference,
(Boston, MA, 1984), ACM, New York, NY (1984).



Horwitz, S., “Generating language-based editors: A
relationally-attributed approach,” Ph.D. dissertation, Dept. of
Computer Science, Comell University, Ithaca, NY (August
1985).

Horwitz, S. and Teitelbaum, T., “Generating editing environ-
ments based on relations and attributes,” ACM Trans. Pro-
gram. Lang. Syst. 8(4) pp. 577-608 (October 1986).

Yellin, D. and Strom, R., “INC: A language for incremental
computations,” ACM Trans. Program. Lang. Syst. 13(2) pp.
211-236 (April 1991).

La Poutré, J.A. and van Leeuwen, J., “Maintenance of transi-
tive closures and transitive reductions of graphs,” pp. 106-120
in Graph-Theoretic Concepts in Computer Science: Proceed-
ings of the 14th International Workshop (1988), Lecture
Notes in Computer Science, (1988).

Italiano, G.F., “Finding paths and deleting edges in directed
acyclic graphs,” Information Processing Letters 28 pp. 5-11
(1988).

Yellin, D.M., “A dynamic transitive closure algorithm,”
Research Report, IBM T.J. Watson Research Center, York-
town Heights, NY (1988).

3.13. Other Incremental Expression-Evaluation Algorithms

Several of the algorithms for incremental expression-evaluation
problems do not fit in either of the above two categories.

Di Battista, G. and Tamassia, R., “Incremental planarity test-
ing,” pp. 436-441 in Proceedings of the Thirtieth IEEE Sym-

Pugh, W.W., “Incremental computation and the incremental
evaluation of functional programs,” Ph.D. dissertation and
Tech. Rep. 88-936, Dept. of Computer Science, Comell
University, Ithaca, NY (August 1988).

Pugh, W. and Teitelbaum, T., “Incremental computation via
function caching,” pp. 315-328 in Conference Record of the
Sixteenth ACM Symposium on Principles of Programming
Languages, (Austin, TX, Jan. 11-13, 1989), ACM, New
York, NY (1989).

Field, J. and Teitelbaum, T., “Incremental reduction in the
lambda calculus,” in Conference Record of the 1990 ACM
Symposium on Lisp and Functional Programming, (Nice,
France, June 1990), ACM, New York, NY (1990).

Field, J., “Incremental reduction in the lambda calculus and
related reduction systems,” Ph.D. dissertation, Dept. of Com-
puter Science, Cornell University, Ithaca, NY (May 1991).

Cohen, R.F. and Tamassia, R., “Dynamic expression trees and
their applications,” pp. 52-61 in Proceedings of the Second
Annual ACM-SIAM Symposium on Discrete Algorithms, (San
Francisco, CA, Jan. 28-30, 1991), Society for Industrial and
Applied Mathematics, Philadelphia, PA (1991).

3.2. Other Dynamic Graph Problems

Cheston, G.A., “Incremental algorithms in graph theory,”
Ph.D. dissertation and Tech. Rep. 91, Dept. of Computer Sci-
ence, University of Toronto, Toronto, Canada (March 1976).

Even, S. and Shiloach, Y., “An on-line edge-deletion prob-
lem,” J. ACM 28(1) pp. 1-4 (January 1981).

Frederickson, G., “Data structures for on-line updating of
minimum spanning trees,” SIAM J. Computing 14 pp.
781-798 (1985).

Italiano, G.F., “Amortized efficiency of a path retrieval data
structure,” Theoretical Computer Science 48 pp. 273-281
(1986).

Reif, J.H., “A topological approach to dynamic graph connec-
tivity,” Information Processing Letters 25(1)pp. 65-70
(1987).

506

posium on Foundations of Computer Science, IEEE Computer
Society, Washington, DC (1989).

Buchsbaum, A.L., Kanellakis, P.C., and Vitter, I.S., “A data
structure for arc insertion and regular path finding,” pp. 22-31
in Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, (San Francisco, CA, Jan. 22-24, 1990),
Society for Industrial and Applied Mathematics, Philadel-
phia, PA (1990).

Yannakakis, M., “Graph-theoretic methods in database
theory,” pp. 230-242 in Proceedings of the Symposium on
Principles of Database Systems, (1990).

