
Efficient Runtime Enforcement Techniques for Policy Weaving ∗

Richard Joiner†, Thomas Reps†,‡, Somesh Jha†, Mohan Dhawan$, Vinod Ganapathy∗

†University of Wisconsin-Madison ‡GrammaTech, Inc. $IBM Research New Delhi ∗Rutgers University
{joiner,reps,jha}@cs.wisc.edu, mohan.dhawan@in.ibm.com, vinodg@cs.rutgers.edu

Abstract
Policy weaving is a program-transformation method that

rewrites a program so that it is guaranteed to be safe with respect
to a stateful security policy. It utilizes (i) static analysis to identify
points in the program at which policy violations might occur, and
(ii) runtime checks inserted at such points to monitor policy state
and prevent violations from occurring. The power and flexibility
of policy weaving arises from its ability to blend the best aspects
of the static and runtime components. Therefore, a successful in-
stantiation requires careful balance and coordination between the
two.

In this paper, we examine the strategy of using a combination of
transaction-based introspection and callsite indirection to imple-
ment runtime enforcement in a policy-weaving system. In particu-
lar,

• Transaction-based introspection allows the state resulting from
the execution of a statement to be examined and, if the policy
would be violated, suppressed.
• Callsite indirection serves as a light-weight runtime analysis

that can recognize and instrument dynamically-generated code
that is not available to the static analysis.
• These techniques can be implemented via static rewriting so

that all possible program executions are protected against policy
violations.

We describe our implementation of transaction-based introspection
and callsite indirection for policy weaving, and report experimental
results that show the viability of the approach in the context of real-
world JavaScript programs running in a browser.

1. Introduction
Policy weaving for security-policy enforcement is a program-

rewriting approach oriented towards striking a balance between
static and runtime analysis techniques [7, 8]. It is

∗ Supported, in part, by DARPA under cooperative agreement HR0011-
12-2-0012. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors, and do not necessarily
reflect the views of the sponsoring agencies. T. Reps has an ownership
interest in GrammaTech, Inc.

[Copyright notice will appear here once ’preprint’ option is removed.]

• Sound, meaning that all program traces that violate the policy
are prevented.
• Transparent, meaning that the rewritten program has the same

semantics as the original program, modulo policy violations.

The policy-weaving approach is motivated by the acknowledgment
that in nontrivial scenarios, static analysis alone cannot prove that
a program adheres to a policy [4, 10]. In contrast, runtime anal-
yses such as inlined reference monitoring (IRM) [6, 15, 17] can
soundly evaluate concrete states at runtime, but at the cost of de-
graded performance. To address these limitations, policy weaving
is a hybrid approach that (i) attempts to statically identify sections
of the program that can be proven safe, and (ii) rewrites the program
to include runtime checks at locations where policy state may be
affected. This approach, while harnessing the best of both worlds,
also gives rise to a new challenge: that of coordinating the interop-
erability of—and managing the trade-offs between—the static and
runtime analyses. Our goal in this paper is to present and evaluate
a runtime policy-enforcement mechanism that is well-suited to be
the target of a static weaving algorithm.

Specifically, we explore and demonstrate the utility of transac-
tional introspection applied to a program through static rewriting
of source code, and an additional callsite-indirection transforma-
tion to enable just-in-time sandboxing of code that is generated at
runtime. We describe the resulting end-to-end policy-enforcement
system, and present experimental data that shows the viability of
this approach when applied to real-world JavaScript applications in
a browser context.

We find that transactions provides a straightforward and pow-
erful tool for securing untrusted code in the manner required by
policy weaving. Transactions are a form of speculative execution,
meaning that the effects of an execution can be computed and ex-
amined prior to the application of those effects to the execution
environment. This ability to introspect on actions without commit-
ting their effects is necessary when dealing with programs that per-
form irrevocable actions, such as the initiation of an HTTP request.
Because rollback of communication and other I/O actions is not
possible in general, a security-policy-enforcement mechanism that
aims to mediate such actions needs the ability to recognize and po-
tentially suppress such events prior to their occurrence, rather than
reacting after the actions have occurred. The transactions we de-
scribe provide this capability to “peek into the future” and take
preventive action to avoid policy violations.

We also extend the methodology of policy weaving to incor-
porate the use of callsite indirection to dynamically apply trans-
actional semantics to code that is dynamically generated. This
strategy serves two purposes.

• The static analysis is freed from the generally impossible task
of precisely modeling all possible executions of dynamically-
generated code.
• Callsite indirection serves as a light-weight but special-purpose

alternative to the use of hard-coded transactions.

1 2014/3/16

Transactional-introspection schemes have been studied in other
papers in the security literature [2, 5, 9, 14], and various difficulties
have been identified:

• Performance overhead of speculative execution can be pro-
hibitive [3, 11].
• Correct placement of transactional instrumentation is a nontriv-

ial task [9, 14, 16].
• Implementation of introspection logic to recognize and prevent

policy violations can be error-prone [14].

We address each of these concerns via the formulation described
in this paper. The complexity of both manually placing individ-
ual transactions and constructing introspection code is replaced
by the requirement to formulate an explicit security policy as an
automaton. A security-policy automaton allows a programmer to
state his intentions and goals explicitly in a typically small and
self-contained artifact. Moreover, we find that the use of a trans-
actional paradigm serves as a natural and intuitive runtime enforce-
ment platform for policy weaving, and produces substantial bene-
fits in terms of performance and flexibility when compared to other
enforcement mechanisms.

To summarize, our contributions are:

• We show how a policy-weaving algorithm can be used to auto-
matically and soundly weave transactional instrumentation into
a program to enforce security invariants.
• We describe the automatic translation of a security-policy speci-

fication into introspection code, which substantially reduces the
number of opportunities for implementation errors.
• We describe callsite indirection, a program-transformation

technique that, in conjunction with transactions applied directly
by policy weaving, ensures that the policy is also applied to all
dynamically generated code.
• We present JAMScript, a general-purpose but simple extension

of the JavaScript language that implements transactional se-
mantics with properties suited to security-policy enforcement.
• We present experimental results that demonstrate that our ap-

proach performs well compared to manual placement of trans-
actions and to other types of enforcement mechanisms that
could be targeted by a policy-weaving algorithm.

Organization: §2 presents a specification of the program-
rewriting algorithm, the semantics of transactional introspection,
the mechanism of callsite indirection, and how these techniques
conceptually fit together. §3 discusses implementation challenges
encountered when applying our approach to JavaScript, and the so-
lutions we devised. §4 evaluates the performance of JAMScript on
a set of real-world applications. §5 examines related work and mo-
tivates various design choices that differ from other systems that
share the same goals. §6 concludes.

2. Technical Overview
In this section, we examine the properties that a runtime en-

forcement mechanism must satisfy to meet the requirements of
a policy-weaving system. We identify transactional introspection
and callsite indirection as two key primitives of an enforcement
strategy that meet these conditions. We then incorporate this com-
bined mechanism as the targeted enforcement platform used by a
language-independent program-rewriting algorithm.

2.1 Enforcement Primitives
Three principles to be considered when choosing a runtime

enforcement mechanism are as follows:

• Runtime overhead induced by the mechanism should be mini-
mal to maintain an acceptable user experience.

