
Secure Programming via Game-based Synthesis

By

William R. Harris

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2014

Date of final oral examination: 17 Dec. 2014

The dissertation is approved by the following members of the Final Oral
Committee:

Somesh Jha, Professor, Computer Sciences
Thomas Reps, Professor, Computer Sciences
Thomas Ristenpart, Assistant Professor, Computer Sciences
Rajeev Alur, Professor, Computer Sciences
Xinyu Zhang, Assistant Professor, Electrical & Computer Engineering

© Copyright by William R. Harris 2014
All Rights Reserved

i

Dedicated to my mother and father

ii

Acknowledgments

Lately it occurs to me what a long, strange trip it’s been.

— Robert Hunter

It does, as they say, take a village to raise a graduate student. The work
presented in this thesis owes its existence largely to the work and guidance
of my advisors, Somesh Jha and Thomas Reps; their unique mixture of
dedication to the field and rigorous irreverence will be forever unmatched.
It has also been aided directly by the hard work and keen insights of
Jonathan Anderson, Sagar Chaki, Nicholas Kidd, Roman Manevich, Mooly
Sagiv, Robert Watson, and Nickolai Zeldovich. It could only exist in the
first place due to the creative insights and robust engineering of several
independent groups of researchers that included Robert Watson, Jonathan
Anderson, Nickolai Zeldovich, and an evaluation team at MIT Lincoln
Laboratory led by Michael Zhivich. The DARPA CRASH program was
also instrumental in fostering many of the collaborations that produced
the presented work.

Over the time that I performed the work described in this thesis, I
also grew tremendously as a researcher over the course of internships at
NEC Labs America under the mentorship of Sriram Sankaranarayanan, at
Microsoft Research India under the mentorship of Aditya Nori and Sriram
Rajamani, and at Microsoft Research Redmond under the mentorship of
Sumit Gulwani.

What part of it has come from me, I was only in position to produce due
to the influence of the unreasonably talented students from my advisors’

iii

research groups, and the camaraderie of the friends that I have met in
Madison and abroad over the last several years, and the unconditional
support of my family.

My dissertation research was supported, in part, by the National Sci-
ence Foundation under grant CCF-0524051; by DARPA and AFRL under
contract FA8650-10-C-7088; and by a Microsoft Graduate Fellowship. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the views of
DARPA, AFRL, NSF, or Microsoft.

iv

Contents

Contents iv

Figures, Tables, and Listings viii

Abstract x

1 Introduction 1

2 Transition Systems 13
2.1 Simulation, refinement, and abstraction 13
2.2 Two-player safety games 14
2.3 Structure Transition Systems 16

Part I Weaving for a Capability System
3 The Capsicum Capability System 22

4 Overview 24
4.1 gzip: a compression utility 24
4.2 gzip_pol: a capability policy for gzip 26
4.3 Instrumenting gzip 27

5 Technical Approach 32
5.1 cap: a language of capability programs 32

5.1.1 capcore: a core language 32

v

5.1.2 cap syntax 35
5.1.3 cap semantics 36
5.1.4 Program runs 39

5.2 Instrumentation as capability refinement 39
5.3 Capability policies 41

5.3.1 Conditions on cap stores 41
5.3.2 Capability policies 43

5.4 The capability-instrumentation problem 44
5.5 Capability instrumentation as game solving 44

5.5.1 Overview 44
5.5.2 From a program and policy to a finite game 47
5.5.3 Designing capability-operation templates 58

6 Evaluation 60
6.1 Benchmark programs, policies, and instrumentation 63

6.1.1 Compression utilities bzip2 and gzip 63
6.1.2 tcpdump 63
6.1.3 php-cgi 65
6.1.4 tar 66
6.1.5 wget 68

6.2 Performance 71

Part II Weaving for a DIFC System
7 Background on the HiStar DIFC System 76

8 Overview 78
8.1 auth_log: an append-only logging service 78
8.2 Policies for auth_log 80
8.3 Instrumenting auth_log 83

vi

9 Technical approach 88
9.1 difc: a language of DIFC programs 88

9.1.1 difccore: a core language 88
9.1.2 difc syntax 92
9.1.3 difc semantics 93
9.1.4 Program runs 99

9.2 Valid instrumentation as label refinement 100
9.3 DIFC policies 101

9.3.1 Conditions on difc stores 102
9.3.2 Policy automata 105

9.4 The DIFC labeling problem 105
9.5 DIFC labeling as game-solving 106

9.5.1 Overview 106
9.5.2 From a program and DIFC policy to a game 108
9.5.3 Designing label-operation templates 122

10 Evaluation 124
10.1 Benchmark Programs and Policies 126

10.1.1 A mutually-untrusting login service 126
10.1.2 clamwrap: a wrapper for ClamAV 131

10.2 Results 132

Part III Generating Weavers
11 The Parameterized Weaving Problem 139

11.1 Language models 139
11.2 System models 141
11.3 Parameterized valid instrumentation 143
11.4 Parameterized Policy Satisfaction 144
11.5 Problem definition 145

vii

12 Design of a Weaver Generator 146
12.1 Overview 146
12.2 From models, program, and policy to a game 148
12.3 Soundness 150

Part IV Conclusion
13 Related Work 154

14 Future Work 159

A Appendix 162
A.1 Non-interference policies 162

A.1.1 Overview 162
A.1.2 Extensions to difc semantics 163
A.1.3 Reasoning about pairs of traces 165

Bibliography 168

viii

Figures, Tables, and Listings

Figure 1.1 Workflow of the weaver generator. 7

Figure 4.1 gzip pseudocode . 25
Figure 4.2 gzip_pol: a capability policy for gzip. 26
Figure 4.3 Fragment of the game for the gzip weaving problem. . 29

Figure 5.1 Syntax of capcore. 33
Figure 5.2 Inference rules that define the transition relation→P of

a capcore program P. 34
Figure 5.3 Capability operations of cap that extend Op. 35
Figure 5.4 Inference rules that define the transition relation →c

over cap stores. 37
Listing 5.5 capweave: a sound solver for the capability-

instrumentation problem. 45
Figure 5.6 Example of the predicate transformer that models

create_serv . 53

Table 6.1 Features of benchmarks for evaluating capweave. . . . 70
Table 6.2 Results of applying capweave 71

Figure 8.1 auth_log pseudocode 79
Figure 8.2 log_client pseudocode 80
Figure 8.3 log_ar: a DIFC policy for auth_log 81
Figure 8.4 log_ni: a taint policy for auth_log. 82

ix

Figure 8.5 Fragment of the game for the auth_log weaving problem. 85

Figure 9.1 Syntax of difccore, a core programming language that
operates over data values. 89

Figure 9.2 Inference rules that define transition relation→P of a
difccore program P. 91

Figure 9.3 Label operations of difc that extend Op. 92
Figure 9.4 Semantic inference rules for difc. 96
Figure 9.5 Semantic inference rules for difc (cont.) 97
Listing 9.6 hiweave: a sound solver for the DIFC labeling problem. 107
Figure 9.7 Example of the predicate transformer that models create114

Figure 10.1 Interactions of HiStar login modules 127
Table 10.2 Features of benchmarks for evaluating hiweave. 133
Table 10.3 Results of applying hiweave 134

Figure 12.1 Pseudocode for the WeaverGen algorithm. 147

x

Abstract

Interactive security systems provide powerful security primitives (i.e.,
security-oriented system calls) that an application can invoke at various
moments during execution to control accesses to its sensitive information.
Prior to the work described in this thesis, an application developer was
forced to explicitly write imperative code that executes security primitives.
Moreover, a developer could only reason informally about whether the
code satisfied the developers intuitive notions of security and correctness.

This dissertation describes the design of policy weavers for interactive-
security systems. A policy weaver allows a programmer to specify desired
functionality and security guarantees of an application, and automatically
obtain a modified application that satisfies such guarantees when executed
on an interactive-security system. Each policy weaver consists of (i) a policy
language in which the developer expresses desired guarantees, and (ii)
a program instrumenter that takes as input an uninstrumented program
and a policy in the language, and outputs a program that satisfies the
specified policy.

We have designed and evaluated policy weavers for the Capsicum
capability system and the HiStar decentralized information-flow control
(DIFC) system by designing and applying a policy-weaver generator, which
takes as input the semantics of the primitives of each system and outputs
a weaver for the system.

1

1
Introduction

Developing practical but secure programs remains a difficult, important,
and open problem. A significant portion of the security vulnerabilities
in widely-used applications allow an attacker who can control inputs to
the program to use the program to perform actions on system state not
intended by the application programmer or user, or the system adminis-
trator. An attacker can use a vulnerable application to violate the secrecy
or integrity of information stored on the system on which the application
is executed (i.e., the application’s host system). Such vulnerabilities include
“Improper neutralization of special elements used in OS command (’OS
Command Injection’)” and “Buffer copy without checking size of input
(’Classic Buffer Overflow’),” which, in a recent audit of security-critical
applications [19], were classified in the Common Weakness Enumeration
(CWE) by the SysAdmin, Audit, Networking, and Security (SANS) Insti-
tute as the second and third most prevalent classes of vulnerabilities. Such
vulnerabilities can be found in network utilities that typically read inputs
directly from an untrusted network and execute with the privilege to ac-
cess arbitrary system resources [8, 10], and in file utilities and language
interpreters that are often deployed to process untrusted data or execute
untrusted programs [9, 11–14].

Even programs that do not contain vulnerabilities typically must share
sensitive information with other programs executing on their host (i.e.,
the application’s environment). In such situations, the goal is that coop-
erative programs should be able to carry out desired functionality using

2

the sensitive information, but malicious programs should not be able to
violate the secrecy or integrity of the sensitive information. For example, a
trusted logging service may maintain a log file of important events—with
the desired behavior being that each program in the logging service’s
environment can read the log, but can only modify the log by appending
to it (and cannot corrupt entries previously added to the log).

Conventional system-level security mechanisms can enforce security
guarantees for sensitive information throughout a system, but do not
provide mechanisms that an application run by an unprivileged user can
use to enforce the security of its sensitive information. Multi-level secure
systems [44] and SELinux [59] implement mandatory access control (MAC),
which allows a trusted user, typically an administrator, to specify an access-
control policy that the operating system enforces throughout the system
by mediating each access of a resource by a process. For example, an
administrator of a MAC system can specify a policy that enforces that if
an untrusted user u reads information from a sensitive file, then u can
never write information to a public directory. However, such systems do
not enable a program executed by an unprivileged user to guarantee the
security of its information. For example, the logging service described
above, executed by an unprivileged user on a MAC system, cannot prevent
other untrusted programs from directly modifying the log file that the
service creates.

Programming languages, program analyses, and program rewriters
can enforce that a given program does not violate the security of sensitive
information that is used only by that program. However, they cannot
enforce security guarantees about information shared by the application
with other programs on a system. In particular, information-flow lan-
guages (i) analyze a program statically to determine that no execution of
the program can violate security [41, 55], or (ii) monitor each program
execution at runtime [26, 33] to determine that the monitored execution

3

does not violate security. An Inline Reference Monitor (IRM) [24] is in-
strumentation code, inserted into a program by an IRM rewriter, that
checks throughout each execution of the instrumented program that the
instrumented program satisfies a given security policy. Such tools may
be used, e.g., to check that a program that accesses a user’s credit-card
number does not leak any information about the credit-card number to a
publicly-readable output channel. However, such tools cannot be used to
enforce that if an application creates a sensitive resource (e.g., the log file
described above) and transfers control to an unmonitored program in its
environment, then the unmonitored program does not leak information
from or corrupt information in the sensitive resource.

However, recent work [7, 22, 36, 58, 61] has produced new operating
systems that allow a program that executes on behalf of an unprivileged
user to protect the security of the program’s sensitive information, even
when the program executes a vulnerable program module or transfers
control to an untrusted program. Such operating systems extend the
set of system calls provided by a conventional operating system with
security-specific system calls. (We refer to such operating systems as
interactive-security systems, and refer to the system calls that they provide
as security primitives.) At various points during a program’s execution,
it invokes security primitives to direct the system to protect the security
of the program’s sensitive information before transferring control to an
untrusted program module or to the program’s environment.

One example of an interactive-security system on which applications
can enforce strong security guarantees is the capability operating system
Capsicum [58], now included in FreeBSD 9 [25]. For each process, Cap-
sicum tracks (1) the set of capabilities available to the process, where a
capability is a file descriptor and an access right for the descriptor, and (2)
whether the process has the authority to grant to itself more capabilities
(i.e., open more files). Capsicum provides to each process a set of system

4

calls that the process uses to limit its capabilities and its authority. Thus,
a process executing trusted code in a program can first access system re-
sources unrestricted by Capsicum, and then invoke primitives to limit itself
to have only the capabilities that it requires while executing an untrusted
program module. Thus, even if an attacker exploits a vulnerability in an
untrusted module that allows the attacker to attempt to perform arbitrary
system operations, the attacker will only be able to successfully carry out
operations allowed by the limited capabilities set by the trusted code.

The Capsicum primitives are sufficiently powerful that a programmer
can rewrite a practical program to satisfy a strong security guarantees by
inserting only a few calls to Capsicum primitives [58]. Unfortunately, a
programmer who writes a program for Capsicum must explicitly write
code that executes imperative operations on capabilities, and reason in-
formally that the rewritten program satisfies the programmer’s implicit
notion of correct behavior. In practice, it is difficult for programmers to
reason about the subtle, temporal effects of the primitives. In fact, even
Capsicum’s own developers have rewritten programs, such as tcpdump,
in a way that they tentatively thought was correct, only to discover later
that the program was incorrect and required a different rewriting [58].
Often, as in the case of tcpdump, the difficulty results from the conflicting
demands of (i) using low-level primitives, (ii) ensuring that the program
satisfies a strong, high-level security requirement, and (iii) preserving the
core functionality of the original program.

Whereas a program that executes on a capability system invokes primi-
tives to restrict the operations that can be performed by untrusted program
modules executed by the program, a program on Decentralized Information-
Flow Control (DIFC) operating system invokes primitives to protect the
secrecy and integrity of its information from untrusted programs that
execute in the program’s environment. A DIFC system maps each object
on the system (e.g., a process or file) to a label in a partially-ordered set,

5

mediates the flow of information between objects during an execution, and
only allows information to be transferred if the labels of the objects satisfy
an ordering condition [20, 22, 36, 46, 61]. Such systems provide primitives
that a program can invoke to update the labels of objects, according to a
label semantics.

A program executing on a DIFC system can invoke primitives that
enable it to enforce strong information-flow guarantees; for example, the
login service on the HiStar DIFC system enforces that the password that
a client provides to even an untrusted authenticator is not leaked by the
authenticator. Unfortunately, a programmer who writes a program for a
DIFC system must explicitly write a program that uses imperative label
operations, and informally reason that the program uses such operations
correctly to (i) to carry out desired functionality when interacting with
a cooperative environment, but (ii) protects the secrecy and integrity of
its information when interacting with a malicious environment. Previous
research [38, 39, 57] has shown that programmers have difficulty using
labels in the context of DIFC languages to verify that a program does not
leak information, or to rewrite a program that maintains labels to enforce
information-flow security. There has been almost no previous work on
writing programs that maintain labels on a DIFC system to preserve the
security of information shared with untrusted programs. (The limitations
of previous work [21] are discussed in detail in Chapter 13.)