Frederickson, G., “Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees,” pp. 632-641
in Proceedings of the Thirty-Second IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society,
Washington, DC (1991).

Galil, Z. and Italiano, G.F., “Fully dynamic algorithms for
edge-connectivity problems,” pp. 317-327 in Proceedings of
the Twenty-Third Annual ACM Symposium on Theory of
Computing, ACM, New York, NY (1991).

Kanevsky, A., Tamassia, R., Di Battista, G., and Chen, J.,
“On-line maintenance of the four-connected components of a
graph,” pp. 793-801 in Proceedings of the Thirty-Second
IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Washington, DC (1991).

La Poutré, J.A., “Maintenance of triconnected components of
graphs,” pp. 354-365 in Proceedings of the Nineteenth Inter-
national Collquium on Automata, Languages, and Program-
ming, (1992).

Eppstein, D., Galil, Z., Italiano, G.F., and Nissenzweig, A.,
“Sparsification — A technique for speeding up dynamic graph
algorithms,” in Proceedings of the Thirty-third IEEE Sympo-
sium on Foundations of Computer Science, (Pittsburgh, PA,
8(39 22)5-27, 1992), IEEE Computer Society, Washington, DC

3.3. Dynamization of Static Data-Structure Problems

Dynamization of multi-dimensional searching problems

Bentley, J.L., “Decomposable searching problems,” Informa-
tion Processing Letters 8 pp. 244-251 (1979).



Bentley, J.L. and Saxe, J.B., “Decomposable searching prob-
lems I: Static-to-dynamic transformations,” Journal of Algo-
rithms 1 pp. 301-358 (1980).

Overmars, M.H., The Design of Dynamic Data Structures,
Lecture Notes in Computer Science, Vol. 156, Springer-
Verlag, New York, NY (1983).

Mehlhorn, K., Data Structures and Algorithms 3: Multi-
Dimensional Searching and Computational Geomeiry,
Springer-Verlag, Berlin (1984).

Dynamization of graph problems

Eppstein, D., Galil, Z., Italiano, G.F., and Nissenzweig, A.,
“Sparsification — A technique for speeding up dynamic graph
algorithms,” in Proceedings of the Thirty-third IEEE Sympo-
sium on Foundations of Computer Science, (Pittsburgh, PA,
Oc9t9 225-27, 1992), IEEE Computer Society, Washington, DC
(1992).

3.4. Finite Differencing

Earley, J., “High-level operations in automatic programming,”
Proceedings of the ACM SIGPLAN Symposium on Very High
Level Languages, (March 1974), ACM SIGPLAN Notices
9(4)(April 1974).

Earley, J., “High-level iterators and a method for automatical-
ly designing data structure representation,” J. Computer
Languages 1(4) pp. 321-342 (1976).

Fong, A. and Ullman, J., “Induction variables in very high
level languages,” pp. 104-112 in Conference Record of the
Third ACM Symposium on Principles of Programming
Languages, (Atlanta, GA, Jan. 19-21, 1976), ACM, New
York, NY (1976).

Fong, A., “Elimination of common subexpressions in very
high level languages,” pp. 48-57 in Conference Record of the
Fourth ACM Symposium on Principles of Programming
Languages, (Los Angeles, CA, January 17-19, 1977), ACM,
New York, NY (1977).

Fong, A., “Inductively computable constructs in very high
level languages,” pp. 21-28 in Conference Record of the Sixth
ACM Symposium on Principles of Programming Languages,
(S;x;gAntonio, TX, Jan. 29-31, 1979), ACM, New York, NY
(1979).

Paige, R. and Koenig, S., “Finite differencing of computable
expressions,” ACM Trans. Program. Lang. Syst. 4(3) pp.
402-454 (July 1982).

Goldberg, A. and Paige, R., “Stream processing,” in Confer-
ence Record of the 1984 ACM Symposium on Lisp and Func-
tional Programming, (Austin, TX, August 6-8, 1984), ACM,
New York, NY (1984).

Paige, R., “Programming with invariants,” IEEE Software
3(1) pp. 56-69 (January 1986).