0 1 F

read(SECRET_PASSWORD)

read(userPassword)

call(httpRequest)

0,1: read(SECRET_PASSWORD)
0,1: read(userPassword)
1,F: call(httpRequest)

Figure 1: Security-policy automaton and textual representation specifying a
set of disallowed traces: “read a password value and subsequently make a
network request.” The identifier F is reserved for the final state.

• The mechanism should precisely evaluate the policy at runtime,
without spuriously blocking traces.
• The mechanism should be general-purpose, flexible, and

straightforward to apply.

Because the latter two concerns are directly at odds with each
other, and both may indirectly hinder the first goal of acceptable
runtime performance, it may be difficult or impossible to arrive at
an ideal solution that satisfies all three principles simultaneously.
Our thesis is that utilizing a policy-weaving strategy can, in effect,
bring the enforcement mechanism closer to achieving each of these
principles, compared to manually placing instrumentation or rely-
ing on an automated modular partitioning strategy as suggested in
other work [5, 14].

When used with an enforcement mechanism based on transac-
tional introspection, as advocated in this paper, policy weaving pro-
duces the following benefits:

• Fewer program statements are run within transactions, thereby
reducing the performance overhead of enforcement (as shown
in §4).
• The policy automaton provided as input to the static analysis is

automatically translated to introspection code that implements
policy monitoring and enforcement at runtime. Examples are
described in §3, and the benefits are quantified in §4.
• By placing transactions via static rewriting, policy weaving can

ensure certain restrictions on the semantics of introspection,
such as sequential execution and a lack of side-effects. (We say
more about these benefits later in this section.)

We now introduce an example program and a security policy
that we would like to enforce via transactional introspection and
callsite indirection. The policy shown in Fig. 1 asserts that network
communication should not occur after certain kinds of accesses
to local information. The program shown in Fig. 2(a) may have
behaviors that violate the policy. The use of a conservative static
analysis allows the rewritten program, shown in Fig. 2(b), to have
the following properties:

• Any statement that potentially affects the policy state is
enclosed in a transaction block, indicated by the keyword
introspect.
• An introspector function is passed as the parameter to each

transaction block; these functions are defined in Fig. 3(a).
• Each introspector implements the runtime evaluation of a

unique combination of policy predicates, and they each have
read and write access to the global policyStates array.

This rewriting results in the following runtime behavior.

• During execution of the transaction block, all actions (reads,
writes, and calls) are recorded sequentially, and the effects of
writes are postponed.
• When the closing brace of the transaction block is reached,

the introspector is invoked with a transaction-object argu-

2 2014/3/16

1 SECRET_PASSWORD = "supersecret";
2 user_pwd = "";
3 config = {};
4

5 fun getUserInput(prompt) {
6 stdout.write(prompt + ": ");
7 input = stdin.readLine();
8 return input;
9 }

10

11 fun getConfig() {
12 param = getUserInput("Enter parameter");
13 url = "http://config.example.com?" + param;
14 configString = httpRequest(url);
15 configValue = eval(configString);
16 config[param] = configValue;
17 }
18

19 while (true) {
20 opt = getUserInput("Enter option");
21 if (opt == "config") {
22 getConfig();
23 } else if (opt == "run") {
24 user_pwd = getUserInput("Enter password");
25 match = SECRET_PASSWORD == user_pwd
26 if (match) {
27 break;
28 } else {
29 print("Wrong password!");
30 }
31 } else if (opt == "quit") {
32 exit;
33 }
34 }
35

36 // The rest of the program...

(a) Original code for a program intended to read configuration data
from an untrusted server and subsequently perform some computation
guarded by a secret password. It is vulnerable to code injection by the
untrusted server and accidental password leakage by the user.

1 // ...
2 fun getConfig() {
3 param = getUserInput("Enter parameter");
4 url = "http://config.example.com?" + param;

5 introspect(policyTransition1_F) {
6 configString = httpRequest(url);

7 }

8 f = indirect(eval, [configString]);

9 configValue = f();

10 config[param] = configValue;
11 }
12 while (true) {
13 // ...
14 } else if (opt == "run") {
15 user_pwd = getUserInput("Enter password");

16 introspect(policyTransition0_1) {
17 match = SECRET_PASSWORD == user_pwd

18 }
19 if (match) {
20 break;
21 } else {
22 print("Wrong password!");
23 }
24 } else if (opt == "quit") {
25 // ...
26 }

(b) Secured code. The gray highlighting indicates code that was in-
troduced by the rewriting step. Some unchanged sections are elided to
save space. introspect is a control-flow keyword parameterized by a
function that contains the introspection logic. indirect is a function
that wraps the configString argument within an introspect block,
and returns a reference to the eval function bound to the instrumented
argument. Fig. 3(a) shows the implementation of the introspector func-
tions and Fig. 3(b), shows indirect.

Figure 2: (a) A program that may violate the policy depicted in Fig. 1, and (b) a secured version.

1 policyStates = [0];
2

3 fun policyTransition0_1(tx) {
4 rs = tx.getReadSequence();
5 for (r in rs) {
6 if (policyStates.contains(0)
7 && (r.variable == "SECRET_PASSWORD"
8 || r.variable == "user_pwd")) {
9 policyStates.append(1);

10 }
11 }
12 tx.commit();
13 }
14

15 fun policyTransition1_F(tx) {
16 cs = tx.getCallSequence();
17 for (c in cs) {
18 if (policyStates.contains(1)
19 && c.target == httpRequest) {
20 throw new ViolationException();
21 }
22 }
23 tx.commit();
24 }

(a) Functions that perform introspection on the actions that occur within
an introspect block. The parameter tx is an object that holds infor-
mation about the reads, writes, and calls that have been recorded during
transaction execution. A collection of policy states reached during the
currect global execution is maintained in the policyState list, and an
exception is thrown when a policy violation is detected.

1 fun policyTransitionAll(tx) {
2 as = tx.getActionSequence();
3 for (a in as) {
4 if (a.type == READ && policyStates.contains(0)
5 && (r.variable == "SECRET_PASSWORD"
6 || r.variable == "user_pwd")) {
7 policyStates.append(1);
8 }
9 if (a.type == CALL && policyStates.contains(1)

10 && c.target == httpRequest) {
11 throw new ViolationException();
12 }
13 }
14 tx.commit();
15 }
16

17 fun indirect(f, args) {
18 if (f == eval && args.length > 0) {
19 args[0] = "introspect(policyTransitionAll) { "
20 + args[0] + " }";
21 }
22 return f.bind(args);
23 }

(b) Implementation of the indirect function that (i) wraps
dynamically-generated code within an introspect block as needed,
and (ii) returns the input function bound to its arguments. indirect is
a general function constructed to handle the interpretive constructs of
a language, independent of the specific program being analyzed. The
policyTransitionAll function is also shown; it combines the logic
from the two functions shown in (a), and serves as the introspector for
the instrumentation that is constructed by indirect.

Figure 3: Instrumentation functions that monitor program actions at runtime. See Fig. 2 for their corresponding uses within the analyzed program. We show
later in §3 an example of how the references to these function—and the global references used within the functions—can be protected from manipulation by
the program being analyzed.

3 2014/3/16

1 Introspect(Ts, Actions, Reached):
Data: Ts: sequence of policy transitions potentially induced by the

introspected statement(s)
Actions: sequence of recorded actions
Reached: set of policy states reached during the current execution

Result: Terminate execution if a policy violation is detected, or update
Reached and commit each a ∈ Actions otherwise.