Developing applications for a given interactive-security system is thus
a significant challenge. A second challenge is to develop methods so that
techniques and tools for programming for a given interactive-security sys-
tem can be easily adapted to another system. Capability systems provide
security guarantees different from those provided by DIFC systems. More-
over, systems with primitives and guarantees different from both capability
and DIFC systems continue to be developed, such as tagged memory sys-
tems [7]. Finally, even within a single class of interactive-security systems,

6

different systems can have important, but subtle differences. Asbestos [22],
HiStar [61], and Flume [36] are each DIFC systems that allow applications
to enforce information-flow guarantees, but provide to applications prim-
itives with subtle differences with which to enforce such guarantees. A
developer of an interactive-security system thus faces a significant chal-
lenge to deploying his system, in that after designing and developing the
primitives of the system, he must then design and develop the application
programming environment (i.e., programming libraries) for the system
from scratch.

The thesis of the work presented in this dissertation is that practical
programs can be instrumented automatically from declarative security policies to
use imperative interactive-security primitives to satisfy the policies; instrumenters
can be generated automatically from declarative specifications of the semantics of
interactive-security primitives. The work presented in this dissertation intro-
duces techniques that address the above challenges faced by application
and system developers for interactive-security systems. To address the
challenge of programming applications for two of the interactive-security
systems described above, the Capsicum capability system and the HiStar
DIFC system, we have designed languages of security policies with which a
programmer can explicitly specify the operations that untrusted program
modules and the program’s environment should and should not be able
to perform on sensitive resources. Along with each policy language, we
have created a program instrumenter that takes from the programmer
a program that invokes no security primitives and a security policy for
the program, and automatically instruments the program to execute se-
curity primitives so that it satisfies the policy. We refer to the process
of instrumenting a program to satisfy a policy as weaving the policy into
the program (or simply “weaving,” for short), and refer to a program
instrumenter that implements the weaving process as a policy weaver.

To address the challenge of designing and developing a programming

7

Uninstrumented
Program P

Policy Q for P
on S

Semantics of
Interactive-security

System S

Weaver for S Weaver
Generator

P woven to satisfy Q
when executed on S

Programmer Policy
Writer

System
Developer

Figure 1.1: Workflow of the weaver generator.

environment for an interactive-security system, we have developed a
weaver generator that takes as input a semantics of an interactive secu-
rity system, and generates a weaver for the system automatically; the
workflow of the weaver generator is depicted graphically in Fig. 1.1. A
system developer provides to the generator a definition of (1) the state
space of their system, (2) the set of primitives provided by the system,
and (3) a semantics of each primitive that describes how each primitive
transforms the system state. The developer then obtains a policy weaver
for their system from the generator automatically. We have obtained the
policy weavers for the Capsicum and HiStar in particular by applying the
weaver generator.

There are three key, closely-related challenges to developing weavers
for interactive-security systems. The first challenge is to design policy lan-

8

guages that can express the security requirements of practical applications
for interactive security systems independent of the primitives that a pro-
gram must invoke to satisfy the policy. The second challenge is to design
a weaving algorithm that can reason about the semantics of programs on
interactive security systems; such programs are difficult to reason about
because interactive-security systems typically allow a program to generate
security-relevant state consisting of an unbounded set of objects, with
intricate relationships between objects. The third challenge is to design
a weaving algorithm that is parameterized on the semantics of a given
interactive-security system and its policies, and can thus be applied to
generate weavers for different interactive-security systems.

To address the above challenges, we developed an approach that com-
bines techniques for synthesizing programs that satisfy temporal policies
(namely, game-based synthesis) with techniques that compute sound ap-
proximations of the infinite set of states that a program may reach (namely,
analysis of structure transition systems). In particular:

• We defined an operational semantics for the Capsicum and HiStar
primitives as transformers of logical structures. We modeled the state
space of each system as the space of first-order structures in a logical
vocabulary, and modeled the semantics of each system primitive as
transformers for each predicate in the vocabulary. (We refer to the
transition system defined by such a state space and its transformers
as a structure transition system; structure transition systems were
originally explored in previous work on shape analysis [47] and as a
platform for emulating sequential algorithms [28].)

• We designed policy languages as classes of automata over conditions on
state. Policies for Capsicum applications describe what capabilities
a trusted program module must ensure that an untrusted program
module possesses when the trusted module transfers controls to the
untrusted module, and what capabilities the trusted program must

9

ensure that the untrusted program never obtains. Policies for HiStar
applications describe which files a program’s environment must be
able to read from or write to when the program transfers control to
the environment, and which files the program’s environment should
never be able to read from or write to.

• We designed an algorithm that takes (1) a program that invokes
no security primitives and (2) an application policy, and weaves the
program to invoke system primitives so that it satisfies the policy. The
algorithm reduces the problem of correctly weaving the program
to solving a two-player safety game [3]. Such a game is played in
sequential turns by two competing players: an Attacker, who attempts
to drive the game to a particular state, and a Defender, who attempts
to thwart the attacker. A winning Defender strategy for a game is a
procedure that chooses a Defender action in response to a play such
that if the Defender always chooses his next action according to
the strategy, then the Defender always wins the game. The weaver
constructs a game in which the Attacker models untrusted program
modules and the program’s environment, and every play won by
the Attacker corresponds to an execution of the program and its
environment that violates the input application policy. Under this
model, a winning Defender strategy corresponds to a weaving of the
program such that all executions of the woven program satisfy the
application policy.

To construct from a program P a finite game (so that it can be solved
efficiently via a classical algorithm), we create a program P ′ that may
execute the sequences of operations executed by multiple possible
instrumentations of P, and then create a finite abstraction P ′# of P ′.
To construct P ′# so that it still retains enough information about the
executions of P ′ to differentiate executions that result in a violation
of the policy from runs that result in satisfaction of the policy, we

10

perform an analysis of P ′ that computes a finite approximation of
the set of structures that may be reached by a structure-transition
system [47] that models P ′. From P ′#, we construct a game for which
each winning Defender strategy defines a satisfying weaving of P.

We believe that the technique proposed in this work, which combines
game-based synthesis with shape analysis, is particularly well-suited to ad-
dress the problems that arise in weaving programs for interactive-security
systems. Before performing the work described in this thesis, we per-
formed preliminary work on automatically instrumenting programs for
the Flume DIFC system [31]. The approach in our preliminary work re-
duced the problem of instrumenting a program for a DIFC system to
solving a system of constraints using an SMT solver. Our experience led
us to conclude that approaches based on constraint solving were useful
for instrumenting programs that operated over a bounded set of security-
sensitive objects, but could not be naturally applied to instrument pro-
grams that operated over an unbounded set of objects, including programs
that create capabilities over unbounded sets of descriptors or assign labels
to an unbounded set of objects on a filesystem.

We thus developed a weaver for the Capsicum capability system that
constructed a game by exploring an abstract state space of a program, using
a system semantics and abstract semantics represented as operational
code in the weaver [32]. While we were able to apply this approach to
weave practical programs for Capsicum, we found that implementing even
fixed abstractions for Capsicum’s state space was a burdensome and error-
prone task, and that such abstractions could not be generalized naturally
to construct useful abstractions for the relatively-complex states of HiStar
programs.

To develop a weaver generator that could be instantiated to obtain
weavers for both Capsicum and HiStar, we observed that the state spaces
of both Capsicum and HiStar, while having apparently fundamentally

11

different properties, can both be modeled accurately as classes of relational
structures, and the semantics of primitives can be modeled as predicate
transformers specified using formulas in first-order logic with transitive
closure. Existing work on shape analysis [47] has developed accurate but
scalable abstract domains for such classes of structures, even when the size
of structures in a class is unbounded. The work presented in this thesis
thus overcomes the restrictions on the size of states and the difficulties of
developing abstractions that are inherent to previous approaches.

If we step back a bit and consider the trajectory of this work, we
switched from thinking about the problem as one that was best encoded as
a constraint-satisfying problem to a kind of synthesis problem: the goal of
policy weaving is to synthesize the code (and its placement in the program)
that enforces the desired policy. The use of games falls out naturally from
this perspective. We also found that some techniques often used in other
work on synthesis—particularly the use of advice “templates”—were cru-
cial to scaling up the game-based synthesis approach to policy weaving
(see §5.5.3 and §9.5.3).

We developed a weaver-generator wag that weaves programs in the
LLVM intermediate language, applied wag to generate weavers for Cap-
sicum and HiStar, and applied the weavers to weave security-critical appli-
cations for Capsicum and HiStar. We found that the weavers could both
weave code that was functionally equivalent to code written manually for
such applications in previous work by the system developers, and could
weave programs that had not be instrumented in previous work.

We applied the weaver for Capsicum, capweave, to rewrite several Unix
utilities for Capsicum that contain security vulnerabilities. The woven
programs included programs that were previously instrumented manu-
ally by the Capsicum development team, programs suggested through
discussion with the Capsicum development team, and the PHP CGI in-
terpreter, whose policy was defined by an independent group at MIT

12

Lincoln Laboratory. We applied capweave to weave programs to satisfy
application policies with no more than three to four transitions. Each
policy not only ruled out known exploits in each program, but restricted
the capabilities of significant segments of the program, potentially ruling
out a large class of future vulnerabilities. Programs woven by capweave
executed with behavior equivalent to programs instrumented manually
by an expert, and incurred sufficiently low runtime overhead that they are
still deployable: only 4% runtime overhead over unwoven programs on
realistic workloads.

We applied our weaver for HiStar, hiweave, to weave programs instru-
mented for HiStar in previous work, including a wrapper for the ClamAV
virus scanner and a login service for a mutually-untrusting client and
authenticator, which consists of four independent but tightly-interacting
programs [61], and to weave the applications woven for Capsicum. The
manually-instrumented versions of the programs were non-trivial: al-
though small (only a few hundred lines of code), they contain dozens of
operations that use information-flow labels, and typically must use labels
to protect program modules that can be invoked later in an execution by an
arbitrary environment to operate on sensitive objects. hiweave wove such
programs automatically from application policies that contain between
2–7 transitions.

Outline: This dissertation is organized as follows. Chapter 2 reviews
previous work in program analysis and automata. Part I and Part II discuss
the design and development of weavers for the Capsicum and HiStar
operating systems, respectively. Part III discusses the design of a policy-
weaver generator. Part IV concludes with a discussion of related work and
possible directions for future work.

13

2
Transition Systems

In this chapter, we review definitions of several automata-theoretic con-
cepts that we will use to define and solve the policy-weaving problem for
Capsicum and HiStar. In particular, we review definitions of abstractions
(§2.1), two-player safety games (§2.2), and transition systems whose states
are logical structures (§2.3).

2.1 Simulation, refinement, and abstraction

A transition system consists of a state machine, a space of actions, and a
transition relation between states on actions.

Definition 1. Let a transition system be T = (Q,Σ,→), where:

• Q is the state space of T .

• Σ is the action space of T .

• →⊆ Q× Σ×Q is the transition relation of T .

A run of T is an alternating sequence of states and actions that
respect the transition relation of T . That is, a run is a sequence
q0,a0, . . . ,qn−1,an−1,an such that for 0 6 i < n, (qi,aiqi+1) ∈→. A
trace of T is a sequence of actions a0, . . . ,an such that there is some se-
quence of states q0, . . . ,qn+1 for which q0,a0, . . . ,qn,an,qn+1 is a run of
T .

14

For transition system T and T ′, T ′ at state q ′ simulates T at state q if
each transition that T can take from q is matched by a transition that T ′

can take from q ′.

Definition 2. Let T = (Q,Σ,→) and T ′ = (Q ′,Σ,→ ′) be transition systems.
A simulation relation ∼⊆ Q×Q ′ from T to T ′ is a relation from the states of
T to the states of T ′ such that for all states q0,q1 ∈ Q and q ′0 ∈ Q and each
action a ∈ Σ, if (q0,a,q1) ∈→ and q0 ∼ q

′
0, then there is some q ′1 ∈ Q such

that (q ′0,a,q ′1) and q1 ∼ q
′
1. If there is a simulation relation ∼ from T to T ′

that contains a pair of states (q,q ′), then we say that T ′ simulates T from
(q,q ′), or, alternatively that T refines T ′ from (q,q ′).

If ∼ is a function, then we refer to it as an abstraction function, and we
refer to T ′ as an abstraction of T .

2.2 Two-player safety games

A conventional automaton may be viewed as a transition system that, in
each step of a run, takes as its next input a symbol from one agent, typically
referred to as the environment. A two-player safety game is a transition
system that, in each step, takes as its next input a symbol from one of two
competing agents, or players, called the Attacker and the Defender.

Definition 3. A turn-based two-player safety game is a six-tuple G =

(A,D, ι, F,Σ, τ), where:

• A is the set of Attacker states.

• D, which does not overlap with A, is the set of Defender states. QG =

A ∪D are the states of G.

• ι ∈ D is the initial state.

• F ⊆ QG is the set of Attacker-winning states.

15

• Σ is the alphabet.

• τ : QG × Σ→ QG is the transition function.

A play is a sequence of symbols in Σ. A play that drives G from ι to a state
in A (D) is an Attacker (Defender) play, and a play that drives G from ι to a
state in F is an Attacker-winning play.

A strategy for a game player is a procedure that takes as input the
current play and outputs an action for the player to choose. A winning
strategy is a strategy that a player can follow to always win when a play
begins in the initial state. In general, many practical problems in synthesis
can be reduced to synthesizing winning strategies for both the Attacker
and Defender. In this work, we focus only on synthesizing and using
winning strategies for the Defender.

Definition 4. LetG = (A,D, ι, F,Σ, T) be a game. A Defender strategy ofG is
a function S : Σ∗ → Σ from each Defender play of G to a game action. The
plays of S are all plays in which the Defender chooses as the next symbol of
the play the symbol output by S for the current play. I.e., p ∈ Σ∗ is a play
of S if for each prefix p ′ of p that is a Defender play of G, p ′ appended
with S(p) (i.e., p ′ S(p ′)) is a play of S.

A winning Defender strategy is a strategy for which each play is not an
Attacker-winning play.

A positionless Defender strategy is one that chooses the next action using
only the current state of the game. I.e., a positionless strategy S : D→ ΣG

is a function from each Defender state to an action; a play p ∈ Σ∗ is a play
of S if for each prefix p ′ of p, if p ′ drives G to state q ∈ D, then p ′ S(q) is a
prefix of p.

There are known algorithms that take a finite two-player gameG and ei-
ther (1) determine thatG has no winning Defender strategy, or (2) construct
a winning Defender strategy [3]. Such algorithms execute in time linear in

16

the size of G, and construct a positionless strategy whose representation
uses space linear in the size of G.

For a finite-state acceptor A of words over an alphabet Σ and a game G,
the game-automaton product ofA andG is a game for which each Attacker
winning play is an Attacker-winning play of G that is also accepted by A.

Definition 5. LetM = (QM, ιM,Σ, FM, TM) be a deterministic finite-state
acceptor, and let G = (AG,DG, ιG, FG,Σ, TG) be a two-player safety game.
The game-acceptor product G×G,AM = (AP,DP, ιP, FP,Σ, TP), where

• The Attacker states are the product space of the Attacker states of G
and the states ofM. I.e., AP = AG ×QM.

• The Defender states are the product space of the Defender states of
G and the states ofM. I.e., DP = DG ×QM.

• The initial state is initial state of G paired with the initial state ofM.
I.e., ιP = (ιG, ιM).

• The alphabet is the alphabet of G andM, Σ.

• The transition function of P defined analogously to the transition
function of a product of automata. I.e., if for qG ∈ QG, qM ∈ QM,
and a ∈ Σ, τP((qG,qM),a) = (τG(qG,a), τM(qM,a)).