4. Incremental Formal Systems

4.1. Incremental Reduction

Incremental functional programming

Lombardi, L.A. and Raphael, B., “Lisp as the language for an
incremental computer,” pp. 204-219 in The Programming
Language Lisp: Its Operation and Applications, ed. E.C.
Berkeley and D.G. Bobrow,The M.I.'lfi Press, Cambridge,
MA (1964).

Lombardi, L.A., “Incremental computation,” pp. 247-333 in
Advances in Computers, Vol. 8, ed. FL. Alt and M.
Rubinoff,Academic Press (1967).

Sundaresh, R.S. and Hudak, P., “Incremental computation via
partial evaluation,” in Conference Record of the Eighteenth
ACM Symposium on Principles of Programming Languages,
(Orlando, FL, January 1991), ACM, New York, NY (1991).

Sundaresh, R.S., “Building incremental programs using par-
tial evaluation,” Proceedings of the SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipula-
tion (PEPM 91), (New Haven, CT, June 17-19, 1991), ACM
SIGPLAN Notices 26(9) pp- 83-93 (September 1991).

Sundaresh, R.S., “Incremental computation via parial evalua-
tion,” Ph.D. dissertation and Res. Rep. YALEU/DCS/RR-889,
Dept. of Computer Science, Yale University, New Haven,
CT (December 1991).

Field, J. and Teitelbaum, T., “Incremental reduction in the
lambda calculus,” in Conference Record of the 1990 ACM
Symposium on Lisp and Functional Programming, (Nice,
France, June 1990), ACM, New York, NY (1990).

Field, J., “Incremental reduction in the lambda calculus and
related reduction systems,” Ph.D. dissertation, Dept. of Com-
puter Science, Comell University, Ithaca, NY (May 1991).

Incremental parsing

507

Ghezzi, C. and Mandrioli, D., “Incremental parsing,” ACM
Trans. Program. Lang. Syst. 1(1) pp. 58-70 (July 1979).

Ghezzi, C. and Mandrioli, D., “Augmenting parsers to support
incrementality,” Journal of the ACM 27(3) pp. 564-579 (Oc-
tober 1980).

Wegman, M., “Parsing for structural editors,” pp. 320-327 in
Proceedings of the Twenty-First IEEE Symposium on Foun-
dations of Computer Science (Syracuse, , October 1980),
IEEE Computer Society, Washington, DC (1980).

Jalili, F. and Gallier, J.,, “Building friendly parsers,” pp.
196-206 in Conference Record of the Ninth ACM Symposium
on Principles of Programming Languages, (Albuquerque,
NM, Jan. 25-27, 1982), ACM, New York, NY (1982).

Kaiser, G.E. and Kant, E., “Incremental parsing without a
parser,” Journal of Systems and Software 5(2) pp. 121-144
(May 1985).



Algebraic laws of functional algebra

MacLennan, B.J.,, “Preliminary investigation of a calculus of
functional differences: Fixed differences,” Report NPS52-86-
010, Computer Science Department, Naval Postgraduate
School, Monterey, CA (February 1986).

MacLennan, B.J., “An algebraic approach to a calculus of
functional differences: Fixed differences and integrals,” Re-
port NPS52-87-041, Computer Science Department, Naval
Postgraduate School, Monterey, CA (September 1987).

MacLennan, B.J., “A calculus of functional differences and
integrals,” Unpublished Draft, Department of Computer Sci-
ence, University of Tennessee, Knoxville, TN ().

4.2. Truth Maintenance

Doyle, J., “A truth maintenance system,” Artificial Intelli-
gence 12 pp. 231-272 (1979).

Doyle, J., “A glimpse of truth maintenance,” in Artificial In-
telligence: An MIT. Perspective, ed. P.H. Winston and R.H.
Brown,The M.I.T. Press, Cambridge, MA (1979).

Perlis, D., “Bibliography of literature on non-monotonic rea-
soning,” (Source unknown), (1984).

de Kleer, J., “An assumption-based TMS,” Artificial Intelli-
gence 28 pp. 127-162 (1986).

de Kleer, J., “Extending the ATMS,” Artificial Intelligence
28 pp. 163-196 (1986).

de Kieer, ., “Problem solving with the ATMS,” Artificial In-
telligence 28 pp. 197-224 (1986).