/* Examine each action in the order it was recorded */

2 foreach a ∈ Actions do
/* Evaluate each policy transition */

3 foreach (ϕi, ϕ, ϕj) ∈ Ts do
/* If the policy-transition prestate has been

reached and the poststate has not */

4 if ϕi ∈ Reached ∧ ϕj /∈ Reached then
/* If the policy-transition predicate holds */

5 if a |= ϕ then
/* If the poststate is final */

6 if ϕj is final then
7 Throw an exception and quit.
8 else
9 Reached← Reached ∪ {ϕj}

10 if a can affect the program state then
11 Commit a.

Algorithm 1: Introspect specifies the logic that evaluates an action
sequence, and either commits or suppresses the effects. The condition
a |= ϕ is satisfied if action a makes predicate ϕ true.

ment, through which all security-relevant information about the
recorded actions can be accessed.
• Alg. 1 is used to examine the action sequence and decide

whether to commit or suppress the recorded actions.

In addition to the direct weaving of transaction blocks described
above, we define a second type of rewriting, called callsite indi-
rection, by which any callsites that potentially invoke interpretive
constructs are transformed in a way that allows transactional intro-
spection to be performed selectively at runtime. Interpretive con-
structs are those language facilities that convert a string value into
a dynamically generated code fragment, which is either immedi-
ately executed or can be executed at a later time. Examples of in-
terpretive constructs abound in modern scripting languages, such
as JavaScript (eval, Function), Python (eval, exec, compile),
and Perl (eval).

Delaying the decision to perform full introspection on these
callsites serves as an important optimization in languages (includ-
ing each of those previously mentioned) in which functions can be
invoked by indirect reference. In moderately large systems written
in these languages, callgraph construction becomes quite imprecise
when performed conservatively. I.e., the targeted function may be
statically unconstrained for many callsites. The strategy of callsite
indirection serves to avoid enclosing the preponderance of all call-
sites in transaction blocks in favor of a runtime check to determine
whether a given call needs to be evaluated with transactional intro-
spection.

2.2 A Formalization of Rewriting
The rewriting that occurs between Fig. 2(a) and Fig. 2(b) is ac-

complished via a modified and extended version of the rewriting
step of the SafetyWeave algorithm formalized by Fredrikson et al.
[7]. While that paper focuses primarily on the static policy-weaving
algorithm, it assumes that the enforcement mechanism is an inlined
reference monitor that evaluates the pre-image pre(s, ϕviolation)
of the subsequent statement s and policy predicate ϕviolation with
respect to the current program state σpre, and terminates the pro-
gram if Jpre(s, ϕviolation)K(σpre) = true (i.e., the execution of
the statement could cause a policy violation).

A key insight that led us to integrate SafetyWeave with a trans-
actional enforcement mechanism is that the semantics of introspec-

1 RewriteIntrospect(P , ΨΦ):
Data: P : source code of the program being analyzed

ΨΦ = {(s0, τ0), . . . , (sm, τn)}: a policy-violating witness
Result: P′: a rewritten program that prevents ΨΦ

2 Let interp be a policy-transition symbol indicating an interpretive construct
3 foreach (si, τj) ∈ ΨΦ do
4 if τj = interp then
5 Add si to a set of callsite statements to be processed later by Alg. 3
6 else
7 Let Ti be the set of policy transitions for which si is already

instrumented
8 Tprev ← Ti

9 Ti ← Tprev ∪ {τj}
10 Generate or retrieve inspi, the introspector function that

implements Alg. 1 for all τ ∈ Ti

11 if Tprev = ∅ then
12 Enclose si in a transaction with introspector inspi:

s′i : introspect(inspi){si}
13 else
14 Retrieve inspprev, the introspector function that implements

Alg. 1 for all τ ∈ Tprev

15 Rewrite si : introspect(inspprev){ssub}:
s′i : introspect(inspi){ssub}

Algorithm 2: RewriteIntrospect specifies the static-rewriting step of a
policy-weaving algorithm for applying direct transactional introspection.

tion allows predicates constituting the policy to be directly evalu-
ated in the context of the (speculative) program state. Viewed an-
other way, a code fragment that consists of a transaction block con-
taining a statement s implements the strongest-postcondition op-
erator post(σpre, s) = σpost that maps the program state σpre

encountered at transaction entry and the enclosed statement s to
the poststate σpost that results from the execution of s. A policy
predicate ϕviolation can then be directly evaluated in this poststate.
Formally, the condition for policy violation is (post(σpre, s)) ∩
JϕviolationK 6= ∅.

The observations above allow the rewriting step of Safety-
Weave to be transparently integrated with a transactional enforce-
ment mechanism. However, despite their similar utility, the imple-
mentations of the two approaches are quite different. Computation
of the pre-image involves the static construction of a potentially
complicated symbolic predicate to characterize the set of danger-
ous program states. In contrast, the strongest-postcondition opera-
tor that we describe in this paper is developed as a built-in feature
of the interpreter, and it produces a single program state in which
ϕviolation is evaluated.

A policy-weaving algorithm may utilize arbitrary (conservative)
static-analysis techniques to investigate a program’s behavior with
respect to a security policy Φ. However, in a departure from tradi-
tional static verification methodology, policy weaving uses a rewrit-
ing step, which serves as the interface between the static and run-
time analyses. Rewriting is invoked in two situations.

• A valid execution trace that violates the policy is identified.
• An invalid execution trace is identified, and a configurable re-

source bound on how much effort is to be expended on refining
the program abstraction has been met.

Here, a “valid” execution trace is one that is realizable in the con-
crete program, as determined via symbolic execution, and an “in-
valid” trace is one that cannot occur in the concrete program, but
is extracted from the abstract model of the program due to impre-
cision. In the first case, rewriting the program allows the policy-
weaving algorithm to convert a program that can generate policy
violations into a safe, instrumented program. In the second case,
rewriting allows the algorithm to terminate in bounded time and to
use as much information as can be acquired by static analysis while
staying within the resource bound. (The worst-case complexity of

4 2014/3/16

1 RewriteIndirect(P , s):
Data: P : source code of the program being analyzed

s: program statement containing a callsite
Result: P′: rewritten program that monitors code that is

dynamically generated by s over all policy transitions
33 Let T be the set of policy transitions for which s is

instrumented with an introspect block
4 if T = ∅ then
5 Rewrite s : ret = c(args...):

s′1 : f = indirect(c, [args...]);

s′2 : ret = f();
6 else
7 Retrieve insp, the introspector function that implements

Alg. 1 for all τ ∈ T
8 Rewrite s : introspect(insp){ret = c(args...); }:

s′1 : introspect(insp){v0 = c; v1 = [args...]; }
s′2 : f = indirect(v0, v1);

s′3 : introspect(insp){ret = f(); }

Algorithm 3: RewriteIndirect specifies the rewriting step done as a
postprocessing step of a policy-weaving algorithm. It applies the callsite-
indirection transformation to a statement that may target interpretive con-
structs.

the static analysis would normally preclude its use if the results of
a “full” static analysis were required.)

The nature of the runtime enforcement mechanism (the primi-
tive inserted into the program by the SafetyWeave rewriting step)
is discussed in formal but generic terms in [7]. We now develop
a precise specification of the rewriting step that facilitates policy
enforcement via transactional introspection (see Alg. 2). We also
specify a final rewriting step, which occurs after all invocations of
Alg. 2) and applies callsite indirection to all statements that can
target interpretive constructs (see Alg. 3).