2.3 Structure Transition Systems

Previous work in program analysis and model checking has focused on
techniques that take a program P that defines a transition relation over a
large—potentially infinite—set of states and construct a finite program
that simulates P. In particular, previous work [47] on analyzing programs
that operates on linked data structures showed that shape-analysis prob-
lems can often by solved by analyzing programs that operate on logical

17

structures. The shape-analysis problem is to determine if the program
heaps reached over all runs of a given program satisfy a given property.
Structure programs consist of a control-flow graph labeled by predicate
transformers, which define guarded transformers over a state space of
logical structures. A structure-analysis problem is to determine if all of the
logical structures generated by a given structure program satisfy a given
formula in first-order logic plus transitive closure (denoted by FOL[TC]).
We denote the set of FOL[TC] formulas over a vocabulary V as FORMS[V].

Definition 6. Let V be a first-order relational vocabulary (i.e., a first-order
vocabulary with predicate symbols, but no constant or function symbols)
that contains the unary-predicate symbol new. A predicate transformer for V
is a triple of (1) a Boolean flag, (2) an FOL[TC] formula over vocabulary
V, and (3) a function from each predicate symbol in V of arity n to an
FOL[TC] formula over V with the indexed set of n free variables {xi}i. We
denote the space of logical structures, FOL[TC] formulas, and predicate
transformers over vocabulary V as STRUCTS[V], FORMS[V], and TV =

B× FORMS[V]× (V→ FORMS[V]). For structures S0 and S1, let the union
of S0 and S1, denoted S0 ∪ S1 be the structure whose universe is the union
of the universes of S0 and S1, and whose relations are the unions of the
relations of S0 and S1.

For vocabulary V, a predicate transformer ρ = (ν,ϕ, T) ∈ T [V] defines
a partial function over logical structures τρ : STRUCTS[V]→ STRUCTS[V],
as follows. Let S = 〈U, ι〉 be a logical structure with universe U and
interpretation ι of the relational symbols in V in universe U. τρ(S) =

〈U ′, ι ′〉 is the logical structure in which

• The universe U ′ contains a fresh individual not in U if and only if
the Boolean flag ν designates that τ introduces a fresh individual.
I.e., if ν = False, then U ′ = U, and if ν = True, then U ′ = U ∪ {o} for
some o /∈ U.

18

• Only the fresh individual satisfies the unary relation new. I.e., for an
individual o ∈ U ′, new(o) holds only if o ∈ U ′ \U. For every other
predicate P ∈ V of arity k, P holds for a k-tuple of individuals I if I
satisfies the update-formula bound to P in τρ. I.e, I satisfies T(P) in a
variable context that maps each free variable xi to the ith component
of I.

A structure program is a control-flow graph over a space of operations
that transform logical structures.

Definition 7. Let a structure program be a six-tuple (N, ι, O,E,V, τ), where:

• N is the set of control nodes.

• ι ∈ N is the initial control node.

• O is a space of operations.

• E ⊆ N× O×N is a set of control edges annotated with operations.

• V is a first-order vocabulary.

• τ : O→ T [V] are the predicate transformers of P.

A structure program P defines a transition system over logical struc-
tures TP = (Q,Σ,→), where:

• A state is a control-flow node paired with a structure over V: Q =

NP × STRUCTS[V].

• The actions are the space of operations: Σ = OP.

• The transition relation→⊆ Q×Σ×Q updates the control location of
a state according to the control edges of P, and updates the structure
of a state according to the predicate transformers of P’s edges. For
control locations n,n ′ ∈ N, operation o ∈ O, and logical structures
S ∈ STRUCTS[V], if (n,o,n ′) ∈ E, then ((n,S),o, (n ′, τ[o](S))) ∈→.

19

We denote the class of structure programs over vocabulary V and
operations O as StructProgs(V , O).

For each structure program P, a solution to the structure-abstraction
program STRUCT_ABS(P) is a pair (P#, NA), where A is a finite abstraction
of P, and NA : LOCP# → NP maps each abstract state q# ∈ QP# to the
control-location in P# of all states abstracted by q#.

A structure simulation is a simulation in which the state space of the
simulating transition system is a space of logical structures.

Definition 8. For transition system (Stores, O,→), a structure simulation is
a triple consisting of:

• A relational vocabulary V .

• A class of predicate transformers for V-structures over the operations
O.

• A function StoreToStruct : Stores→ STRUCTS[V] that defines a sim-
ulation from the transition system (Stores, O,→) to the transition
system (STRUCTS[V], O, T).

20

Part I

Weaving for a Capability
System

21

In this part of the dissertation, we introduce the weaving problem
for the Capsicum capability system, and describe our technique for the
solving the weaving problem. In Chapter 3, we review a simplified version
of Capsicum with which we describe the Capsicum weaving problem. In
Chapter 4, we illustrate the Capsicum weaving problem and our approach
by example. In Chapter 5, we explain our approach in technical detail.
In Chapter 6, we present case studies of applying our Capsicum policy
weaver to weave programs for Capsicum.

22

3
The Capsicum Capability

System

Capsicum [58] is a capability system that extends the system objects and
operations of the Unix operating system. Capsicum provides primitives
that an application can invoke to restrict under what conditions applica-
tion modules can open descriptors to resources (i.e., files and network
connections) and perform operations on descriptors (e.g., read, write, and
seek). In particular, the Capsicum kernel maps each process p to a Boolean
flag that denotes whether p has ambient authority, and maps each process
p and descriptor d to the set of operations that p can perform on d; if p
can perform operation o on d, then p holds the access right for o on d. A
descriptor paired with an access right is a capability.

If a process p requests to open a descriptor d to a resource or perform
an operation o on d, the Capsicum kernel only grants the request if p, o,
and d satisfy particular constraints. In particular, p can only open a new
descriptor if p holds ambient authority. p can only perform operation o
on descriptor d if p holds the capability (d, o).

A process p can allow another process q (which in practice, typically
executes an untrusted program module) to perform fixed operations with
authority or capabilities held by p but not held by q via a remote-procedure
call (RPC) service. In particular, if p holds capabilities C, then p can create
an RPC service s consisting of (1) a program module M, (2) a Boolean flag
A denoting whether s holds ambient authority, which may only hold if p

23

holds ambient authority, and (3) a set of capabilities C ′ ⊆ C. A process q
distinct from p can invoke s to execute M with (1) ambient authority if A
holds and, (ii) with capabilities C ′.

The actual implementation of Capsicum is more complex than the
system described above. In particular,

• Capsicum extends the semantics of each Unix operation on processes,
in particular forking a process, to affect how ambient authority and
capabilities are propagated across processes.

• Capsicum maps some operations to a set of access rights; a process
p can only perform an operation o on a descriptor d if p holds each
access right for d required to perform o.

• A process on Capsicum can relinquish ambient authority or relin-
quish a capability at any point in its execution, not only when calling
an RPC service.

To simplify the presentation of our approach, we do not consider programs
whose state consists of multiple processes and RPC services, but consider
programs whose state instead consists of a memory and RPC services,
each of which may hold ambient authority and capabilities. We omit
descriptions of such features to simplify the presentation of the approach
described in this dissertation, but such features are supported by the actual
implementation of the approach.

24

4
Overview

In this section, we illustrate by example the capability-instrumentation
problem, and our technique to solve the problem. In §4.1, we introduce a
version of the gzip compression utility written in a simple language with
capability features. In §4.2, we present a policy in our policy language
that describes the security and functionality requirements of gzip. In §4.3,
we describe an instrumented version of gzip that satisfies the policy and
that is generated by our technique. We also summarize the key challenges
for instrumenting gzip, and how they are addressed by our technique.

4.1 gzip: a compression utility

Fig. 4.1 contains pseudocode for a version of the gzip compression util-
ity written in cap, a simple language with capability features. For now,
ignore the lines highlighted in gray: these are the instrumentation code
introduced by our technique, and are described in §4.3.

gzip consists of three modules: an entry module gzip, a driver-loop
module loop, and a compression module cmp. gzip immediately transfers
control (i.e, “jumps”) to loop (line L0). loop iterates over the sequence of
input filenames (line L1). In each iteration, loop loads the next input file
name (L1-L2), opens a new descriptor i for input and binds i to descriptor
variable in (line L3), opens a new descriptor o for output and binds o to
descriptor variable out (line L4), and then jumps to cmp.

When cmp executes correctly, it reads uncompressed data from i, com-

25

gzip:
// Create RPC service for loop.
C0a: s0 := create_service(loop, mem_amb(), mem_caps());
C0b: set_mod_service(loop, s0);
L0: jump loop;

// Create input, output descriptors from the next filename.
loop:
L1: has_next := has_next_file();
L2: br has_next ? L3 : L6;
L3: in = open(IN, next_in_path());
L4: out = open(OUT, next_out_path());
// Create a service with which to execute the compression module.
C5a: s1 := create_service(cmp, no_amb(),

rem(in, WR, rem(out, RD, mem_caps())));
C5b: set_mod_service(cmp, s1);
L5: jump cmp;

Figure 4.1: gzip: a compression utility in the capability language cap. gzip
consists of an entry module (gzip), a loop driver (loop), and a com-
pression module (cmp, not defined). Operations on capabilities, which
are generated by our technique, and accompanying comments are
highlighted with a gray background. Our technique does not actually
generate comments that accompany capability operations.

presses the data read, writes the compressed data to o, and then jumps
to loop. However, in previous versions of the Unix utility gzip, cmp con-
tained vulnerabilities that an attacker who could control the inputs to
gzip could exploit to execute arbitrary program operations within cmp. To
represent the fact that the possible executions of cmp are unknown, Fig. 4.1
contains no definition of cmp, and we refer to cmp as the environment of
gzip.

26

0 1

32

ENV:
NOT Alloc[IN](x),

MemRD(x)

ENV:
NOT Alloc[OUT](x),

MemWR(x)

L0

ENV: MemRD[in], MemWR[out]

ENV:
NOT MemRD[in]

ENV:
NOT MemWR[out]

Figure 4.2: gzip_pol: a capability policy for gzip. Each transition is annotated
with a description of a set of cap states; the semantics of each descrip-
tion is described in Ex. 1.

4.2 gzip_pol: a capability policy for gzip

Our goal is to automatically instrument gzip to use capability operations
so that the environment of gzip can carry out only necessary operations
on a restricted set of descriptors. In particular:

• When loop jumps to cmp, memory should hold the (1) the RD access
right for the descriptor stored in variable in and (2) the WR access
right for the descriptor stored in variable out.

• When the program executes cmp, memory should only hold the RD
access right for descriptors allocated at IN and the WR access right for
descriptors allocated at OUT.

In §5.3.2, we define a language of policies for cap programs as capability
policies. A capability policy is a finite-state machine over an alphabet of
conditions on the capabilities held by a program. A trace of cap states t
violates a capability policy C if the states of t satisfy a trace of conditions
that is accepted by C.

Example 1. Fig. 4.2 contains a capability policy gzip_pol that explicitly
expresses the requirements for the modules of gzip. gzip_pol is an au-
tomaton over an alphabet in which each symbol represents a set of cap

27

states. Each symbol is represented as (1) the control location of each state
in the set and (2) a (potentially-empty) sequence of comma-separated
clauses. Each clause is a literal over a predicate that describes whether
memory can read from or write to particular objects. Objects are repre-
sented as either in or out, which represent the objects stored in variables
in or out, or the variable x, which is existentially quantified over all objects.
A comma-separated sequence of clauses represents the conjunction of all
clauses in the sequence.

Each execution of gzip begins in the initial state 0, and remains in 0
until it executes a state in the environment of gzip. The execution satisfies
gzip_pol if it completes loop in a state in which the environment can
read from the descriptor stored in in and can write to the descriptor
stored in out, on which actions gzip_pol transitions from state 0 to state 1.
Otherwise, the execution violates gzip_pol; i.e., gzip_pol transitions from
state 0 to state 2. While the execution is in the environment, if the program
can read from a descriptor not allocated at IN or write to a descriptor
not allocated at OUT, then the execution violates gzip_pol (i.e., gzip_pol
transitions from state 1 to state 3). Otherwise, when the execution re-
enters loop (i.e., executes the operation at control location L0), gzip_pol
transitions from state 1 to state 0.

4.3 Instrumenting gzip

The complete gzip in Fig. 4.1, including the capability operations high-
lighted in gray, satisfies the capability policy gzip_pol. The semantics of
the capability operations used by gzip are described briefly in Chapter 3,
and in detail in §5.1. In lines C0a-C0b, gzip binds to loop an RPC service
s0 with ambient authority, and jumps to loop, updating its ambient au-
thority and capabilities to those of s0. In lines C5a-C5b gzip binds to cmp
an RPC service without (1) ambient authority, (2) the WR access right for

28

the descriptor stored in in, and (3) the RD access right for the descriptor
stored in out. gzip then jumps to the undefined module cmp (represented
as the control location ENV, which denotes the environment). The result of
executing the instrumented capability operations is that program memory
can hold only the capabilities to read from the descriptors allocated at
allocation site IN and write to descriptors allocated at allocation site OUT,
and cannot obtain any other capabilities. gzip_pol thus remains in state 1
while the environment executes, and remains in state 0 when a module of
gzip of executes.

The instrumentation algorithm implemented in our policy weaver for
Capsicum, capweave, can take as input the version of gzip that executes no
capability operations (i.e., gzip in Fig. 4.1 with the capability operations in
gray removed), and the capability policy gzip_pol, and can automatically
instrument gzip to execute the capability operations depicted in Fig. 4.1.
The primary programming challenge addressed by capweave in the con-
text of gzip is to model soundly all possible executions of the untrusted
cmp module of gzip, which may include (1) cooperating executions in
which cmp attempts to only read from the descriptor stored in in and write
to the descriptor stored in out and (2) malicious executions in which cmp
attempts to open arbitrary descriptors and perform arbitrary operations
on the descriptors that it holds. The technique applied by capweave to
address this challenge is: (1) define a program gzip’ whose executions
are the executions of multiple possible instrumentations of gzip; (2) con-
struct a finite over-approximation gzip ′# of the language of executions
of gzip’ that violate gzip_pol; (3) use gzip ′# to construct a game G (de-
fined in §2.2) for which each play models an execution of gzip’, and each
Attacker-winning play models an execution of gzip ′# that may result in a
violation of gzip_pol; (4) try to find a winning Defender strategy D of G;
(5) from D, instrument gzip to execute capability operations throughout
each execution e that correspond to the actions chosen by D through the

29

C5a,
0

L5a,
0

L5b,
0

ENVc,
3

ENVa,
2

L5c,
0

L5d,
0

a:=no_amb();

C5a0,
0

C5a1,
0

a:=mem_amb();

s0:=create_serv(
 cmp, a,
 rem(in, RD,
 mem_caps()));

s0:=create_serv(
 cmp, a,
 rem(in, WR,
 rem(out, RD,
 mem_caps())));

s0:=create_serv(
 cmp, a,
 rem(in, RD,
 mem_caps()));

s0:=create_serv(
 cmp, a,
 rem(in, WR,
 rem(out, RD,
 mem_caps())));

jump cmp

ENVb,
1

ENVd,
2

ENVe
1

jump cmp jump cmp jump cmp

s:=open(PRIV, priv_path());

set_serv(
 loop, s0);

C5b0,
0

C5b1,
0

C5b2,
0

C5b3,
0

set_serv(
 loop, s0);

set_serv(
 loop, s0);

set_serv(
 loop, s0);

Figure 4.3: Fragment of the game modeling the problem of instrumenting gzip
to satisfy gzip_pol immediately before executing control location L5.
Defender states are depicted as squares, Attacker states are depicted
as circles, and Attacker-winning states are depicted as doubled circles.

play that models e.
A fragment of the game constructed by capweave to weave gzip to

satisfy gzip_pol is depicted in Fig. 4.3. Each game state consists of a
pair of a gzip’ state and a gzip_pol state, and is depicted in Fig. 4.3 as a
node annotated with (1) the control location of the state of gzip extended
with a distinguishing extension character in the range ’a’—’e’, and (2) the
state of gzip_pol that it models. States in which gzip’ executes cmp are

30

annotated with a control location of the form ENVi to denote that the
environment of gzip’ executes. Each edge between states is annotated
with the cap operation on which the game transitions. Variations of the
capability operation to create an RPC service at C5a in Fig. 4.1 are modeled
in Fig. 4.3 as sequences of capability operations chosen at control location
C5a, followed by either control location C5a0 or C5a1.