McAllester, D., “Truth maintenance,” pp. 92-104 in Proceed-
ings of the Eighth National Conference on Artificial Intelli-
gence, (Boston, MA, July 29 — August 3, 1990), AAAI
Press/The M.LT. Press, Cambridge, MA (1990).

4.3. Incremental Deduction

Shmueli, O., Tsur, S., and Zfira, H., “Rule support in Prolog,”
(Source unknown), (1984).

Mannila, H. and Ukkonen, E., “Time parameter and arbitrary
deunions in the set union problem,” pp. 3442 in Proceedings
of the First Scandinavian Workshop on Algorithm Theory
(SWAT 88), Lecture Notes in Computer Science, Vol. 318,
Springer-Verlag, New York, NY (1988).

Incremental deduction for static-semantic analysis

Snelting, G. and Henhapl, W., “Unification in many-sorted
algebras as a device for incremental semantic analysis,” pp.
229-235 in Conference Record of the Thirteenth ACM Sympo-
sium on Principles of Programming Languages, (St. Peters-
burg, FL, Jan. 13-15, 1986), ACM, New York, NY (1986).

Attali, I, “Compiling TYPOL with attribute grammars,” pp.
252-272 in Proceedings of the International Workshop on
Programming Language Implementation and Logic Program-
ming '88, Lecture Notes in Computer Science, Vol. 348, ed. P.
Deransart, B. Lorho, and J. Maluszynski,Springer-Verlag,
New York, NY (1988).

508

Autali, I. and Franchi-Zannettacci, P., “Unification-free execu-
tion of TYPOL programs by semantic attribute evaluation,”
pp- 160-177 in Proceedings of the Fifth International Confer-
ence and Symposium on Logic Programming, ed. R. Kowalski
and K. Bowen,The M.L.T. Press, Cambridge, MA (1988).

van der Meulen, E.A., “Deriving incremental implementa-
tions from algebraic specifications,” Report CS-R9072, Com-
puter Science/Department of Software Technology, Center for
Mathematics and Computer Science (CWI), Amsterdam, The
Netherlands (December 1990).

Ballance, R.A., “Syntactic and semantic checking in
language-based editing systems,” Ph.D. dissertation and Tech.
Rep. UCB/CSD 89/548, Dept. of Electrical Engineering and
Computer Science, University of California-Berkeley,
Berkeley, CA (December 1989).

Ballance, R.A. and Graham, S.L., “Incremental consistency
maintenance for interactive applications,” in Proceedings of
the Eighth International Conference on Logic Programming,

(1991).

4.4. Incremental Constraint Solving

Vander Zanden, B. T., “Incremental constraint satisfaction
and its application to graphical interfaces,” Ph.D. dissertation
and Tech. Rep. TR 88-941, Dept. of Computer Science, Cor-
nell University, Ithaca, NY (October 1988).

Freeman-Benson, B.N, Maloney, J., and Borning, A., “An in-
cremental constraint solver,” Commun. of the ACM 33(1) pp.
54-63 (January 1990).

5. Other Special-Purpose Algorithms

Incremental compilation and linking

Fritzson, P., “Preliminary experience from the DICE system,
a distributed incremental compiling environment,” Proceed-
ings of the ACM SIGSOFTISIGPLAN Sofiware Engineering
Symposium on Practical Software Development Environ-
ments, (Pittsburgh, PA, Apr. 23-25, 1984), ACM SIGPLAN
Notices 19(5) pp. 113-123 (May 1984).

Fritzson, P., “Towards a distributed programming environ-
ment based on incremental compilation,” Link¢ping Studies
in Science and Technology Dissertation No. 109, Dept. of
Comp. and Inf. Sci, Linkdping University, Linképing,
Sweden (1984).

Schwartz, M., Delisle, N., and Begwani, V., “Incremental
compilation in Magpie,” Proceedings of the SIGPLAN 84
Symposium on Compiler Construction, (Montreal, Can., June
20-22, 1984), ACM SIGPLAN Notices 19(6) pp. 122-131
(June 1984).