In Alg. 2, the “policy-violating witness” ΨΦ represents an ex-
ecution trace along which the policy is violated.1 Each element
(si, τj) of ΨΦ consists of a program statement si and a policy
transition τj . A policy transition may be a special symbol interp,
which indicates that si contains a callsite that potentially targets an
interpretive construct; these statements are merely collected to be
processed later by Alg. 3. Otherwise, τj is a triple (ϕpre, ϕ, ϕpost)
consisting of a policy state ϕpre, a policy state ϕpost, and a pred-
icate ϕ that induces the transition. Together, Alg. 2 and Alg. 3
rewrite program P so that every witness ΨΦ is prevented in the
resulting program P ′.

Informally, given a policy-violating execution trace that is re-
alizable in the conservative, abstract model of the program, the
program is rewritten to include transactional introspection of each
statement s in the trace that can induce a policy transition τ . As an
alternative to hard-coding introspect blocks to monitor callsites
that can target interpretive constructs, callsite indirection is used to
apply transactional introspection only when needed.

In contrast to the rewriting step specified in past work on policy
weaving [7], which requires an implementation of the pre-image
operator to determine when s will cause a policy transition, Alg. 2
and Alg. 3 rely on the inherent properties of transactional intro-
spection to effectively apply the dynamic implementation of the
strongest postcondition operator as specified in Alg. 1.

2.3 Transaction Suspension
While the term “transaction” often implies atomic execution

of a block of code, our goal of security-policy enforcement does

1 More precisely, ΨΦ represents a collection of traces. It is a sequence of
(statement, policy-transition) pairs and thus does not include the statements
in the concrete trace that do not affect the policy state. In general, there
will be many ways in which the “gaps” between policy-transitions could
be filled in to create a specific concrete trace. The rewriting steps serve to
prevent all of these traces.

not impose this requirement. In fact, we find that maintaining both
atomicity and security in the presence of actions that have exter-
nally visible or unpredictable results is impractical at best. In an
imperative language with a built-in I/O interface, for example, it
may be impossible to execute I/O actions speculatively while al-
lowing for the possibility of suppression of such actions. Therefore,
we introduce the concept of transaction suspension as a means of
escaping execution of the transaction block into the introspection
code where the speculative state can be evaluated and committed
prior to resumption. Due to this process, a transaction may end up
being committed partially rather than as an atomic unit.

The introduction of transaction suspension does not require al-
teration of Alg. 1. Upon suspension, the action sequence available
through the transaction object will be a consistent prefix of the full
action sequence for the entire transaction that would be available in
the absence of suspension. Therefore, these actions can be exam-
ined, and the policy state updated, just as before.

We restrict the application of transaction suspension to pre-
dictable circumstances; in particular, it is useful for suspension to
occur at all invocations of native or externally-linked functions. A
whitelist of functions that are free of side-effects—and therefore
do not need to trigger a suspension—can be maintained to reduce
overhead. We discuss specific scenarios in which transaction sus-
pension has utility in §3, but we maintain that some form of sus-
pension will be necessary to support transactions in any imperative
language that incorporates external interfaces.

2.4 Semantic Guarantees
The precise specification of the semantics of an introspector

function given above is important for maintaining predictable se-
mantics of the rewritten program, and therefore not invalidating the
results previously given by the static analysis. The transactional in-
trospection implemented by Alg. 1 and woven by Alg. 2 is guaran-
teed, up to policy violation by the enclosed code, to (i) have no vis-
ible side-effects, and (ii) maintain sequential execution. “Sequen-
tial execution” means that the execution of a transaction block will
always produce the same results as a prefix of the original unpro-
tected code.

3. Implementation
This section discusses the implementation of the JAMScript

extension to the JavaScript language, and the integration of its
primitives as the target of a policy weaver.

3.1 A Strawman Approach
An initial attempt at implementing speculative execution, which

we refer to as ForkIsolate, failed to have acceptable performance
to serve as a policy-weaving enforcement mechanism. As the name
indicates, each time speculative mode was entered, the browser pro-
cess was duplicated via a POSIX fork. The protected code was then
executed in the new branch, and the resulting state was reported
back to the original process. Despite copy-on-write semantics for
a forked process, the overhead incurred by this mechanism caused
some applications to run 3–4 orders of magnitude slower than stan-
dard (unprotected) execution.

Our experience with ForkIsolate motivated the requirement that
an enforcement framework be general with regards to the code
that it can evaluate. The core JavaScript language provides meth-
ods for executing dynamically-generated code, most notoriously
through the use of the eval function. This fact necessitates that
the speculative-execution framework be able to maintain faithfully
the semantics of all possible executions (in the absence of policy
violations). We found that due to the underlying mechanism of iso-
lation used by ForkIsolate, several classes of statements, for ex-
ample those involving calls to DOM methods that expected access
to a GUI, resulted in unexpected behavior, including freezes and

5 2014/3/16

crashes. Because of the architecture of ForkIsolate, these danger-
ous cases had to be recognized and handled within the introspec-
tion mechanism itself. Consequently, converting ForkIsolate from
a proof-of-concept experiment into a general-purpose tool would
have required special logic for a practically unbounded number of
scenarios induced by (i) JavaScript’s tendency to be embedded in
other systems, and (ii) the degree to which code is dynamically
generated.

Moreover, the embedded character of a typical JavaScript en-
vironment motivated the requirement that introspection capabili-
ties be extensible. Even if the ForkIsolate mechanism were able
to maintain correct semantics of arbitrary code, additional logic
would still be needed to achieve sound introspection for all exe-
cutions. For example, if the speculative execution of an expression
results in a call to the document.write DOM method, the goal
of comprehensive policy enforcement dictates that the contents of
any script elements within the generated HTML should be specula-
tively executed as well; to perform these speculative executions, it
is necessary to have a way of identifying and extracting such code
during introspection.

In contrast, a framework like JAMScript, which allows special-
ized enforcement capabilities to be loaded as necessary for each
embedding system (such as the DOM), is more general and main-
tainable than a system with built-in domain-specific logic.

3.2 Description of JAMScript
With JAMScript, we adopt the paradigm of transactional intro-

spection as the key enforcement component for static policy weav-
ing. We have implemented the mechanism as an extension to the
JavaScript language in accordance with the formalization described
in §2. The extension consists of one new keyword, introspect, to
indicate the opening of a transaction block that protects a given
fragment of code (delimited by enclosing curly braces). A function
value is passed as a parameter to the block to provide introspection
logic.

Additional utilities for runtime enforcement, such as the im-
plementation of the indirect function described in §2, are pro-
vided as part of the JAMScript library. This code is written in
JavaScript and is loaded prior to the rewritten program, and after
the policy logic that is generated at rewriting time by Alg. 2. Be-
cause the JAMScript library methods are accessible as source code
rather than being built into the interpreter, they can be extended in
a straightforward manner to handle constructs provided by embed-
ding systems. We have developed a fully functional version of this
library for the core JavaScript language, and a prototype imple-
mentation that accounts for DOM and other Web API constructs
provided by a browser environment.