Capweave actually constructs a game from a finite over-approximation
gzip ′# of the language of executions of gzip ′. Such an abstraction will,
for example, merge “similar” states that, e.g., differ only in the number
of descriptors allocated at each allocation site, but not in the capabilities
assigned to each descriptor. To simplify the discussion, in Fig. 4.3, we have
depicted a fragment of the game related to the one that would actually be
used, in this case constructed directly from gzip’.

The game fragment in Fig. 4.3 depicts four plays that start from a state
“C5a, 0”, which models an execution at control location C5a that has driven
gzip_pol to state 0. The game states starting from state “C5a, 0” model
states reached after gzip executes the operations in Fig. 4.1, lines C0a-L4.

Along each play from “C5a, 0”, the Defender chooses a sequence of
actions that model an instrumentation of gzip that chooses (1) an ambient
authority and (2) a set of capabilities with which to create the RPC service
that it invokes to execute cmp. The ambient authority and capabilities
chosen in each play are distinct. On the play from state “C5a, 0” to state
“ENVa, 2”, the Defender chooses actions that model an instrumentation
that executes cmp with the ambient authority and capabilities of memory,
without the RD access right for the descriptor stored in descriptor variable
out. “ENVa, 2” is an Attacker-winning state because it models a program
state in which memory does not hold the RD access right for the descriptor
stored in in when gzip completes execution of loop, driving gzip_pol to
the accepting state 2.

On the play from “C5a, 0” to “ENVb, 1” the Defender chooses actions

31

that model an instrumentation that executes cmp with the ambient author-
ity held by memory, the RD access right for the descriptor stored in in,
and the WR access right for the descriptor stored in out. “ENVb, 1” is not
an Attacker-winning state, but the Attacker may transition from “ENVb,
1” to the state “ENVc, 3” by opening a new file descriptor with arbitrary
access rights. “ENVc, 3” is an Attacker-winning state because it models a
program state in which the program executes an untrusted module and
memory holds a capability not opened at allocation sites IN or OUT, driving
gzip_pol to the accepting state 3.

On the play from “C5a, 0” to “ENVd, 2”, the Defender chooses ac-
tions that model an instrumentation that executes cmp without ambient
authority, and with the capabilities of memory, except for the RD access
right for the descriptor stored in descriptor variable in. “ENVd” is an
Attacker-winning state for a reason analogous to the reason that “ENVa, 2”
is an Attacker-winning state.

On the play from “C5a, 0” to “ENVe, 1”, the Defender chooses actions
that model an instrumentation that executes cmp without ambient author-
ity, and with the capabilities held by memory, except for the RD access
right for the descriptor stored in descriptor variable out and the WR access
right for the descriptor stored in descriptor variable in. “ENVe, 1” is not
an Attacker winning state, and the Attacker cannot choose any sequence
of actions from “ENVe, 1” that will drive the game to an Attacker-winning
state. The trace of actions from “C5a, 0” to “ENVe, 1” is the trace of each
execution of the instrumented gzip in Fig. 4.1 from control location to C5a
to L5.

32

5
Technical Approach

In this chapter, we describe the technical details of our approach to solv-
ing the Capsicum weaving problem. In §5.1, we define the syntax and
semantics of a capability-based programming language cap. In §5.2, we
formulate the conditions under which one cap program is a valid instru-
mentation of another cap program. In §5.3.2, we define a language of
policies for cap programs. In §5.4, we define the problem of instrument-
ing a cap program to satisfy a capability policy. In §5.5, we describe our
technique for solving the instrumentation problem.

5.1 cap: a language of capability programs

In this section, we first define a core language capcore of imperative
programs without capability features. We then use capcore to define the
syntax (§5.1.2) and semantics (§5.1.3) of the capability language, cap.

5.1.1 capcore: a core language

A capcore program opens descriptors to a filesystem and performs op-
erations on descriptors and values. The syntax of a capcore program
is given in Fig. 5.1, and is defined over fixed finite sets of module sym-
bols (MODSYMS), control locations (LOC), allocation sites (ALLOCS), data
variables (DATAVARS), and descriptor variables (DESCVARS). A capcore
program is a sequence of bindings from a module symbol to a sequence

33

Prog := (MODSYMS : (LOC : Op)∗)∗ (5.1)
Op := DATAVARS := DATAOP(DATAVARS) (5.2)

| jump MODSYMS (5.3)
| DATAVARS ? LOC : LOC (5.4)
| DESCVARS := open(ALLOCS, DATAVARS) (5.5)
| DATAVARS := DESCOP(DESCVARS) (5.6)

Figure 5.1: Syntax of capcore, a language of programs that operate on descrip-
tors.

of operations, each annotated with a control location (Eqn. (5.1)); each
location may annotate at most one operation. An operation may compute
a value from values in data variables (Eqn. (5.2)), transfer control to a par-
ticular control location (Eqn. (5.3)), change control based on the value in a
data variable (Eqn. (5.4)), open a descriptor to a system object (Eqn. (5.5)),
or perform an operation on a descriptor (Eqn. (5.6)).

A capcore program P can be represented as an annotated control-flow
graph over control locations and operations. Each capcore program P

defines (1) an initial module MP
0 (by convention, the first module in P), (2)

a function LocModP : LOC → MODSYMS from each control location L to
the module that contains an operation annotated with L, (3) a function
ModInitP : MODSYMS → LOC from each module M to the location that
annotates the initial operation of M in P, and (4) a control-flow graph
(LOC,EP). The control nodes are the control locations LOC, and the control
edges EP ⊆ LOC× Op× LOC are the control-flow edges defined by each
operation that is not a jump (i.e., each intra-module operation).

34

intra
(L, o, L ′) ∈ E ′P 〈σ, o〉 →cc σ

′

〈(L,σ), o〉 →P (L ′,σ ′)

jump-P
L ′ = ModInitP(M)

〈(L,σ), jump M〉 →P (L ′,σ)

jump-non-P
ModInitP(M) =↑

〈(L,σ), jump M〉 →P (ENV,σ)

Figure 5.2: Inference rules that define the transition relation →P of a capcore
program P.

capcore semantics

A capcore program P defines a transition relation over capcore states.
Let the set of control locations LOC be the set of control locations, which
contains a distinguished control location ENV that models the environment
of P. Each capcore state consists of a control location in LocsNT and a value
store, which is a valuation of data variables and a set of descriptors. Let
D∗ be an infinite universe of descriptors. A value store (V , F,D,VD,α) is a
five-tuple of (1) a valuation of data variables V : DATAVARS→ Z, (2) the
value stored in the filesystem F ∈ Z, (3) a set of descriptors D ⊆ D∗, (4)
a valuation of descriptor variables VD : DESCVARS → D, and (5) a map
from each descriptor to its allocation site α : D → ALLOCS. We denote
the components of a value store σ as Vσ, Fσ, Dσ, VσD and ασ, respectively,
and denote the space of all value stores as CapCoreStores. A capcore state
(L,σ) is a control location L and a value store σ. We denote the space of all
capcore states as QCC = LocsNT × CapCoreStores.

The transition relation→P⊆ QCC × Op×QCC of a capcore program
is defined by the control structure of the modules of P and a transition
relation over stores. Let E ′P ⊆ LocsNT × Op × LocsNT be the control-flow
edges EP extended to contain an edge from ENV to itself on each intra-

35

Op := SVAR := create_serv(LOC, AuthExpr, CapsExpr) (5.7)
| set_serv(LOC, SVAR) (5.8)

AuthExpr :=mem_auth() (5.9)
| no_amb() (5.10)

CapsExpr :=mem_caps() (5.11)
| rem(DESCVARS, DESCOP, CapsExpr) (5.12)

Figure 5.3: Capability operations of cap that extend Op.

module operation, and let→cc⊆ CapCoreStores× Op× CapCoreStores be a
transition relation over capcore stores. Inference rules that define→P for
each operation o using E ′P and→cc are given in Fig. 5.2. If o is an intra-
module operation (Rule intra), then pre-state (L,σ) transitions to post-state
(L ′,σ ′) on o if L ′ is a control successor of L on o ((L, o, L ′) ∈ EP) and pre-
store σ transitions to post-store σ ′ on o (〈σ, o〉 →cc σ

′). The definition of
→cc is straightforward from the informal definitions of each intra-module
operation, and we omit a full description.

If o is a jump operation whose target is a module M of P (Rule jump-P),
then pre-state (L,σ) transitions to a state whose control location is the
initial location of M, and whose store is σ. If o is a jump operation whose
target is a module M not in P (Rule jump-non-P, where ModInitP(M) =↑
denotes that ModInitP is not defined at M), then pre-state (L,σ) transitions
to a state whose control location is ENV, and whose store is σ.

5.1.2 cap syntax

A cap program is a capcore program whose operations are the capcore
operations extended with a set of capability operations, given in Fig. 5.3;
we refer to the space of all operations of cap programs as Oc. A capability
operation may create an RPC service using a control location, ambient-

36

authority expression, and a capability expression (Eqn. (5.7)) or set the
RPC service for a location (Eqn. (5.8)).

An ambient-authority expression may be either mem_auth() (Eqn. (5.9)),
which evaluates to the ambient authority of memory, or no_amb()
(Eqn. (5.10)), which evaluates to no ambient authority. A capability ex-
pression may be either mem_caps() (Eqn. (5.11)), which evaluates to the
capabilities of memory, or rem(E, d, R), which evaluates to the value of E
without the capability consisting of the descriptor bound to d and access
right R.

5.1.3 cap semantics

A cap program defines a transition relation over cap stores.

cap states

A cap program defines a transition relation over the space of cap states,
denoted CapStates. A cap state consists of a control location, a value store,
and a capability store. Let S∗ be an infinite universe of service identifiers,
and let SVAR be a set of service variables. Let a capability be a descriptor
paired with a descriptor operation; we denote the space of capabilities
as Caps = D× DESCOP. A capability store (A,C,S, VS, R,µ) is a six-tuple
of (1) an ambient-authority flag A ∈ B; (2) capabilities C ⊆ Caps; (3) service
identifiers S ⊆ S∗, (4) a valuation of service variables VS : SVAR ↪→ S, (5)
a service-identifier map R : S ↪→ MODSYMS × B × Caps from each store
service identifier to its module, ambient-authority flag, and capabilities,
and (6) a module-service map µ : MODSYMS ↪→ B × Caps. We denote the
ambient-authority flag, capabilities, service identifiers, valuation of service
variables, service-identifier map, and module-service map of a capability
store κ asAκ, Cκ, Sκ, VS

κ, Rκ, and µκ, respectively. We denote the space of
all capability stores as CapStores. A cap store is a capcore store paired with

37

open
〈V , d := open(S, x)〉 →cc V

′ Aκ = True
〈(V , κ), d := open(S, x)〉 →c (V ′, κ)

desc-op
〈V , x := op(X)〉 →cc V

′ d = DV(op(X)) (d, op(X)) ∈ Cκ

〈(V , κ), x := op(d)〉 →c (V ′, κ)

jump-rpc
µκ(M) = (A ′,C ′) κ ′ = (A ′,C ′,Sκ, VS

κ, Rκ,µκ)
〈(V , κ), jump M〉 →c (V , κ ′)

create-rpc

〈EA, κ〉 →Amb
c A ′ A ′ =⇒ Aκ

〈EC, κ〉 →cap
c C ′ C ′ ⊆ Cκ s /∈ Sκ

κ ′ = (Aκ,Cκ, s ∪ {Sκ}, VS
κ[s 7→ s], Rκ[s 7→ (M,A ′,C ′)],µκ)

〈(V , κ), s := create_serv(M, EA, EC)〉 →c (V , κ ′)

set-rpc

Rκ(VS
κ(s)) = (M,A ′,C ′) µ ′ = µκ[M 7→ (A ′,C ′)]

κ ′ = (Aκ,Cκ,Sκ, VS
κ, Rκ,µ ′)

〈(V , κ), set_serv(M, s)〉 →c (V , κ ′)

Figure 5.4: Inference rules that define the transition relation→c over cap stores.

a capability store; i.e., capStores = CapCoreStores×CapStores. A cap state is
a control location paired with a cap store; i.e., CapStates = LOC×capStores.

cap transitions

A cap program P defines a transition relation →P⊆ CapStates × Oc ×
CapStates. →P is defined by semantic inference rules identical to the rules
given in Fig. 5.2, using a transition relation→c⊆ capStores×Oc×capStores
over cap stores in place of the transition relation→cc used in Fig. 5.2 to
define the semantics of capcore.

Inference rules that define →c for a selection of cap operations are
given in Fig. 5.4. For cap store (V , κ) ∈ capStores and operation o ∈ Oc:

• If o is an operation d := open(S, x) that opens a descriptor (Rule open),

38

V transitions to value store V ′ under the transition relation for
capcore operations (V →cc V

′), and κ holds ambient authority (Aκ),
then (V , κ) transitions to (V ′, κ).

• If o is an operation x := op(d) that operates on a descriptor (Rule desc-
op), V transitions to value store V ′ under the transition relation for
capcore operations (V →cc V

′), and κ holds the capability of the
descriptor bound to d paired with o (d = DV(d) and (d, o) ∈ Cκ),
then (V , κ) transitions to (V ′, κ).

• If o is an operation jump M and an RPC service is defined for M in
κ (Rule jump-rpc), then (V , κ) transitions to a cap store with value
store V and a capability store that contains the ambient authority
and capabilities of the service bound to M in κ.

• If o is an operation s := create_serv(L, EA, EC)where EA is an ambient-
authority expression and EC is a capability expression (Rule create-
rpc), EA evaluates to ambient-authority A ′ in κ (〈κ, EA〉 →Amb

c A ′), A ′

implies the ambient authority of memory (A ′ =⇒ Aκ), EC evaluates
to C ′ in κ (〈κ, EC〉 →cap

c C ′), and C ′ is contained by the capabilities of
memory in κ (C ′ ⊆ Cκ), then (V , κ) transitions to a cap store whose
value store is V and whose capability store is κ updated to bind s to a
service consisting of M, A ′, and C ′. The definitions of the evaluation
relation for ambient-authority expressions,→Amb

c , and the evaluation
relation for capability expressions,→cap

c , are straightforward from
their informal definitions. We thus omit a full description.

• If o is an operation set_serv(M, s) where M is a program module
and s is a service-identifier variable (Rule set-rpc), and in pre-store
(V , κ), s is bound in κ to a service swhose module is M, then (V , κ)
transitions to a cap store whose value store is V and whose capability
store is κ updated to bind module M to s.

39

The evaluation relations→A for ambient-authority expressions and→C
for capability expressions, used in Rule create-rpc, are straightforward
from their informal definitions, and are omitted.

5.1.4 Program runs

A run of a cap program P is a sequence of cap states in which each pair of
adjacent states are in the transition relation of P.