Tichy, W.F., “Smart recompilation,” ACM Trans. Program.
Lang. Syst. 8(3) pp. 637-654 (July 1986).

Schwanke, R.W. and Kaiser, G.E., “Technical Correspon-
dence: Smarter recompilation,” ACM Trans. Program. Lang.
Syst. 10(4) pp. 627-632 (October 1988).



Tichy, W.F., “Technical Correspondence: Tichy's response to
R.W. Schwanke and G.E. Kaiser’s “Smarter recompilation”,”
ACM Trans. Program. Lang. Syst. 10(4) pp. 633-634 (Oc-
tober 1988).

Cooper, K.D. and Kennedy, K., “The impact of interprocedur-
al analysis and optimization in the R™ programming environ-
ment,” ACM Trans. Program. Lang. Syst. 8(4) pp. 491-523
(October 1986).

Burke, M. and Torczon, L., “Interprocedural optimization: El-
iminating unnecessary recompilation,” ACM Trans. Program.

Lang. Syst., (). (To appear.)

Document preparation

Chamberlin, D.D., King, J.C., Slutz, D.R,, Todd, S.J.P., and
Wade, B.W., “JANUS: An interactive system for document
composition,” Proceedings of the ACM SIGPLAN/SIGOA
Symposium on Text Manipulation, (Portland, OR, June 8-10,
1981), ACM SIGPLAN Notices 16(6) pp. 82-91 (June 1981).

Chamberlin, D.D., “Document convergence in an interactive
formatting system,” IBM Systems Journal 31(1) pp. 58-72
(January 1987).

Chen, P. and Harrison, M.A., “Multiple representation docu-
rr;ent development,” IEEE Computer 21(1) pp. 15-31 (January
1988).

Chen, P., “A multiple-representation paradigm for document
development,” Ph.D. dissertation and Tech. Rep. UCB/CSD
88/436, Dept. of Electrical Engineering and Computer Sci-
en;g,s University of California—Berkeley, Berkeley, CA
(1988).

Harrison, M.A. and Munson, E.V., “On integrated bibliogra-
phy processing,” Electronic Publishing 2(4) pp. 193-210 (De-
cember 1989).

Harrison, M.A. and Munson, E.V., “Numbering document
components,” Electronic Publishing 4(1)(January 1991).

Brooks, K.P., “A two-view document editor with user-
definable document structure,” Technical Report 33, DEC
Systems Research Center, Palo Alto, CA (November 1988).

VLSI design tools

Ousterhout, J K., Hamachi, G.T., Mayo, R.N., Scott, W.S.,
and Taylor, G.S., “Magic: A VLSI layout system,” pp.
152-159 in Proceedings of the Twenty-First Design Automa-
tion Conference, IEEE Computer Society, Washington, DC
(1984).

Taylor, G.S. and Ousterhout, JK., “Magic’s incremental
design-rule checker,” pp. 160-165 in Proceedings of the
Twenty-First Design Automation Conference, IEEE Computer
Society, Washington, DC (1984).

Scott, W.S. and Ousterhout, JK., “Plowing: Interactive
stretching and compaction in Magic,” pp. 166-172 in
Proceedings of the Twenty-First Design Automation Confer-
ence, IEEE Computer Society, Washington, DC (1984).

509

Ousterhout, J.K., “Corner stitching: A data-structuring tech-
nique for VLSI layout tools,” IEEE Transactions on
Computer-Aided Design CAD-3(1)pp. 87-100 (January
1984).

6. Implementation Frameworks

Graph annotation as a specification paradigm

Bricklin, D. and Frankston, B., VisiCalc Computer Software
Program for the Apple II and II Plus, Personal Software, Inc.,
Sunnyvale, CA (1979).

Alpem, B., Carle, A., Rosen, B., Sweeney, P., and Zadeck,
K., “Graph attribution as a specification paradigm,” Proceed-
ings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Softiware Development Environ-
ments, (Boston, MA, November 28-30, 1988), ACM SIG-
PLAN Notices 24(2) pp. 121-129 (February 1989).