As previously mentioned, interaction with all interfaces pro-
vided by systems outside of the core JavaScript language, for exam-
ple the DOM, causes suspension of a running transaction to allow
the ambient memory state to “catch up” to the speculative state.
The upshot of this approach is that external systems that wish to
integrate with our modified JavaScript interpreter do not need to
make special accommodations for the potentially transactional na-
ture of what is occurring in the JavaScript heap. A complemen-
tary consequence is that the JavaScript interpreter does not need to
be aware of the systems into which it is integrated. JAMScript’s
simple model of suspension enables transactional semantics of the
JavaScript interpreter that are not entangled with the semantics of
ancillary systems.

3.3 Protecting the Instrumentation
An overarching concern when a new runtime security technique

is developed is that the instrumentation itself must be protected
from being modified or bypassed. In JAMScript, we leverage Java-
Script’s implementation of lexical scoping and closures to create

1 var policy = (function() {
2 // A record of reached policy states
3 var policyStates = [0];
4

5 // Close over native objects for reliable references
6 var _HTMLElement = HTMLElement;
7

8 // Introspector preventing access to the "appendChild" method
9 // of objects with a prototype chain that includes HTMLElement

10 function introspectReads(tx) {
11 var commit = true;
12 var rs = tx.getReadSequence();
13 for (var i=0; i<rs.length; i++) {
14 var node = rs[i];
15 if (node.id === "appendChild"
16 && node.obj instanceof _HTMLElement)
17 commit = false;
18 break;
19 }
20 if (commit) {
21 JAMScript.commit();
22 } else {
23 JAMScript.prevent();
24 }
25 }
26

27 // Return the policy object itself
28 return {
29 introspectors: {
30 introspectReads: introspectReads
31 }
32 };
33 }());
34 Object.freeze(policy);

Figure 4: Generating the policy object as a self-enclosed entity. The local
HTMLElement variable is used to save a private reference to an object that

is needed for policy evaluation. Function introspectReads recognizes
when the appendChild property of an HTMLElement object is read, and
prevents the read from occurring.

immutable and self-enclosed introspectors. Because all native ob-
jects that will be referenced by the enforcement code are statically
known, the system automatically generates an introspector package
that closes over these references when created. Additionally, Java-
Script’s Object.defineProperty and Object.freeze methods
are used to enforce immutability for all of the properties of both
the JAMScript and JAMScript.introspectors objects.

See Fig. 4 for an example of how closures are used to main-
tain private references. The policy object is returned by the
anonymous function shown in lines 1–33. Private state (lines 2–
6: the policyStates array and a local reference to the DOM
HTMLElement constructor) is accessible only to the object’s meth-
ods as a result of JavaScript’s lexical scoping.

One requirement for fully protected execution is that the code
that generates these closures must be run prior to any modifications
of the required global references (HTMLElement in our example).
Consequently, our rewriter includes the policy code and JAMScript
library code prior to any other JavaScript on the page.

Additionally, we must ensure that the function reference pro-
vided as the argument to each introspect block cannot be re-
assigned by the untrusted code as a means of subverting the
enforcement. The static rewriting provides that all introspector
expressions have the form JAMScript.introspectors.ispect.
Therefore, we define the JAMScript property of the global ob-
ject through the Object.defineProperty method, which sets the
writable and configurable attributes to false by default, and
use Object.freeze to render all subproperties immutable (line
34). JavaScript also supports variable shadowing, which is another
potential way of subverting the introspector reference: malicious
guest code may declare its own JAMScript variable whose value
overrides, or “shadows,” the instrumentation itself. This attack pos-
sibility is addressed by a simple static preprocessing step that re-

6 2014/3/16

1 var ret = obj.meth(arg);

(a) A statically-indeterminate callsite in the original program.

1 var bound = JAMScript.bind(obj, [obj.meth, arg]);
2 var ret = bound();

(b) Transformed callsite that enables the call to be examined at runtime,
at which point the policy can be applied.

Figure 5: Example of callsite indirection to extend the policy to
dynamically-generated code. If obj.meth references a function that can
generate code dynamically, such as eval or Function, the use of the
JAMScript.bind method allows the security policy to be applied dynami-
cally (see Fig. 6).

names declared variables that would shadow the JAMScript instru-
mentation. Because the global JAMScript object is the entry point
for all enforcement code, this identifier is the only one of interest
for this step, although the technique could easily be applied to mul-
tiple global-variable names.
3.4 Indirection in JAMScript

The problem of applying a security-enforcement mechanism to
code that is interpreted by the eval function or Function con-
structor has led many security researchers to limit their tools to
language subsets [1]. However, surveys have shown that interpre-
tive constructs are commonly used in existing JavaScript programs
found on the Web [13]. In this section, we explain a program trans-
formation that enables the safe, sound, and efficient analysis of
dynamically-generated code at runtime.

The core JavaScript language provides two ways to generate
code dynamically. The eval function executes a string passed as
its first argument, and the Function constructor coerces a string
argument to code that is used as the body of a function that can
be executed later. External systems such as the DOM expose other
routes to inject code into the execution stream. The method that we
describe below applies to many of these cases as well, but we will
focus on the application to eval and Function.

The key observation in developing the statement transformation
described below is that any code that is to be generated dynami-
cally will be passed as a string-valued argument to some function
call. In both cases examined here, the string to be executed is the
first argument passed to either eval or Function. We therefore
implement a transformation on all callsites for which the target of
invocation cannot be determined statically (or at least for which
eval and Function cannot be ruled out as targets). Consider the
callsite in Fig. 5(a). If it cannot be excluded via static analysis that
the reference obj.meth points to an interpretive construct, we must
consider the possibility that the value of arg may be executed as
code.

The transformation passes the function, receiver, and arguments
for each affected callsite to the JAMScript.bind method, which (i)
examines the function reference to determine if it is an interpretive
construct, (ii) wraps any string argument that will be interpreted
as code in a transaction block, and (iii) returns a new function
that is bound (using JavaScript’s bind method) to its receiver and
new arguments. This function is then invoked to produce the same
effects as the original method-invocation expression, except that it
is instrumented to monitor the policy state and prevent violations.

The core JavaScript language defines a few other constructs that
must be detected and handled within the body of JAMScript.bind
to interpose on all cases of dynamically generated code; these cases
involve the ways in which interpretive constructs may be invoked
indirectly. One such avenue for invoking a function indirectly in
JavaScript is to use the call, apply, or bind methods of func-
tion objects. When an invocation of any of these methods is de-
tected at runtime within JAMScript.bind, we make use of the

1 Object.defineProperty(this, "JAMScript", {
2 "value": (function(pol) {
3 var _eval = eval;
4 var _Function = Function;
5 var _bind = Function.prototype.bind;
6 var _apply = Function.prototype.apply;
7 var _call = Function.prototype.call;
8 var _bind_apply = _apply.bind(_bind);
9 var _Array_slice = Array.prototype.slice;

10 var _Array_slice_call = _call.bind(_Array_slice);
11

12 return {
13 introspectors: pol.introspectors;
14

15 /* ... other JAMScript library methods */
16

17 bind: function(f, args) {
18 if (f === _bind) {
19 f = args[0];
20 args = _Array_slice_call(args, 1);
21 var bound = JAMScript.bind(f, args);
22 return function() { return bound; }
23 }
24 if (f === _call) {
25 f = args[0];
26 args = _Array_slice_call(args, 1);
27 return JAMScript.bind(f, args);
28 }
29

30 if (f === _eval || f === _Function) {
31 args[1] =
32 "introspect(JAMScript.introspectors.all) {"
33 + args[1] + "};";
34 }
35