Definition 9. For cap program P, let ⇒P⊆ CapStates × CapStates con-
tain states q,q ′ ∈ CapStates if there is some operation o ∈ Op such that
(q,o)→P q ′. Then a sequence of program states q0,q1, . . . ,qn is a run of P
if for 0 6 i < n, qi ⇒P qi+1.

For module symbol M ∈ MODSYMS, program state qi = (L,σ) ∈
CapStates is an M-state if LocModP(L) = M. The union of M states over all
module symbols M are the module states of P. If r is a run of P, then the
subsequence of all module states of r is a module run of P. The sequence of
all operations executed in a module state of r is a module trace of P.

5.2 Instrumentation as capability refinement

We formulate a valid instrumentation of a cap program by adapting defini-
tions of simulation and refinement (defined in Chapter 2, Defn. 2), which
are used to define the correctness of semantics-preserving transformations
in a compiler [42, 45]. Unfortunately, neither simulation nor refinement
formulate our intuitive notion of a valid instrumentation, as demonstrated
by gzip (introduced in §4.1).

Example 2. Formulating a valid instrumentation of a cap program P as
a simulation of P disallows cap programs that satisfy our intuitive no-
tion of a valid instrumentation. E.g., let no_cap_gzip be a version of
gzip with the capability operations removed. Intuitively, we wish to

40

allow gzip as an instrumentation of no_cap_gzip, but gzip is not a sim-
ulation of no_cap_gzip from any pair of cap states at the initial location
of no_cap_gzip. In particular, consider a state q at the initial location
of no_cap_gzip. From q, no_cap_gzip may execute (1) the operations in
gzip, then (2) the operations in loop, and then (3) an open operation while
executing cmp to transition to a state with a fresh descriptor whose alloca-
tion site is neither IN nor OUT. However, no state can execute any number
of transitions of gzip to reach a state with such a descriptor.

Conversely, formulating a valid instrumentation of a cap program as a
refinement allows an instrumentation of a cap program P to be a trivial
program that reproduces none of the behaviors of P. E.g., let halt be
a trivial cap program that contains a control location Lh and no control
edges. halt is a refinement of no_cap_gzip.

Intuitively, cap program P ′ is an instrumentation of P if P ′ can match
any sequence of value stores “chosen” over an execution of P, but P ′ can
choose the capability store paired with each value store in the sequence.
We formulate this intuition by defining that under such a condition, P ′ is
a capability refinement of P.

Definition 10. For cap programs P and P ′, a capability-refinement relation
∼⊆ CapStates × CapStates is a relation over cap states that satisfies the
following conditions:

1. ∼ only relates states with equal value stores. I.e., for q = (L, (V ,C)) ∈
CapStates and q ′ = (L ′, (V ′,C ′)) ∈ CapStates, if q ∼ q ′, then V = V ′.

2. If a pair of states (q,q ′) is in ∼, then each successor of q on one step
of P is paired with a successor of q ′ over multiple steps of P ′. I.e., for
q0,q ′0 ∈ CapStates such that q0 ∼ q

′
0, if q0 ⇒P q1, then there is some

cap state q ′1 such that q ′0 ⇒∗P ′ q ′1 and q1 ∼ q
′
1.

41

P ′ is a capability refinement of P if there is a capability-refinement relation ∼

for P and P ′ such that for each cap store σ ∈ capStores, (ModInitP(MP
0),σ) ∼

(ModInitP(MP
0),σ)).

Capability refinement may be viewed as a special case of alternating
refinement [2].

5.3 Capability policies

In §4.2, we presented a policy for gzip. In this section, we define the
syntax and semantics of capability policies in general. In §5.3.1, we define
a space of conditions on capability stores. In §5.3.2, we use capability-store
conditions to define a space of capability policies, and define under which
conditions a cap program satisfies a capability policy.

5.3.1 Conditions on cap stores

Store conditions are formulas over a first-order relational vocabulary Vc

whose predicates model properties of cap stores. Vc is the union of two
vocabularies Vcc and V ′c; Vcc describes features of capcore states.

Definition 11. Each capcore store σ ∈ CapCoreStores defines a model
mcc
σ = 〈Uσ, ισ〉 over a first-order relational vocabulary Vcc. The universe

Uσ contains the descriptors in σ. The vocabularyVcc and the interpretation
ισ of each predicate symbol in Vcc in the universeUσ are defined as follows.

• Vcc contains the set of descriptor variables DESCVARS. If in σ there
is a descriptor d in descriptor variable d, then ισ(d)(d) holds.

• For each allocation site A ∈ ALLOCS, Vcc contains a unary predicate
symbol alloc[A]. ισ(alloc[A])(d) holds if descriptor d was allocated
by a invocation of the open operation at allocation site A.

42

The vocabulary V ′c describes features of cap states that are not features
of capcore states.

Definition 12. Each cap storeσ ∈ CapStores defines a modelmc
σ = 〈Uσ, ισ〉

over a first-order relational vocabulary V ′c. The universe Uσ is the set of
descriptors, service identifiers, and the object Mem. The vocabulary V ′c
and the interpretation ιcσ of each predicate symbol in V ′c in the universe
Uσ are defined as follows.

• V ′c contains a unary predicate symbol HasAmb. ισ(HasAmb)(x) holds
if memory or RPC service x has ambient authority.

• V ′c contains a unary predicate symbol IsMem. IsMem is a singleton
relation; in particular, ισ(IsMem)(Mem) holds.

• For each operation o ∈ O, V ′c contains a binary predicate symbol
HasOp[o]. ισ(HasOp[o])(x,d) holds if memory or RPC service x holds
the access right to operation o for descriptor d.

• For each module M ∈ MODSYMS, V ′c contains a unary predicate
symbol ServMod[M]. ισ(ServMod[M])(s) holds if M is the module for
RPC service s.

• For each module M ∈ MODSYMS, V ′c contains a unary predicate sym-
bol IsServ[M]. IsServ[M] holds for at most one individual; in particular,
ισ(IsServ[M])(s) holds if service s is the RPC service bound to M.

For cap store σ, the model of σ over the vocabulary Vc is the union of
the models (defined in §2.3, Defn. 6)mσ = mcc

σ ∪mc
σ.

A capability-store condition is a closed first-order Vc formula; we de-
note the space of all store conditions as CapStoreConds. A store σ satisfies
capability-store condition ϕ ifmσ is a model of ϕ.

We now illustrate capability-store conditions used to express properties
of stores in gzip_pol.

43

Example 3. Conditions that must hold when modules of gzip complete
execution can be represented as store conditions. For clarity, these store
conditions are depicted in Fig. 4.2 as a set of derived Vc predicates. The
derived nullary predicate RD(in) denotes the store condition:

∀m,o. IsMem(m)∧ in(o) =⇒ RD(m,o)

The derived nullary predicate WR(out) denotes the store condition:

∀m,o. IsMem(m)∧ out(o) =⇒ WR(m,o)

The derived unary predicate MemRD(x) denotes the store condition:

∀m. IsMem(m) =⇒ RD(m, x)

The derived unary predicate MemWR(x) denotes the store condition:

∀m. IsMem(x) =⇒ WR(m, x)

5.3.2 Capability policies

A capability policy is a finite-state automaton in which each alphabet
symbol is a control location paired with a store condition.

Definition 13. A capability policy is a finite-state automaton whose alphabet
is a finite subset of Σc = LOC× CapStoreConds. We denote the space of all
capability policies as CapPols.

Each capability policy A defines a language of cap traces as violations
such that each state in a trace satisfies a corresponding condition in some
trace of conditions accepted by A.

Definition 14. Let t = (L0,σ0), . . . , (Ln,σn) ∈ CapStates∗ be a trace of cap
states, and let C ∈ CapPols be a capability policy. If tC = a0, . . . ,an ∈ Σ∗c is

44

such that for each 0 6 i 6 n and ai = (L ′i,ϕi), (1) Li = L ′i and (2) σi |= ϕi,
then tC is a condition trace of t. t violates C if C accepts some condition
trace of t. For difc program P, if each trace t of P does not violate A, then
P satisfies A.

5.4 The capability-instrumentation problem

The capability-instrumentation problem is to take a cap program P and a
capability policy C, and instrument P to satisfy C.

Definition 15. Let P be a cap program and let C be a capability policy.
A solution to the capability-instrumentation problem CAP(P,C) is a cap
program P ′ such that (1) P ′ is a capability refinement of P and (2) P ′ satisfies
C.

5.5 Capability instrumentation as game solving

In this section, we describe a sound, but incomplete, procedure capweave
for solving the capability-instrumentation problem.

5.5.1 Overview

In principle, a solution to a capability-instrumentation problem CAP(P,C)
can be any instrumentation of P which, at particular control locations,
checks predicates of its current state and chooses an appropriate capability
operation to execute next in order to satisfyC. The problem of synthesizing
a set of predicates to be checked and acted on at runtime raises daunting
challenges. In particular, a cap state is defined by an unbounded set of
descriptors and a filesystem. Thus, checking many properties of a cap
state at runtime could be expensive, and in the worst case impossible if

45

Input :A cap program P and capability policy C.
Output :A solution to CAP(P,C).

1 GP,Π := CapProgPolicyGame(P,Π) ;
2 if HasWinningDefenderStrategy(GP,Π) then
3 D := FindWinningDefenderStrategy(GP,Π) ;
4 return CapCodeGen(D) ;
5 else
6 Fail () ;
Algorithm 5.5: capweave: a sound solver for the capability-instrumentation
problem.

the value of the predicates depends on the value of the filesystem and
memory does not hold ambient authority.

Instead of attempting to synthesize a cap program that chooses the
next capability operation to execute based on properties of its execution
state, we attempt to synthesize a program that chooses the next capability
operation to execute based on properties that summarize aspects of its
history of executed operations. We reduce the problem of searching for a
valid instrumentation to finding a winning Defender strategy to a game,
where the symbols of the game model cap operations in module traces of
executions. This approach has several advantages:

• capweave can be parameterized on advice “templates” from an ex-
pert user, which specify restricted languages of operations for an
instrumented program to potentially execute.

• capweave can apply any analysis that builds a sound abstraction of
the transition relation of a cap program, independent of the repre-
sentation of states in the abstraction.

• capweave can use standard automata-theoretic language operations
to model the instrumented program’s inability to observe the actions
of the environment.

46

capweave attempts to solve a capability-instrumentation problem
CAP(P, F) in three main steps, presented in pseudo-code as Alg. 5.5.
capweave first constructs (line [1]) from P and Π a finite two-player game
GP,Π whose alphabet is the space of operations of P, such that for any De-
fender strategyD that winsGP,Π, the plays ofD are the traces of a solution
to CAP(P,Π) (for brevity, we say that D defines a solution to CAP(P,Π)).
This step is described in more detail in §5.5.2.

capweave then applies a classical algorithm
HasWinningDefenderStrategy [3] to determine if GP,Π has a winning
Defender strategy (line [2]). If GP,Π has a winning Defender strategy, then
capweave applies a classical algorithm FindWinningDefenderStrategy [3]
to construct a winning Defender strategyD (line [3]), Otherwise, capweave
aborts (line [6]); we discuss this limitation, and possible extensions of our
work that could overcome it, in Chapter 14.

If capweave finds a Defender strategyD that winsGP,C, then capweave
instruments P to form a new cap program P ′ that is a solution to CAP(P,C)
(line [4]). During each execution, P ′ stores two tables that represent the
transition function of D. One table, TA, represents the transition function
of D from Attacker states. TA is indexed by an Attacker pre-state and a
cap operation, and maps each index-pair to a post-state. As P ′ executes, it
stores the current state ofD in a variable cur. When P ′ executes a capcore
operation o, it updates cur to store the value in TA indexed by the current
value in cur and o.

The second table, TD, represents the transition function of D from De-
fender states. TD is indexed by a Defender pre-state, and maps each index
to a pair of a capability operation and state (o,q ′). As long as the state
stored by cur is a Defender state, P ′ performs the capability operation o
and updates cur to store q ′. When cur stores an Attacker state, P ′ executes
the next operation of P.

In the remainder of this section, we describe in detail how capweave

47

takes an input cap program P and capability policy C and constructs a
finite game GP,C that it solves in order to solve CAP(P,C).

5.5.2 From a program and policy to a finite game

From an input program P and input capability policy C, capweave con-
structs a finite two-player game GP,C such that each winning Defender
strategy of GP,C defines an instrumentation of P that satisfies C. To con-
struct GP,C, capweave performs the following steps:

1. Let T = (QT , ιT , FT ,Oc,∆T) be a finite acceptor of traces of cap oper-
ations that serves as a template of potential sequences of capability
operations that an instrumented version of P may execute before
each operation of P. Using T , capweave constructs a finite two-player
game GT such that each play of GT not won by the Attacker is a
sequence of cap operations accepted by T chosen by the Defender,
followed by a cap operation chosen by the Attacker. We describe our
experience designing capability-operation templates in §5.5.3.

2. From P and T , capweave constructs a structure program (defined in
§2.3) SP,T such that each trace of SP,T is a trace t of P with a sequence
of operations accepted by T injected before each operation of t.

3. From SP,T , capweave constructs a finite-state acceptor A#
P of traces of

cap operations such that each module trace of a run of P is accepted
by A#

P,T .

4. From capability policy C, capweave constructs a structure program
SC such that each cap trace of a run that does not satisfy C drives SC
to an error control location.

5. From structure program SC, capweave constructs a finite-state accep-
tor A#

C of traces of cap operations such that each module trace of a
run that drives SC to an error control location is accepted by A#

C.

48

6. capweave constructs GP,C as the product of GT , A#
P,T , and A#

C.

We now describe each step of the construction of GP,C in more detail.

Constructing a game of template instrumentations

From template T , capweave constructs a two-player safety game GT in
which the Defender is restricted to play only a sequence of operations
accepted by T . In particular, each play of GT is an unbounded sequence
of phases, in which each phase consists of (1) a sequence of capability
operations chosen by the Defender that are accepted by T , followed by
(2) any cap operation, chosen by the Attacker. The construction of GT is
straightforward from its informal description, and we omit a fill definition.

From cap program P to a structure-program model

From the input program P and template T , capweave constructs a structure
program SP,T = (LOCS, ιS, OS,ES,VS, TS) such that each trace of SP,T is a
trace t of Pwith a sequence of operations accepted by T injected before each
operation in t. The components of SP,T , i.e., the control locations LOCS,
initial control location ιS, operations OS, control edges ES, logical vocabu-
lary VS, and predicate transformers TS of SP,T , constructed by capweave
are as follows.

Control locations of SP,T The control locations LOCS of SP,T contain
“copies” of the states of T for each control location of P and a control
location at which SP,T models the environment of P. I.e., LOCS contains
the following:

• For each control location L ∈ LOCS and each state q ∈ QT , a control
location (L,q).

• The control location ENV.

49

Initial control location of SP,T The initial control location of SP,T is the
initial control location of the initial module of P.

Operations of SP,T The operations of SP,T are the cap operations Oc.

Control edges of SP,T The control edges of SP,T induce SP,T throughout
each execution to execute a sequence of operations accepted by T and then
execute the next operation executed by P. In particular, EP contains the
following edges:

• For each transition (q, o,q ′) ∈ ∆T of T , SP,T may transition on o
from each copy of q. I.e., for each control location L ∈ LOC and each
transition (q, o,q ′) ∈ ∆T , EP contains a control edge ((L,q), o, (L,q ′)).