Incremental constraint solvers

Borning, A.H., “ThingLab—A constraint-oriented simulation
laboratory,” Ph.D. dissertation, Comp. Sci. Dept., Stanford
University, and Tech. Rep. SSL-79-3, Xerox Palo Alto
Research Center, Palo Alto, CA (July 1979).

Konopasek, M. and Jayaraman, S., The TK!Solver Book,
Osborne/McGraw-Hill, Berkeley, CA (1984).

Systems for generating language-sensitive editors

Reps, T. and Teitelbaum, T., The Synthesizer Generator: A
System for Constructing Language-Based Editors, Springer-
Verlag, New York, NY (1988).

Reps, T. and Teitelbaum, T., The Synthesizer Generator
Reference Manual: Third Edition, Springer-Verlag, New
York, NY (1988).

Borras, P., Ciément, D., Despeyroux, T., Incerpi, J., Kahn, G.,
Lang, B., and Pascual, V., “CENTAUR: The system,”
Proceedings of the ACM SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software Development En-
vironments, (Boston, MA, November 28-30, 1988), ACM
SIGPLAN Notices 24(2) pp. 14-24 (February 1989).

Bahlke, R. and Snelting, G., “The PSG system: From formal
language definitions to interactive programming environ-
ments,” ACM Trans. Program. Lang. Syst. 8(4) pp. 547-576
(October 1986).

Ballance, R.A., Graham, S.L., and Van De Vanter, M.L.,
“The Pan language-based editing system,” ACM Trans.
Software Engineering and Methodology 1(1) pp. 95-127
(January 1992).

Klint, P. (ed.), “The ASF+SDF Meta-environment user’s
guide,” Draft, Computer Science/Department of Software
Technology, Center for Mathematics and Computer Science
(CWI), Amsterdam, The Netherlands (1992).

Compilation techniques for very high-level imperative languages

Paige, R. and Koenig, S., “Finite differencing of computable
expressions,” ACM Trans. Program. Lang. Syst. 4(3) pp.
402-454 (July 1982).



Paige, R., “Transformational programming—applications to
algorithms and systems,” pp. 73-87 in Conference Record of
the Tenth ACM Symposium on Principles of Programming
Languages, (Austin, TX, Jan. 24-26, 1983), ACM, New
York, NY (1983).

Goldberg, A. and Paige, R., “Stream processing,” in Confer-
ence Record of the 1984 ACM Symposium on Lisp and Func-
tional Programming, (Austin, TX, August 6-8, 1984), ACM,
New York, NY (1984).

Paige, R., “Programming with invariants,” IEEE Software
3(1) pp. 56-69 (January 1986).

Cai, J. and Paige, R., “Binding performance at language
design time,” pp. 85-97 in Conference Record of the Four-
teenth ACM Symposium on Principles of Programming
Languages, (Munich, W. Germany, January 1987), ACM,
New York, NY (1987).

Cai, J. and Paige, R., “Program derivation by fixed point com-
putation,” Science of Computer Programming 11 pp. 197-261
(1988/89).

Cai, J. and Paige, R., “Languages polynomial in the input plus
output,” in Proceedings of the Second International Confer-
ence on Algebraic Methodology and Software Technology
(AMAST), (lowa City, Iowa, May 22-25, 1991), (1991).

Hoover, R., “Alphonse: Incremental computation as a pro-
gramming abstraction,” Proceedings of the ACM SIGPLAN
92 Conference on Programming Language Design and Imple-
mentation, (San Francisco, CA, June 17-19, 1992), ACM SIG-
PLAN Notices 277(7) pp. 261-272 (July 1992).

7. Other Problems Related to Incremental Computation
Sensitivity analysis

Bertsekas, D.P., Linear Network Optimization: Algorithms
and Codes, The M.I.T. Press, Cambridge, MA (1991).

Parametric problems

Gallo, G., Grigoriadis, M.D,, and Tarjan, R.E., “A fast
parametric maximum flow algorithm and applications,” SIAM
J. Computing 18(1) pp. 30-55 (February 1989).

Continuous execution

Henderson, P. and Weiser, M., “Continuous execution: The
Visiprog environment,” in Proceedings of the Eighth IEEE
International Conference on Software Engineering, IEEE
Computer Society, Washington, DC (1985).

510