36 return _bind_apply(f, args);
37 }, /* end bind method */
38 } /* end JAMScript object literal */
39 }(policy)) /* end anonymous function call */
40 }); /* end call to Object.defineProperty */
41 Object.freeze(JAMScript);
42 Object.freeze(JAMScript.introspectors);

Figure 6: Initialization of the JAMScript library and definition of its bind
method for dynamically-generated code indirection. (Logic to handle the
call method and getter/setter definitions, and to check the length of the
args array is elided to conserve space.) This example also illustrates clos-
ing over native objects to maintain private references (lines 3–10), incor-
porating the introspectors object produced by the policy (line 13, see
also Fig. 4), and freezing the JAMScript library and its properties so that
they are immutable (lines 41–42).

same logic described above for sanitizing interpretive constructs
that may be the receiver of the original invocation—i.e., by rear-
ranging the arguments and recursively calling JAMScript.bind
(see Fig. 6). This recursive approach also protects against (pre-
sumably malicious) attempts to obfuscate a call to an interpre-
tive construct within multiple nested invocations of call and
apply. Additionally, the defineProperty, defineGetter ,
and defineSetter methods of the Object class are of interest
if the getter/setter being assigned is an interpretive construct. In a
typical, well-intentioned JavaScript program, this is likely a very
rare practice, but such a technique could be used by malicious code
to attempt to subvert a policy.

3.5 Extending the Callsite Indirection Transformation
It is useful for the JAMScript enforcement mechanism to sup-

port a policy-specification language that includes “call” predicates,
which induce a policy transition when particular native functions
are invoked. Due to the inherent imprecision when static analysis
is applied to a language with first-class functions, it is common
for several callsites that target user-defined functions at runtime to
be instrumented with transaction blocks. During testing, we found
that this situation can cause substantial performance degradation
due to an oftentimes deep nesting of transactions. Concretely, if a
call to a user-defined function is enclosed in a transaction block,

7 2014/3/16

1 introspect(JAMScript.introspectors.introspectCalls) {
2 obj.meth(param);
3 }

(a) The initial instrumentation of a callsite. obj.meth may reference a
user-defined function that contains other transaction blocks, leading to
arbitrary nesting.

1 function introspectCalls(tx) {
2 var commit = true;
3 var cs = tx.getCallSequence();
4 for (var i=0; i<cs.length; i++) {
5 var node = cs[i];
6 if (node.value === _createElement
7 && node.args[0] === "script") {
8 commit = false;
9 break;

10 }
11 }
12 // ... commit or prevent.
13 }

(b) Introspector code to evaluate the original call predicate.

1 introspect(JAMScript.introspectors.introspectCallValues) {
2 var v1 = obj.meth;
3 var v2 = [obj, param];
4 }
5 var bound = JAMScript.bind(v1, v2);
6 bound();

(c) Transformation that applies the policy based on the values constituting
the call. The callsite itself is uninstrumented.

1 function introspectCallValues(tx) {
2 var commit = true;
3 var ws = tx.getWriteSequence();
4 var node = { args: ws[0].value, value: ws[1].value };
5 if (node.value === _createElement
6 && node.args[1] === "script") {
7 commit = false;
8 }
9 // ... commit or prevent.

10 }

(d) Refactored introspector code that evaluates the call parameters. The
creation of the object on line 4 is coordinated with the transformation in
(c). The condition for detecting a policy transition is the same in figure (b)
lines 6–7 and (d) lines 5–6.

Figure 7: Example of the callsite transformation that serves to avoid transaction nesting at runtime and to extend the policy to dynamically generated code. If
obj.meth points to a user-defined function that also contains transactions, this transformation extracts the call invocation from within the transaction to avoid
nesting. At the same time, if obj.meth invokes a dynamic function such as eval or Function, passing the values through JAMScript.bind allows the policy
to be dynamically applied to generated code.

and that function contains other callsites enclosed in transaction
blocks, arbitrary nesting of transactions can occur. To address this
problem, we rely on an extension of the callsite transformation de-
scribed above, along with an associated automated refactoring of
the policy-introspection code (see Fig. 7 for an example). The con-
version is structured so that the assignments to the identifiers v1
and v2 correspond to (i) the invoked function value, and (ii) an
array containing the receiver and arguments, and the introspector
is restructured accordingly. In effect, this converts a “call” policy
predicate into an equivalent “write” predicate. Consequently, no
callsites are directly enclosed within introspect blocks and nest-
ing is prevented, while, simultaneously, the policy can be applied
to dynamically generated code.

4. Experimental Results
In this section, we present an evaluation of the performance of

JAMScript on a set of real-world applications. Our experiments
were designed to answer the following questions:

• How well does transaction-based introspection perform when
applied to real-world applications? Is the overhead acceptable?
• Does the policy-weaving approach to transaction placement

provide performance benefits over a naive use of transactional
instrumentation?
• What are the savings to the user in terms of conceptual com-

plexity? In particular, how does the size of a security-policy
automaton compare to the generated introspection code?

For this paper, we have not addressed experimentally the ques-
tion of the soundness of our implementation. Rather, we are work-
ing with an independent “red team,” which has probed the sys-
tem from an attacker’s point of view and has provided invaluable
feedback. We also intend to release JAMScript as an open-source
project to be subjected to scrutiny by the community.

4.1 Setup and Methodology
To answer the questions posed above, we collected a set

of 20 distinct JavaScript applications and an additional 51 sub-
applications of the SMS2 DNA analysis suite from the World
Wide Web. With the goal of increasing the signal-to-noise ratio
of our performance measurements, we intentionally sought appli-

Transactions
AST Description Inserted by

Application Nodes of Applied Policy JAM Analysis
squirrelmail 110 disallow access to src property 0
doubleclick-loader 271 prevent navigation 0
userprefs 375 disallow appendChild and eval 12
sunspider 407 disallow XMLHttpRequest.open 2
kraken 414 disallow XMLHttpRequest.open 3
beacon 787 isolate document from cookie 36
plusone 1195 prevent script creation, document edits 34
imageloader 3957 disallow document.write 40
sms2-* 6656.7 prevent all network communication 162.3
snote 6852 certain elements write-once/read-only 59
piwik 7132 isolate document from cookie 230
mwwidgets 7504 certain elements write-once/read-only 59
midori 9018 prevent modification of cookie 17
greybox 9914 prevent creation of script elements 343
googiespell 11603 disallow document.write 40
ga 13236 prevent script creation, document edits 388
hulurespawn 30269 disallow local storage access 1496
colorpicker 32653 prevent navigation, src/cookie access 309
adsense 37709 isolate document from cookie 227
puzzle 104486 prevent creation of script elements 319

Figure 8: Program size and number of woven transactions for analyzed
applications. The “sms2-*” item represents the average over a set of 51
applications taken from the Sequence Manipulation Suite for DNA analysis.

cations that perform computationally intensive tasks, such as de-
coding a QR code or processing a DNA sequence. We developed
policies ranging from simple properties, like preventing calls to
window.open, to compound policies that reflect higher-level goals,
such as preventing all external network communication.