• If P transitions from control location L to control location L ′ on an
intra-module operation o, then SP,T transitions on o from each copy
of a final state of T for L to the copy of the initial state of T for L ′. I.e.,
for each intra-module control edge (L, o, L ′) ∈ EP and each final state
q ∈ FT , ES contains a control edge ((L,q), o, (L ′, ιT)).

• If P in control location L executes operation jump M to jump to a
module M not in P, then SP,T transitions on operation jump M to control
location ENV. I.e., for each operation jump M at location L with M in
the environment and q ∈ FT a final state of T , ES contains a control
edge ((L,q), jump M, ENV).

• If SP,T is in a state that models the environment, then SP,T may tran-
sition on any intra-module operation and continue to model an envi-
ronment module. I.e., for each cap operation o, ES contains a control
edge (ENV, o, ENV).

50

• For each module M ∈ P, ES contains an edge from ENV to the copy
of the initial state of T for the initial location of M. I.e., ES contains a
control edge (ENV, jump M, (ModInitP(M), ιT)).

Vocabulary of SP,T The logical vocabulary of SP,T is Vc, the logical vocab-
ulary over which capability-store conditions are defined in §5.3.1, Defn. 12.

Predicate transformers of SP,T For each cap operation, capweave defines
a predicate transformer over the vocabulary Vc. We now describe how the
semantics of each cap operation, in particular each condition over ambient
authority, capabilities, and RPC services in the premise of an operation
and each update of a capability store in Fig. 5.4, is modeled as a predicate
transformer over Vc structures.

We define the space of predicate transformers as the union of transform-
ers Tcc that describe how predicates in Vcc are updated, and transformers
Tc that describe how the predicates in V ′c are updated. The Tcc transformer
for an operation d := open(A, x) (1) stores any newly-allocated individual
in descriptor variable d and (2) stores that the allocation site of any new
individual is A (in the predicate updates given below, as well as several
assertions and predicate updates of other transformers, we have annotated
a subformula with (i) if it models a premise or update in the semantics
itemized with (i)).

d(d) := new(d) (1)
alloc[A](d) := alloc[A](d)∨ new(d) (2)

The predicate transformers for capcore on each other operation o do
not place any constraint on the pre-structure of o, and do not update the
values of any predicates in the pre-structure.

The predicate transformers Tc update the predicates in V ′c for each
operation as follows:

51

• A cap operation d := open(A, x) checks that in pre-store σ, memory
has ambient authority. The predicate transformer τ[d := open(A, S)]
asserts that its pre-structure satisfies the following Vc formula:

∀m. IsMem(m) =⇒ HasAmb(m)

Ifσ passes the check of d := open(A, x), then d := open(A, x) allocates a
fresh descriptor d and extends the capabilities of memory to contain
d paired with each operation on descriptors. If a pre-structure S satis-
fies the assertion of τ[d := open(L, S)], then τ[d := open(L, S)] updates
the universe and predicates of S by introducing a new individual
and applying the following predicate updates :

O(m,d) := O(m,d)∨ (IsMem(m)∧ new(d))

• A cap descriptor-operation x := o(d) checks that in pre-store σ, mem-
ory holds the access right for o at the descriptor bound to descriptor
variable d. The predicate transformer τ[x := o(d)] asserts that its
pre-structure satisfies the following Vc formula:

∀m,d. IsMem(m)∧ d(d) =⇒ o(m,d)

• A cap operation s := create_serv(L, EA, EC) checks that in pre-store
σ, (1) the ambient-authority expression EA evaluates to a Boolean
value that implies the ambient authority of memory and (2) the
capability expression EC evaluates to a set of capabilities con-
tained by the capabilities of memory. The predicate transformer
τ[s := create_serv(L, EA, EC)] asserts that its pre-structure S satis-

52

fies the following Vc formula:

∀m,d. IsMem(m) =⇒ (ϕA() =⇒ HasAmb(p)) (1)
∧(

∧
o∈Oc

ϕ[o](d) =⇒ o(p,d)) (2)

Where ϕA and ϕC are defined below.

If σ passes the check of s := create_serv(M, EA, EC), then
s := create_serv(M, EA, EC) creates a fresh RPC service s, (1) binds
s to s, (2) gives s module M, (3) gives s ambient authority if EA
evaluates to True in σ, and (4) gives s the capabilities in the evaluation
of EC in σ. If S satisfies the assertion of τ[s := create_serv(M, A, C)],
then τ[s := create_serv(M, A, C)] introduces a fresh individual into
the universe of S and updates the predicates of S according to the
following predicate updates:

s(s) := new(s) (1)
ServMod[M](x) := ServMod[M](s)∨ new(s) (2)

HasAmb ′(s) := HasAmb(s)∨ (new(s)∧ EA()) (3)
o(s,d) := o(s,d)∨ (new(s)∧ EC[o](d)) (4)

Fig. 5.6 depicts the predicate transformer for the operation

o ≡ s1 := create(cmp, no_amb(),

rem(in, WR, rem(out, RD, mem_caps)))

contained in the module loop introduced in Chapter 4, applied to a
pre-structure that models a store σ at control location C5a. The pre-
structure contains three individuals that model (1) program memory
(annotated “m”), (2) the input file descriptor (annotated “i”), and
(3) the output file descriptor (annotated “o”). For individual m, the
unary predicates IsMem and HasAmb hold, which models the facts

53

s1:=create_serv(
 cmp,
 no_auth(),
 rem(in, WR,
 rem(out, RD,
 mem_caps()
)));

i o

Operation Post-structure S’Pre-structure S

m

IsMem
HasAmb

s ServMod[cmp]
s1

RD,
WR

RD,
WR

RD WR

out
Alloc[OUT]in

Alloc[IN]
d e

m

IsMem
HasAmb

RD,
WR

RD,
WR

out
Alloc[OUT]in

Alloc[IN]

Figure 5.6: A graphical depiction of the predicate transformer that models the
create_serv operation o executed by gzip at location C5a (introduced
in Chapter 8). The pre-structure S is depicted on the left, and the
resulting post-structure S ′ is depicted on the right. Each structure is
depicted as a graph in which each node depicts an individual, and
each edge depicts a binary relation between nodes. Each node n
depicting an individual in is annotated with a name inside n, and
unary predicate symbols to the side of n that hold for in, and each
edge from nodem to node n is annotated with the binary relation that
holds for (m,n). In the post-structure S ′, nodes and edges depicting
individuals and relations created by o are highlighted in bold.

that m models the program memory and has ambient authority.
For individual i, the unary predicates in and alloc[IN] hold, which
models the facts that i is stored in the descriptor variable in and was
allocated at allocation site IN. For individual o, the unary predicates
out and alloc[OUT] hold, which models the facts that o is stored in
out and was allocated at allocation site OUT. The edges fromm to i
and from m to o annotated RD and WR model the fact that memory
has the RD and WR access rights for descriptors i and o.

The post-structure S ′ in Fig. 5.6, obtained by applying the predi-
cate transformer τ[o] to the pre-structure S, is S extended with an
additional individual (annotated “s”) that models the RPC service

54

created by executing o. Individual s is annotated with unary predi-
cates ServMod[cmp] and s, which models the fact that in S ′, the service
s has module cmp and is stored in service variable s. S ′ contains (1)
an edge from s to i that models the fact that in S ′, s has access right
RD for descriptor i and (2) an edge from s to o that models the fact
that in S ′, s has access right WR for o.

• A cap operation set_serv(s, M) sets the service for module M to be
the service bound to service variable s. The predicate transformer
τ[set_serv(s, M)] updates the predicates of a pre-structure according
to the following predicate update:

IsServ[M] ′(x) := s(x)

• A cap operation jump M updates the control location of pre-state
σ to be M, (1) updates the ambient authority of memory to be the
ambient authority of the RPC service s bound to M, and (2) updates
the capabilities of memory to be the capabilities of s. For formulas
ϕg, ϕt, and ϕf, let the if-then-else formula, denoted ITE(ϕg,ϕt,ϕf),
denote the formula (ϕg =⇒ ϕt)∧ (¬ϕg =⇒ ¬ϕf). The predicate
transformer τ[jump M] updates the predicates of a pre-structure S
according to the following predicate updates:

HasAmb ′(m) := ITE(IsMem(m), (1)
∃s. IsServ[L](s)∧ HasAmb(s), HasAmb(m))

o ′(m,d) := ITE(IsMem(m), (2)
∃s. IsServ[L](s)∧ o(s,d), o(m,d))

For an ambient-authority expression E, which may be a component of
create_serv operation, the nullary Vc formula ϕE used in the predicate
updates for create_serv operations is defined as follows:

55

• If E is the ambient-authority expression mem_auth, then ϕE ≡
∃m.IsMem(m)∧ HasAmb(m).

• If E is the ambient-authority expression no_amb, then ϕE ≡ False.

For a capability expression E, which is a component of a create_serv
operation, and descriptor operation o ∈ DESCOP, the unary Vc formula
ϕE[o](d) used in the predicate updates for create_serv operations is de-
fined as follows:

• If E is the capability expression mem_caps, then ϕE[o](d) ≡
∃m. IsMem(m)∧ o(m,d).

• If E is a capability expression rem(d, o,E ′), then ϕE[o](d) ≡ False,
and for o ′ ∈ DESCOP such that o 6= o ′, ϕE(d) ≡ ϕE ′(d).

From a structure-program model to a finite abstraction

To construct a finite over-approximation of the language of module
traces of executions of SP,T , capweave applies a procedure AbsStruct
that solves the structure-abstraction problem (described in Chapter 2)
STRUCT_ABS(SP,T). Let (S#

P,T , AbsNode) = AbsStruct(SP,T) be a solu-
tion produced by AbsStruct for STRUCT_ABS(SP,T). Then from S#

P,T =

(Q#,Σ,∆#) and AbsNode, capweave constructs the finite acceptor A#
P =

(QP, IP, FP,ΣP,∆P), where

• The states QP are the states Q#.

• The initial states IP are the states of S#
P,T that abstract states at the

initial control location of SP,T . I.e., IP = {ι | ι ∈ Q#, AbsNode(ι) = ιS}.

• The final states FP are the states of S#
P,T that abstract states whose

control location is ERR.

• The alphabet ΣP is the space Oc of cap operations.

56

• The transition relation ∆P is the transition relation of S#
P,T , with each

operation that SP,T executes to model the environment replaced with
an ε transition. I.e.,

∆P ={(q, o,q ′) | (q, o,q ′) ∈ ∆#, AbsNode(q) 6= ENV}

∪ {(q, ε,q ′) | (q, o,q ′) ∈ ∆#, AbsNode(q) = ENV}

From capability policy C to a structure-program model

From the input capability policy C = (QC, ιC, FC,Σc,∆C), capweave con-
structs a structure program SC = (LOCSC, ιSC, OSC,ESC,VSC, TSC) such that each
trace of cap operations that violatesC drives SC to an error control location.
The components of SC are defined as follows.

Control locations of SC The control locations LOCSC store the state of C
inhabited by the cap run simulated by SC. In particular, for each state
q ∈ QC, LOCS contains control locations q and q ′. LOCS also contains an
error location ERR.

Initial control location of SΠ The initial control location ιSC of SΠ is the
initial state of the policy Π.

Operations of SΠ The operations OS of SC are the cap operations ex-
tended with a set of operations of the form assume[ϕ], where ϕ ∈ ΣC is a
store condition in any symbol in a state condition in the alphabet of C.

Control edges of SΠ The control edges ES of SC define how SC maintains
the state of C inhabited by its current execution. In particular, ES contains
the following edges:

57

• For each pair of states q0,q1 ∈ QC and store condition ϕ such that C
transitions from q0 to q1 on ϕ (i.e., (q0,ϕ,q1) ∈ ∆C), ES contains a
control edge (q0, assume[ϕ],q ′1).

• For each policy state q ∈ QC and each difc operation o, ES contains
a control edge (q ′, o,q).

Vocabulary of SC The vocabulary of SC is Vc, defined in §5.3.1, Defn. 12.

Predicate transformers of SC The predicate transformers of each cap op-
eration o in SC is the predicate transformer of o in SP,T . For each state con-
dition L : ϕ ∈ ΣC, the predicate transformer checks that its pre-structure
satisfies ϕ.

From a structure-program model of C to a finite abstraction

To construct a finite over-approximation of the module-traces of cap execu-
tions that violate C, capweave applies the procedure AbsStruct (described
in §5.5.2) to construct a finite abstraction of SC, and replaces each transi-
tion that models a step of execution of the environment with an ε tran-
sition. Let (S#

C, AbsNode) = AbsStruct(SC) be a solution to the structure-
program-abstraction problem STRUCT_ABS(SC) produced by AbsStruct.
Then from S#

C = (Q#,Σ,∆#) and AbsNode, capweave constructs the finite
acceptor A#

C = (Q, I, F,Σ, δ) of cap operations, where:

• The states Q are the states Q#.

• The initial states I are the states of S#
C that abstract states at the initial

control location of SC. I.e., I = {ι | ι ∈ Q, AbsNode(ι) = ιC}.

• The final states F are the states of S#
C that abstract states of SC whose

control location is ERR. I.e.

F = {q | q ∈ Q#, AbsNode(q) = ERR}

58

• The alphabet Σ is the space of cap operations Oc.

• The transition relation ∆ is the transition relation of S#
C, with transi-

tions from environment locations replaced with ε transitions:

∆ ={(q, o,q ′) | (q, L : o,q ′) ∈ ∆#, L 6= ENV}

∪ {(q, ε,q ′) | (q, L : o,q ′) ∈ ∆#, L = ENV}

From template game, finite program and policy models to a game

capweave constructs GP,C as a product of the template game GT , the over-
approximation A#

P of module-traces of P, and the over-approximation A#
C

of violations of C. In particular, G = GT ×G,A (det(A#
P)×det(A#

C)), where
for a non-deterministic finite-state acceptor A, det(A) is a deterministic
acceptor that accepts the same language as A, and ×G,A is the game-
automaton product defined in §2.2.

5.5.3 Designing capability-operation templates

The capability-operation template T used by capweave directly affects
both the space of instrumentations considered by capweave, as well as the
size of the game constructed by capweave. We found that templates for
many practical programs that run on Capsicum can be defined as regular
languages; these languages accept sequences of capability operations that
create a fresh RPC service s by (1) choosing the program module of s to be
some module M that appears in the input capability policy C, (2) choosing
the ambient authority of s to either be no authority or the ambient authority
of memory, (3) choosing the capabilities of s by choosing a bounded set
of descriptor variables V and access rights R that appear in C, and (4)
removing some subset of capabilities defined by descriptors stored in V
paired with access rights in R. The template then sets the RPC service for M

59

to be s. We discuss the effect of using templates of varying sophistication
in Chapter 6.

60

6
Evaluation

We carried out a series of experiments, designed to answer the following
questions about weaving technique:

1. Can practical policies for program capabilities be expressed as capa-
bility policies?

2. Can our weaving algorithm efficiently instrument practical programs
to satisfy a policy represented as a capability policy?

3. Do programs woven by our weaving algorithm perform comparably
to programs instrumented by hand?

To answer the above questions, we implemented our weaving algorithm
as a tool, capclang, that performs a source-to-source translation in the
LLVM intermediate language [37] to instrument programs to be run on
the Capsicum capability system. The steps of the capweave algorithm
described in §5.5 are implemented in capclang as follows:

1. From an input program P, capweave constructs a structure program
SP that simulates the executions of P. capclang constructs SP using
the API provided by LLVM.

2. From an input capability policy C, capweave constructs a structure
program SC whose executions violate C. capclang constructs SC by
parsing C using a custom parser for capability policies.