We do not present data related to the strawman implementation
described in §3.1, because it performed much too poorly to serve as
a reasonable point of comparison. (Instrumented code ran 3–4 or-
ders of magnitude slower than the original, uninstrumented code.)
Instead, we compare the performance of the applications secured
by policy weaving (referred to as the “fine-grained” approach, be-
cause individual statements are speculatively executed) to that of
applications secured in a whole-program fashion (referred to as the
“coarse-grained” approach) in which transaction blocks are used to
secure entire scripts at a time. The latter approach has been used
in prior work [5, 14] in which scripts are delimited by individual
script tags or by the browser’s same-origin policy. Additionally,
to test the absolute performance of transactions as an enforcement

8 2014/3/16

0.1 1.0 10.0 100.0
execution time (ms) for unprotected program

0.1

1.0

ex
ec

. t
im

e
ra

tio
: f

in
e-

gr
ai

ne
d

/ c
oa

rs
e-

gr
ai

ne
d

page load
other actions

Figure 9: Log-log plot of the execution time of programs with fine-grained
transactional enforcement applied through weaving compared to coarse-
grained whole-program transactions. The ratio of the two approaches is
plotted against the execution time of the original unprotected program. The
preponderance of points below the line y = 1, when the original execution
time is non-trivial, indicates an overall performance benefit from policy
weaving, compared to the coarse-grained approach.

mechanism for policy weaving, we compare the running time of the
secured applications to that of the original program.

The static analysis was performed by the JAM policy weaver
[7], modified to use the rewriting technique described in Alg. 2.
JAMScript is implemented in the SpiderMonkey JavaScript inter-
preter, version 1.8.5, which is embedded in the Firefox browser,
version 17.0.5esr. Experiments were run on a Dell Inspiron E6520
laptop computer with an 8-core Intel Core i5-2540M 2.60GHz CPU
with 8GB RAM, running the 64-bit Ubuntu 12.04 LTS operating
system.

4.2 Runtime Performance
The plot shown in Fig. 9 shows that in most cases, and particu-

larly for test cases that involve computationally-heavy processes, a
program woven with fine-grained transactions outperforms the cor-
responding program protected by a coarse-grained strategy. This
result was not a foregone conclusion, because the two approaches
represent opposing sides of a performance trade-off between trans-
action start-up time and in-transaction processing time. A weav-
ing strategy that uses many fine-grained transactions for policy en-
forcement relies on the assumption that most of the overhead of
speculative execution is incurred during the course of the transac-
tion, rather than in the initialization of the transaction. Our exper-
iments bear out this assumption, as we measured an overall 25%
speed-up for program actions instrumented with fine-grained trans-
actions versus coarse-grained transactions when summarized by the
geometric mean. This breaks into a 12% speed-up for page-load ac-
tions, which includes the time taken to load the JavaScript policy
object and the JAMScript library, and a 37% speed-up for other pro-
gram actions. Moreover, there are no prospects for reducing the ob-
served overhead with the coarse-grained approach, whereas policy
weaving provides the opportunity to exert additional effort during
static analysis to rule out spurious transactional instrumentation to
further reduce the runtime overhead.

Similarly, Fig. 10 shows the ratio of the execution time for pro-
grams protected by woven transactions versus the original unpro-
tected program, plotted as a function of the original execution time.
When summarized by the geometric mean, the measured execution
time for actions other than the initial page load protected by fine-
grained transactions is 166% of the time for the unprotected pro-

0.1 1.0 10.0 100.0
execution time (ms) for unprotected program

0.1

1.0

10.0

100.0

ex
ec

. t
im

e
ra

tio
: f

in
e-

gr
ai

ne
d

/ u
np

ro
te

ct
ed

page load
other actions

Figure 10: Log-log plot of the ratio of execution time of programs with fine-
grained transactional enforcement applied through weaving compared to
the unprotected execution, plotted as a function of the execution time of the
original unprotected program. Page-load actions include the time to initial-
ize the policy object and JAMScript library; this overhead becomes less of
a factor as the overall page-load time increases. The overall trend decreas-
ing to the right indicates that the percentage overhead of security-policy
enforcement becomes less dramatic for more computationally-intensive ap-
plications.

Input Baseline Specialized
Policy Policy Policy

Application (AST Nodes) (AST Nodes) (AST Nodes)
googiespell 7 94 170
imageloader 7 94 170
kraken 11 94 170
squirrelmail 11 94 94
sunspider 11 94 170
hulurespawn 13 138 367
puzzle 13 134 290
greybox 13 134 290
midori 13 137 310
doubleclick-loader 18 125 125
beacon 19 151 386
piwik 19 151 386
userprefs 22 109 197
ga 24 121 411
plusone 24 121 411
adsense 29 152 634
colorpicker 33 136 376
mwwidgets 92 273 1209
snote 92 273 1279
sms2-* 116.7 251.7 507.2
jsqrcode 156 277 655

Figure 11: Size of the input policy versus the automatically generated en-
forcement code, given by abstract-syntax-tree nodes. “Input policy” refers
to the automaton provided to the static analysis (see Fig. 1). The “baseline
policy” is a single introspector that checks all policy transitions to protect
the full program in lieu of analysis. The “specialized policy” represents
introspection code produced for the woven program (as in Fig. 3(a)), and
is generally larger because multiple introspector functions are produced to
evaluate different combinations of policy predicates, as deemed necessary
by the static analysis.

gram. (This number can be compared to 265% for coarse-grained
transactions.) Loading the page took 35.6 times longer for the in-
strumented programs (both fine-grained and coarse-grained), which
must load the policy object and JAMScript library prior to the pro-
gram itself. However, the absolute time represented by this slow-
down ranges from 6.7ms to 33.5ms, which is negligible to human
perception.

4.3 Policy Complexity
A substantial benefit of the automated policy-weaving approach

to program security is that it permits policies to be specified declar-

9 2014/3/16

atively. The rewriting framework converts the declarative policy
into imperative code that makes use of the introspection capabil-
ities of JAMScript to enforce the policy at runtime. An example of
this translation appears in the relationship between Fig. 1 (the input
policy) and Fig. 3(a) (the specialized policy). The baseline policy,
which is a single introspector function that monitors all transitions
of the input policy for a transaction object, is not shown. The policy
weaver that we have integrated with JAMScript provides a policy-
specification language, which is a dialect of JavaScript that sup-
ports predicates over calls (and corresponding arguments) to native
functions, reads and writes to properties of native objects, refer-
ence (in)equality, and various string relations. To quantify the ben-
efits provided by the automated production of introspection code,
we compare the size of the input policy to the size of the generated
code in Fig. 11. Summarized by the geometric mean, the imple-
mentation of the baseline policy is 6.3x larger than the input pol-
icy for our benchmarks, and the specialized policy is 14.5x larger.
The size of the representation is admittedly an indirect measure
of implementation complexity, but we also propose that the input
policy automaton provides an intuitive interface for specifying a
set of disallowed execution traces. These factors together provide
strong support for the usability of the policy-weaving approach to
security-policy enforcement.

5. Related Work
Transaction-Based Policy Enforcement. The use of transac-
tional introspection for security-policy enforcement can be viewed
as an evolution of inlined reference monitoring, which was devel-
oped around 2000 by Schneider and Erlingsson [6, 15, 17]. The
primary difference is that the semantics of introspection enables a
more direct examination of the effects of the monitored program
statements, rather than relying on a calculation of the effects.