61

3. capweave constructs finite abstractions of the language of traces of
SP and SC by applying a solver for the structure-program-abstraction
problem. capclang constructs finite abstractions S#

P and S#
C of SP

and SC by applying the TVLA logic-analysis engine [40].

4. capweave constructs a game G from S#
P and S#

C, and attempts to find
a winning Defender strategy to G by applying a classical algorithm
for solving two-player games. capclang attempts to find a winning
Defender strategy to G by applying a the game-solving algorithm
implemented in the Goal tool [56].

5. If capweave determines that the gameGhas a winning Defender strat-
egy D, then from D, capweave instruments P to satisfy C. capclang
checks if Goal found a winning Defender strategy D, and if so, uses
the LLVM API to (1) generates multi-dimensional arrays that repre-
sent D in the LLVM intermediate language, and instruments P with
LLVM functions calls that invoke a fixed runtime-library function
that updates program state and executes capability operations.

To determine if practical policies can be expressed as capability policies
(item 1), we collected a set of benchmark programs that had known security
vulnerabilities, including programs that had been instrumented manually
for Capsicum by the Capsicum developers in previous work [58], as well as
programs that had not been instrumented previously. For each benchmark
program, we wrote a capability policy.

To determine if capclang could instrument practical programs to sat-
isfy their policies (item 2), we applied capclang to each benchmark pro-
gram and its policy. We ran capclang on a server running Linux kernel
version 2.6.32-431.3.1.el6.x86_64, with 16 2.4-GHz cores, and 32 GB of
RAM, although capclang executes in a single thread.

To determine if programs instrumented automatically by capclang
perform comparably to programs instrumented manually by an expert

62

developer (item 3), we ran versions of each benchmark program written
manually and instrumented automatically by capclang on representative
workloads for the program. We ran each program in a Capsicum virtual
machine on the same server on which we ran capclang.

In short, we found that capclang often allowed us to instrument ex-
isting programs completely from capability policies. In some cases, we
found that it was infeasible in practice to instrument programs completely
from policies without first manually editing the programs. However, these
manual edits do not themselves contain capability primitives: instead, they
are used to signify key events in the execution of program, which we used
to adapt our original desired capability policies; such cases are described
in detail in §6.1.

We found that programs that could be instrumented completely from
policies incurred acceptable runtime overhead, often even compared to
their uninstrumented versions. Programs that had to be edited before
capclang could instrument them successfully incurred significant runtime
overhead compared to their uninstrumented versions. We discuss such
cases in §6.2.

Partitioning programs for Capsicum One difference between instru-
menting capcore programs with cap primitives and instrumenting actual
LLVM programs with Capsicum primitives is that capcore programs are
structured as independent modules, whereas LLVM programs are struc-
tured as a collection of functions that pass data through parameters and
global variables. We developed an analysis that determines which func-
tions in an LLVM program can potentially be extracted from the program
and placed in an independent module. Our analysis accounts for the pos-
sibility of using different primitives—with different inherent costs—for
executing trusted modules with particular capabilities, such as forking a
process or creating an RPC service. Our analysis implements standard

63

techniques for partitioning programs [60], but does not itself choose which
modules will be partitioned using which Capsicum primitives. Instead,
the results of the analysis are used to constrain the game constructed by
capweave so that a valid instrumentation can only invoke partitioning
primitives allowed according to the analysis.

6.1 Benchmark programs, policies, and
instrumentation

In this section, we describe each benchmark program, describe the policy
that we wrote for the program, and describe the capability operations that
capweave instrumented each program to execute in order to satisfy the
policy.

6.1.1 Compression utilities bzip2 and gzip

The compression utilities gzip, its capability policy, and capweave’s instru-
mentation of gzip to satisfy the policy were discussed in the overview of
capweave (Chapter 4). The structure of bzip2 concerning how it manages
descriptors, and thus its capability policy and instrumentation to satisfy
the policy, are directly analogous to those of gzip.

6.1.2 tcpdump

tcpdump is a widely-used network-facing application that historically has
been the target of many exploits. tcpdump takes as input a Berkeley Packet
Filter (BPF), and a device from which to read packets. In a correct execution,
it reads packets from the device, matches them against the input BPF, and
if the packet matches, prints the packet to standard output. Unfortunately,
the packet-matching code in tcpdump is complex; in previous versions
of tcpdump, an attacker who controls the network input to tcpdump can

64

craft a packet that allows him to take control of the process executing
tcpdump [10].

Policy

We defined a capability policy for tcpdump that strictly limits the power of
an attacker who is able to compromise tcpdump. The policy assumes that
the only trusted modules in tcpdump are its main function, which executes
before matching packets to filters, and a small function that only opens
temporary network connections to resolve DNS queries. The policy treats
the majority of tcpdump as an untrusted environment, which executes
during or after tcpdump executes its vulnerable packet-matching code. Our
policy specifies that when main transfers control to the environment, the
environment should only hold the capabilities to write to standard output
and read from the packet descriptor opened by main. The environment
may only ever hold another capability whose descriptor component is a
socket when it executes the DNS resolver. Our policy was directly inspired
by previous work on manually rewriting programs for Capsicum [58].

Instrumentation

capweave successfully instrumented tcpdump to satisfy the above policy. In
particular, capweave instrumented main to create an RPC service s whose
module was the DNS resolver, such that s holds ambient authority, and
no other capabilities. capweave instrumented main to transfer control to
its environment with exactly the capabilities required to read from the
packet descriptor opened in main and write to standard output, and with
access to the RPC service for the DNS resolver.

65

6.1.3 php-cgi

Executing programs written in web scripting languages, such as php, raises
multiple security issues. First, it is inherently difficult to analyze, monitor,
and restrict the behavior of a program written in a scripting language.
Second, a maliciously-crafted web program can potentially compromise
the interpreter that executes it, and then perform any action on its host
system that is allowed for the user who launched the interpreter [14].

Because php-cgi may be run to execute valid php programs that at-
tempt to perform arbitrary sequences of operations on descriptors, writing
a single policy for php-cgi that could ensure non-trivial security guar-
antees while still protecting the functionality of the program is, for all
practical purposes, impossible. Thus, before writing a capability policy
for php-cgi, we extended php-cgi to attempt to open each file descriptor
and socket by calling shim functions. Each shim function checks if each
filepath satisfies particular key security properties, such as if the filepath
belonged to configurable whitelists; the manually-written shim functions
then disregards the results of the checks, and returns a descriptor or socket
with complete capabilities.

Policy

We wrote a policy that assumes that the only trusted modules of php-cgi
are a small fragment of initialization code at the beginning of the main
function of php-cgi and the shim functions for opening descriptors and
sockets, and that the rest of php-cgi is an untrusted environment. We
wrote a policy that specifies that if the environment holds a descriptor or
socket with a particular access right, then the filepath of the resource for
the descriptor must satisfy the checks associated with the access right.

66

Instrumentation

When we applied capweave to the version of php-cgi manually extended
with shim functions and the capability policy, capweave found an instru-
mentation of php-cgi that satisfies the policy. When the instrumented
version of php-cgi executes main, it creates RPC services with the shim
functions as modules. Each service holds ambient authority, and no capa-
bilities. Each time an instrumented shim function is entered, then function
monitors the execution history of filepath property checks. When the in-
strumented shim function transfers control to its environment, it provides
to the environment only the exact capabilities appropriate for the filepath
checks that succeeded.

6.1.4 tar

The tar archiving utility allows a user to maintain archive files. In particu-
lar, a user can run tar to create a new archive from source files or all files in
a source directory, list the contents of an archive, update the contents of an
archive, and delete entries in an archive. Unfortunately, past versions of
tar have demonstrated vulnerabilities that allow an attacker who controls
the inputs to tar to run injected code with the privileges of the user who
invoked tar [9, 12]. One key feature of tar is that it opens files that are the
sources of a copy not by invoking the open system call directly, but instead
by only invoking the openat system call on descriptors that it already
holds for directories of source files.

Policy

We defined a capability policy that strictly limits the abilities of an attacker
who compromises tar. The policy assumes that the only trusted module
of tar is the main function that opens descriptors to filepaths provided
as arguments; the policy treats as an untrusted environment the majority

67

of the code in tar, in particular the functions that actually create, read
from, and update archives. It is particularly challenging to instrument
tar to satisfy strong safety guarantees while assuming that such functions
are in the environment, because the function for creating an archive must
be able to open new descriptors for children of input arguments that are
directories. The policy for tar specifies the following:

• If main chooses to call a module to create an archive file, then the
environment should hold capabilities to read from descriptors for
source files, and should hold the capability to write to the target
archive file. However, the environment should never hold a capabil-
ity for any file that is not a descendent in the filesystem of a source
directory.

• If main chooses to call a module to list the contents of an archive,
then the environment should only hold capabilities to read from the
archive and print to standard output.

• If main chooses to call a module to update or delete members of an
archive, then the environment should only hold the capability to
write to the target archive file.

Instrumentation

capweave successfully instrumented tar to satisfy the above policy. The
instrumented tar correctly restricts the capabilities that it holds for file
descriptors opened in main before transferring control to the environment.
If main chooses to transfer control to a module that will create an archive,
then the instrumented tar ensures that the environment has the openat
capability for each descriptor for each source file. As a result, the environ-
ment can open new descriptors, but only to files that are descendents of
source directories, by invoking the openat operation.

68

6.1.5 wget

The wget downloader is a command-line utility that takes as input a list
of URL’s. For each URL, wget attempts to download the data addressed
by the URL and write the data in the file system of wget’s host. wget is
a mature, sophisticated tool that supports the HTTP, HTTPS, and FTP
protocols. Once wget determines the protocol required for a download, it
runs protocol-specific functions to (i) open a socket to the server holding
the URL, (ii) download the data addressed by the URL over the socket,
and (iii) write the data to a file to the file system.

Unfortunately, versions of wget through v.1.12 demonstrate a vulner-
ability that allows an attacker who controls a server with which wget
interacts to write data to any file on the host file system that can be writ-
ten by the user who runs wget. The vulnerability is exposed when wget
processes a particular HTTP response from the server. In particular, wget
may receive from a server a redirect response, which directs wget to down-
load data from a different network address. When wget receives such a
response, it determines the path on its host file system to which it will
write data directly from the information provided by the redirect server.
A malicious server can exploit this behavior to craft a redirect response
that causes wget to write data chosen by the attacker to a path in the file
system chosen by the attacker. A server can exploit such a vulnerability
to execute code on the host system by directing wget to write data to an
appropriate startup or configuration file [8].

Policy

Our original desired policy for wget assumed that the main function of
wget is trusted, and that all other functions, including the functions that
implement the client for each protocol, constitute an untrusted environ-
ment. The policy specified that if wget holds the capability to write to a file,
then the file should be a descendent of a fixed sandbox directory. However,

69

wget should be able to hold read capabilities for arbitrary files, and hold
arbitrary capabilities for sockets. Such a policy is analogous to the policy
that bounds the files from which tar can read when it creates an archive.
The policy was inspired by discussion on the Capsicum-developer mailing
list and the known vulnerabilities of wget [1, 8].

Unfortunately, capweave was not able to instrument wget to satisfy
the desired policy because unlike tar, wget attempts to open new file
descriptors by invoking open directly on filepaths, not invoking openat
on file descriptors held for directories. As a result, capweave was not
able to find an instrumentation that restricted the ambient authority of
wget’s environment so that the environment was prevented from creating
arbitrary write capabilities while ensuring that the environment could still
open arbitrary read and socket capabilities.

However, we found that by introducing a small shim function anal-
ogous to the one created for php-cgi, we were able to apply capclang
to instrument wget to satisfy a strong security policy. In particular, we
wrote a shim function that checks the filepath f of each file before open is
invoked to open a descriptor to the file at f, and determines whether f is a
child of the sandbox directory. We then adapted our policy to specify that
the environment of wget should be able to hold arbitrary read and socket
capabilities, but should only be able to hold write capabilities to files that
satisfy the check in the shim open function.

Instrumentation

capweave successfully instrumented the manually-extended version of
wget to satisfy the adapted policy. In particular, capweave instrumented
the main function to create RPC services for both the shimmed open func-
tion and the operation to open sockets; when created, each such service
holds ambient authority and no other capabilities. capweave instrumented
the open shim to provide to its environment a write capability only if the

70

Program Policy

Name KLoC Descriptor LoC Statessites
bzip2 8 2 39 3
gzip 9 2 42 3
php-cgi 852 2 23 13
tar 108 5 51 8
tcpdump 87 2 31 3
wget 64 2 41 3

Table 6.1: Features of benchmark programs and policies to which we applied
capweave. Under the “Program” header, “Name” contains the name
of the program, “LoC” contains the number of lines of code of the
program, measured with the cloc utility (which does not count white
space or comments); “Descriptor Sites” contains the number of sites
in the program that allocate a descriptor that is relevant to the policy.
Under the “Policy” header, “LoC” contains the number of lines of code
of the capability policy; “States” contains the number of states in the
capability policy.

filepath provided to the open shim is a child of the current directory when
wget was executed. capweave instrumented socket to provide a full socket
capability to its environment unconditionally.

Comparing our experience instrumenting tar and wget illustrates the
advantage of instrumenting programs already structured to manage sys-
tem resources via descriptors, such as tar. Such programs can be instru-
mented with little manual effort by applying capclang directly. However,
programs that are not written in that style, such as wget, can still be in-
strumented to be secure by expending some manual effort to modify the
program, and weakening an ideal security policy to assume as trusted a
slightly larger codebase.

71

Benchmark capweave Inst.
Prog.

Name Time Mem. Structures Game Slow-
(MB) States down

bzip2 0m43.17s 38 1,530 30 1.189
gzip 0m55.821s 35 1,137 43 1.201
php-cgi 1m58.92s 141 1,787 91 1.938
tar 1m23.30s 126 1,693 86 1.085
tcpdump 0m43.74s 40 2,896 52 1.153
wget 0m41.92s 60 2,047 75 2.031

Table 6.2: Results of applying capweave to the benchmarks described in Tab. 6.1.
The “Benchmark” header contains the name of each benchmark pro-
gram. “Time” contains the execution time of capweave; “Mem.” con-
tains the peak memory usage of capweave; “Structures” contains the
number of store structures constructed by the structure analysis ap-
plied by capweave; “Game States” contains the number of states in the
minimal game constructed by capweave from the transition graph over
structures. Under the “Instrumented Program” header, “Slowdown”
contains the running time of the instrumented program expressed as a
multiple of the running time of the original program.

6.2 Performance

Tabs. 6.1 and 6.2 contain the results of our experience applying capweave.
Tab. 6.1 contains data describing features of the benchmarks to which we
applied capweave. The columns of Tab. 6.1 are divided into (1) features
of the input program and (2) features of the input policy. The columns
of Tab. 6.2 are divided into (1) identification of the benchmark program
described in Tab. 6.1, (2) data concerning the performance of capweave
in instrumenting the benchmark, and (3) data concerning the runtime
performance of the version of the program instrumented by capweave.

Tabs. 6.1 and 6.2 contain the data concerning the performance of
capweave. Tab. 6.1 contains data describing features of the benchmarks to
which we applied capweave. The columns of Tab. 6.1 are divided into (1)

72

features of the input program and (2) features of the input policy. Tab. 6.2
contains data describing features of the performance of applying capweave.
The columns of Tab. 6.2 are divided into (1) identification of the benchmark
program, (2) data concerning the performance of capweave in instrument-
ing the benchmark, and (3) data concerning the runtime performance of
the version of benchmark instrumented by capweave.