Transcript [5] is an extension to the JavaScript language that
implements speculative execution with introspection for security-
policy enforcement. As presented, transactions are applied in a
modular fashion to untrusted “guest” code, delineated as different
source-code files included in a web page via HTML script tags.
In contrast, JAMScript was developed to be the target of a static
weaving process that results in fine-grained transactions applied to
the full program, including the host code. Also, while Transcript
relies on a complex conflict-resolution system to maintain the con-
sistency of the DOM during a transaction, JAMScript uses a rela-
tively simple suspend mechanism that is oblivious to the context in
which the core JavaScript interpreter is running.

The Transactional Memory Introspection (TMI) system [2] ap-
plied transactional instrumentation to multithreaded server soft-
ware and demonstrated the benefits of the approach in that context.
The JavaScript language does not exhibit true multithreaded be-
havior (the proposed standardization of the Worker API allows for
parallel execution, but with each thread in a natively isolated en-
vironment, and communication limited to the exchange of strings
[18]). Thus, TMI addresses issues that are orthogonal to the ones
addressed in this paper.

Richards et al. [14] apply speculative-execution semantics (re-
ferred to as “delimited histories”) to untrusted code in an automatic
but coarse-grained fashion based on the browser’s same-origin pol-
icy. In their approach, the entirety of the third-party code is spec-
ulatively executed and the host code is trusted to execute without
protection. In contrast, we argue for an approach in which all code
is subjected to the security policy, and the scope of instrumentation
is reduced by using the results of a conservative static analysis. The
assumption that the host code can be trusted may be reasonable in
some contexts, but leaves open the possibility of indirect subver-
sion of the policy by clever attackers that can manipulate the envi-
ronment to coerce the host code into violating the intended policy.

It also precludes the practice of hosting copies of untrusted third-
party code or integrating untrusted code snippets into the host pro-
gram. Another difference between their work and ours is that the
introspection code in [14] is written manually on a case-by-case
(albeit reusable) basis in C++ modules, with the intent of shield-
ing the instrumentation from manipulation. In contrast, our system
automatically produces introspection code as a translation of the
policy automaton, and we make use of a relatively simple scheme
for protecting the integrity of the instrumentation.

The TxBox system [9] provides transactional introspection as
an operating-system security feature. Their approach uses system-
level policies to limit the access of applications to system resources,
in contrast to JAMScript’s application-specific policies that can re-
strict internal program behavior. Our approach is also distiguished
by the use of static analysis for runtime performance benefits, as
well as the techniques for securing dynamically generated code.

Aspect Weaving for JavaScript. A number of prior works in-
vestigate an aspect-oriented approach to enforcing security poli-
cies for JavaScript in a browser. In general, the solution for runtime
enforcement that we describe in this paper is distinguished from
prior work by the choice of transactional introspection as the mech-
anism, and the resulting ability to safely handle the full JavaScript
language, rather than a restricted subset.

Fredrikson et al. [7] describe the JAM policy weaver for Java-
Script as an implementation of their general technique. (Policy
weaving is differentiated from aspect weaving by an emphasis on
semantics-based—as opposed to syntax-based—rewriting.) That
paper focuses primarily on the static rewriting methodology, and
leaves the nature of the runtime enforcement mechanism largely
unspecified. In a complementary manner, we investigate the desir-
able properties of the runtime component, while allowing for the
possibility of integrating with a wide range of static-analysis tech-
niques.

Yu et al. [19] present a rewriting scheme that introduces the con-
cept of callsite indirection for applying security policies to dynam-
ically generated code. That work emphasizes a comprehensive and
sound placement of instrumentation and the formal specification of
policies. In contrast, we discuss the concrete requirements of an ef-
fective enforcement mechanism and the translation of policies into
operational code.

ConScript is a browser-based aspect system for security [12].
The primary security mechanism utilized by ConScript is a built-
in form of indirection (implemented as a modification to the Java-
Script interpreter in Internet Explorer 8). This mechanism allows
a function object to be wrapped within a user-defined function
that vets arguments and potentially suppress calls at runtime. Con-
Script policies are constructed either manually or by an automatic
dynamic-observation process, and a static analysis is used to gain
confidence (but not prove) that the implementations are correct. In
contrast, in our system the policy implementation is generated au-
tomatically from a declarative specification.

6. Conclusions
We have developed and evaluated an approach for using trans-

actional introspection and callsite indirection as integrated runtime
enforcement mechanisms for policy weaving. Introspection enables
the examination and potential suppression of the effects of program
statements identified by a static analysis, and indirection serves as
a light-weight runtime analysis that can apply introspection to dy-
namically generated code that is not available to the static analy-
sis. We have shown how programs can be rewritten to apply these
techniques; the resulting programs are protected against policy vi-
olations for all possible program executions.

10 2014/3/16

References
[1] N. Bielova. Survey on JavaScript security policies and their enforce-

ment mechanisms in a web browser. J. Logic and Alg. Prog., 2013.
[2] A. Birgnisson, M. Dhawan, U. Erlingsson, V. Ganapathy, and

L. Iftode. Enforcing authorization policies using transactional mem-
ory introspection. In CCS, 2008.

[3] C. Caşcaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software transactional memory: Why is it only a
research toy? ACM Queue, 6(5), September 2008.

[4] B. Chess and G. McGraw. Static analysis for security. S&P, 2004.
[5] M. Dhawan, C. Shan, and V. Ganapathy. Enhancing JavaScript with

transactions. In ECOOP, 2012.
[6] U. Erlingsson. The Inlined Reference Monitor Approach to Security

Policy Enforcement. PhD thesis, C.S. Dept, Cornell Univ., Jan. 2004.
[7] M. Fredrikson, R. Joiner, S. Jha, T. Reps, P. Porras, H. Saı̈di,

and V. Yegneswaran. Efficient runtime policy enforcement using
counterexample-guided abstraction refinement. In CAV, 2012.

[8] W. Harris, S. Jha, and T. Reps. Secure programming via visibly
pushdown safety games. In CAV, 2012.

[9] S. Jana, D. E. Porter, and V. Shmatikov. TxBox: Building secure,
efficient sandboxes with system transactions. In Security and Privacy
(SP), 2011 IEEE Symposium on. IEEE, 2011.

[10] W. Landi. Undecidability of static analysis. LOPLAS, 1(4), 1992.
[11] M. E. Locasto, A. Stavrou, G. F. Cretu, and A. D. Keromytis. From

STEM to SEAD: Speculative execution for automated defense. In
USENIX Annual Technical Conference, 2007.

[12] L. A. Meyerovich and B. Livshits. ConScript: Specifying and enforc-
ing fine-grained security policies for JavaScript in the browser. In
S&P, 2010.

[13] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of JavaScript programs. In PLDI, 2010.

[14] G. Richards, C. Hammer, F. Z. Nardellia, S. Jagannathan, and J. Vitek.
Flexible access control for JavaScript. In OOPSLA, 2013.

[15] F. B. Schneider. Enforceable security policies. TISSEC, 3(1), 2000.
[16] M. Song and E. Tilevich. TAE-JS: Automated enhancement of Java-

Script programs by leveraging the Java annotations framework. In
PPPJ, 2013.

[17] Úlfar Erlingsson and F. B. Schneider. SASI enforcement of security
policies: a retrospective. In NSPW, 2000.

[18] WHATWG. Web workers HTML standard.
http://www.whatwg.org/specs/web-apps/current-work/
multipage/workers.html, 2013.

[19] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumenta-
tion for browser security. In POPL, 2007.

11 2014/3/16