The results indicate that capweave can be used to efficiently instrument-
ing even large programs. In particular,

• The instrumentation time of capweave scales well with code size. We
believe that this is due to the fact that capweave applies a sequence
of basic program optimizations to succinctly represent the untrusted
code in each program, which in each case consists of only a few thou-
sand lines. Performance instead appears to depend more directly
on the size of the policies, which grows slowly with the size of the
program.

• The set of structures in the structure transition system generated
by the structure analysis is often significantly larger than the set
of states in the minimal automaton that accepts the same language
of traces. This phenomenon indicates that “local” decisions that
the structure analysis makes for distinguishing structures based on
a fixed abstraction tend to cause the analysis to maintain distinct
structures that are equivalent in terms of which traces executed from
states abstracted by the structures violate the capability policy.

• Runtime overhead is significant only for the programs php-cgi and
wget, which capweave instrumented to execute an expensive RPC call
before performing common operations (opening file descriptors and
sockets). We inspected the code of both php-cgi and wget manually,
and believe that there is no instrumentation of php-cgi and wget

73

that satisfies the given policies that will not require RPC calls to be
executed frequently.

For each benchmark, the runtime overhead of the benchmark instru-
mented by capweave compared to the overhead of the benchmark
instrumented manually was negligible.

74

Part II

Weaving for a DIFC System

75

In this part of the dissertation, we introduce the weaving problem for
the HiStar DIFC system, and describe our technique for solving the weav-
ing problem. In Chapter 7, we review a simplified version of HiStar with
which we describe the HiStar weaving problem. In Chapter 8, we illustrate
the HiStar weaving problem and our approach by example. In Chapter 9,
we explain our approach in technical detail. In Chapter 10, we present case
studies of applying our HiStar policy weaver to weave programs for HiStar.
The structure of Chapters 7–10 for describing the HiStar policy weaver
parallels the structure of Chapters 3–6 for describing the Capsicum policy
weaver. The weaver generator generalizes both weavers by exploiting this
parallel structure, and is described in Part III.

76

7
Background on the HiStar

DIFC System

HiStar, a Decentralized Information-Flow Control (DIFC) operating sys-
tem [61], provides primitives that an application can invoke to protect the
secrecy and integrity of its sensitive information. In particular, the HiStar
kernel maps each process and object on the system to a label. Each time a
process p attempts to access an object o, HiStar interposes the access, and
only allows the access if the labels of p and o satisfy particular constraints.
A process can use the primitives provided by HiStar to update the labels
of system objects, subject to particular constraints. We now discuss these
constraints in detail.

HiStar maintains a rooted graph of objects, i.e., processes and files,
where each object is bound to a label. A label is a map from each element
in the space of categories maintained by HiStar to one of three levels: Low,
Mid, and High, ordered as Low < Mid < High. A label L0 flows to label L1

over categories C if each category c ∈ C has a level in L0 less than or equal
to its level in L1. The HiStar kernel maps each object o to a label Lo, and
maps each process p to a declassification Dp. Dp holds a set of categories
that HiStar ignores when determining whether or not to allow an access
attempted by p. A process p can read from (write to) a file f if Lp flows
from (to) the label of Lf over all categories not in Dp. p can create a file
with label Lf linked from directory d if (1) Lp flows to Lf and (2) p can
write to d. A process may at any time create a fresh category c, at which

77

point it is the only process that declassifies c.
A process can create a gate, which is a program module that another

process p can execute to perform fixed operations on sensitive information.
A process p can create a gate g with label Lg and declassification Dg if
both (1) Lp flows to Lg over categories not in Dp and (2) Dg is contained
in Dp. A process q can then execute g with declassification D ⊆ Dq ∪Dg.
Moreover, q can execute gate g with a label L such that Lq and Lg flow to
L over all categories not in D.

The complete design of HiStar is more complex than the system de-
scribed above: it includes four levels, additional clearance and verify labels
for processes and gates, and primitives that a process can invoke to up-
date its label throughout its execution (not just when calling a gate). We
omit descriptions of these features to simplify the presentation of our
approach, but the actual implementation of the approach described in this
dissertation supports such features.

78

8
Overview

In this section, we illustrate by example the instrumentation problem for
HiStar, and our technique to solve the problem. In §8.1, we introduce a
DIFC program auth_log that we use as a running example. In §8.2, we
present a policy in our policy language that describes the non-interference
and functionality requirements of auth_log. In §8.3, we describe an in-
strumentation of auth_log that satisfies the policy.

8.1 auth_log: an append-only logging service

Fig. 8.1 contains pseudocode for a program auth_log, which uses HiStar
label operations to maintain a log file and provide a gate that auth_log’s
environment can use to append to the log file. For now, ignore the lines
highlighted in gray: these are the instrumentation code introduced by our
technique, and are described in §8.3.

auth_log consists of two modules: log_init and logger. Program
modules are called asynchronously by an environment, which by con-
vention provides to a module a return gate linked from the object symbol
RET. By convention, when the module completes execution, it calls the
return gate to return control to its environment. log_init loads the root
object into an object variable (line L0), creates a log file linked from the
root at symbol LOG (line L1), creates a gate linked from the root at symbol
LOGGER and bound to the logger module (lines L2), loads the return gate
into object variable ret (line L3), and returns control to its environment

79

log_init:
rt := ld_root();
// Create category c to protect integrity of LOG.

LBL1a: c := create_cat();
LBL1b: set_op_label(upd_lv(mem_label(), c, LOW));

// Create log as child of root.
L1: create(rt, LOG);

// Create LOGGER gate that owns c (owned by memory)
LBL2a: set_op_declass(mem_declass());
L2: creategate(rt, LOGGER, logger);
L3: ret := ld(rt, RET);

// Return to the environment unable to modify log
// (higher than LOW at c and not owning c)

LBL4a: set_op_label(upd_lv(mem_label(), c, MID)) ;
LBL4b: set_op_declass(rem_declass_cat(mem_declass(), c));
L4: gate_call(ret);

logger:
// Append the message to LOG

L5: msg := ld(rt, MSG);
L6: txt := read(msg);
L7: log := ld(rt, LOG);
L8: append(log, txt);
L9: ret := ld(rt, RET);

// Call the environment without ownership of c
LBL9a: set_op_label(mem_label()) ;
LBL9b: set_op_declass(rem_declass_cat(mem_declass(), c));
L10: gate_call(ret);

Figure 8.1: auth_log: a collection of difc modules, log_init and logger, that
implement an append-only log service. log_init initializes a log
object at link LOG and a gate whose module is logger. logger reads a
message from the object at link MSG, and appends the value read to LOG.
Operations on labels and declassifications, which are generated by our
technique, and accompanying comments are highlighted with a gray
background. Our technique does not actually generate comments that
accompany label and declassification operations.

80

log_client:
C0: rt := ld_root();
C1: msg := ld(rt, MSG);
C2: write(msg, ‘‘new login attempted’’);
C3: log_gt := ld(rt, LOGGER);

set_op_label(mem_label());
set_op_declass(mem_declass());

C4: gate_call(log_gt);

mal_client:
M0: write(LOG, ‘‘no logins ever attempted’’);

Figure 8.2: Pseudocode for log_client, a cooperative client of auth_log, and
mal_client, a malicious client of auth_log.

by calling the return gate (line L4). logger appends the message value in
msg to the log file (lines L5–L8), and returns control to its environment by
calling the return gate (lines L9–L10).

Fig. 8.2 contains pseudocode for two clients of auth_log: log_client
and mal_client. log_client cooperates with logger to append to LOG:
log_client writes a new message to MSG (lines C0–C2) and calls the logger
gate to append the message to LOG (lines C3–C4). mal_client attempts to
violate the integrity of LOG by writing a message directly to LOG (line M0).

8.2 Policies for auth_log

Our goal is to automatically instrument auth_log to use label operations
to provide sufficient access rights when interacting with a cooperating en-
vironment, but satisfy non-interference when interacting with a malicious
environment. In particular:

81

1 32

L5:
RD(MSG),
RD(LOG),
WR(LOG)

ENV:
RD(LOG)

L5: NOT RD(MSG)

L6: NOT WR(LOG)

L6: NOT RD(LOG)

0
L4

ENV: NOT RD(LOG)

Figure 8.3: log_ar: a DIFC policy for auth_log. log_ar accepts traces of difc
states in which auth_log executes operations on objects or transfers
control to its environment with insufficient access rights.

1. After auth_log’s environment executes log_init, the environment
should be able to read from LOG.

2. If logger is entered in a state in which it can read from MSG and
read from and write to LOG, then it successfully reads from MSG and
appends to LOG. If logger then returns control to its environment,
then the environment can read from LOG.

3. Information does not flow from the environment to LOG, except
through the value in MSG read by auth_log.

The requirements for auth_log can be expressed as a pair of policy
automata. The policy specifying the access rights to read from and write to
files that the program must hold when auth_log transfers control to its
environment (items 1 and 2) is represented as a finite-state automaton over
an alphabet of conditions on difc states. A trace of difc states t violates a
DIFC policy F if the states of t satisfy a trace of conditions that is accepted
by F.

Example 4. Fig. 8.3 contains a DIFC policy log_ar that explicitly expresses
the desired access-rights policy for auth_log. log_ar is an automaton over

82

1
L0:
NOT Taint(MSG)

2

ENV

3

ENV:
Taint(LOG)

0

L4:
NOT Taint(LOG)

Figure 8.4: log_ni: a taint policy for auth_log.

an alphabet in which each symbol is a control location paired with a set
of conditions on a DIFC store. log_ar accepts sequences of conditions
that represent an execution of auth_log in which (1) log_init completes
execution (by executing the operation at control location L4, on which
log_ar transitions from state 0 to state 1); (2) logger is entered and memory
has the rights to (a) read from MSG, (b) read from LOG, and (c) write to
LOG (by executing the operation at control location L5, on which log_ar
transitions from state 1 to state 2); (3) logger attempts (a) to read from
MSG at L5 without the right to read from MSG or (b) to append to LOG at L6
without either the right to read from or write to LOG (on which log_ar
transitions from state 2 to state 3).

A temporal non-interference policy defines undesired flows from a set
of source objects to sink objects.

Example 5. The non-interference policy for auth_log can be expressed as
an automaton log_ni over an alphabet in which each symbol is a control
location paired with a condition on a DIFC store. In particular, each con-
dition is defined over predicates of the form Taint(X) that stores whether
the program execution may have influenced the value stored in the object
stored in object variable X. As in existing work on DIFC languages [26, 41],

83

the information stored in the taint predicate over-approximates informa-
tion about what objects may store different values over different executions
of a program. We describe the Taint predicate and its relationship to non-
interference properties of a difc program in more detail in App. A.1. For
now, its intuitive meaning suffices to understand the policy specified by
log_ni.

In particular, log_ni accepts sequences of conditions that represent an
execution of auth_log in which (1) log_init completes execution with
LOG untainted (by executing the operation at control location L4, on which
log_ni transitions from state 0 to state 1); (2) log_ni executes logger
an unbounded number of times with MSG untainted (by executing the
operation at control location L0, on which log_ni transitions from state
1 to state 2, and then transferring control to the environment, on which
log_ni transitions from state 2 to state 1); (3) LOG is tainted.

8.3 Instrumenting auth_log

The complete auth_log in Fig. 8.1, including label operations highlighted
in gray, satisfies the DIFC policy log_ar and non-interference policy
log_ni. The semantics of the label operations used by auth_log are de-
scribed briefly in Chapter 7, and in detail in §9.1.3. The instrumented
log_init creates a fresh category c (LBL1a), and log_init and logger
use c to satisfy log_ar and log_ni. In particular, when log_init returns
control to its environment, the label of memory (chosen at LBL4b) is higher
at c than the label of the log file at c (chosen at line LBL1b), and the declas-
sification of memory (chosen at line LBL4a) does not contain c; thus, no
matter what label operations the environment executes, including the op-
erations in mal_client (Fig. 8.2), the environment cannot write to the log
file, ensuring that log_ni remains in state 2. However, because memory
can read from an object with a lower label, the environment can read from

84

LOG, which ensures that when logger exits, log_ar transitions to state 1,
not to state 3.

The instrumentation algorithm implemented in our policy weaver for
HiStar, hiweave, takes as input the version of auth_log that executes no
label operations (i.e., auth_log in Fig. 8.1 with the label operations in
gray removed), the DIFC policy log_ar, and the non-interference pol-
icy log_ni, and automatically instruments auth_log to execute the label
operations depicted in Fig. 8.1. The primary programming challenge ad-
dressed by hiweave in the context of auth_log is to model soundly all
possible behaviors of auth_log’s environment, which may include arbi-
trary traces of label operations that the environment executes to either
cooperatively attempt to call the logger gate (e.g., log_client, Fig. 8.2)
or maliciously attempt to directly write to LOG (e.g., mal_client, Fig. 8.2).
The technique applied by hiweave to address these challenges is: (1) de-
fine a program auth_log’ whose runs are the runs of multiple possible
instrumentations of auth_log; (2) compute a finite over-approximation
auth_log# of the language of runs of auth_log’ that violate log_ar or
log_ni; (3) use auth_log# to construct a game G for which each play mod-
els a run of auth_log’, and each Attacker-winning play models a run of
auth_log# that may result in a violation of log_ar or log_ni; (4) try to
find a winning Defender strategyD ofG; (5) fromD, instrument auth_log
to execute label operations throughout each run r that correspond to the
actions chosen by D throughout the play that models r.

A fragment of the game constructed by hiweave to weave auth_log to
satisfy log_ar and log_ni is depicted in Fig. 8.5. Each game state models
a triple consisting of a state of auth_log’, a state of log_ar, and a state
of log_ni. Each state is depicted in Fig. 8.5 as a node annotated with (1)
the control location of the state of logger, (2) the state of log_ar, and (3)
the state of log_ni that it models. The game fragment illustrates that in
general, the weaver can instrument programs to satisfy multiple policy

85

set_op_label(
 upd_lv(mem_label(),
 c, LOW));

LBL9b0
1, 2

LBL9b1
1, 2

LBL9a
1, 2

L9-1
1, 2

L9-0
1, 2

L9-2
1, 2

ENV0,
0, 1

L9-3
1, 2

ENV5,
0, 1

set_op_label(mem_label());

set_op_decl(
 mem_decl());

L7:
gate_call(ret);

L7:
gate_call(ret);

ENV3,
0, 1

ENV2,
2, 1

set_op_decl(
 rem(c, mem_decl()));

set_op_decl(
 mem_decl());

set_op_decl(
 rem(c,
 mem_decl()));

ENV4,
0, 3

ENV: write(LOG,
 “no login attempts”);

ENV1,
0, 3

ENV: write(LOG,
 “no login attempts”);

L7:
gate_call(ret);

L7:
gate_call(ret);

Figure 8.5: Fragment of the game modeling the problem of instrumenting
auth_log to satisfy log_ar and log_ni from location L10. Defender
states are depicted as squares, Attacker states are depicted as circles,
and Attacker-winning states are depicted as doubled circles.

86

automata by constructing a game whose states simultaneously track the
states of each policy automaton. However, for simplicity, we describe
the weaver as taking as input only a single policy automaton. Each edge
between states is annotated with the program operation on which the
game transitions.

Hiweave actually constructs a game from a finite over-approximation
auth_log# of the language of executions of auth_log ′. Such an abstraction
will, for example, merge “similar” states that, e.g., differ only in the number
of categories allocated, but not in the levels that the labels of objects hold
at each category. In Fig. 8.5, we have depicted a fragment of the game
constructed directly from auth_log’, for simplicity.

Each play of the game fragment depicts a potential instrumentation
of logger immediately before logger invokes the gatecall operation at
control location L9. The game fragment is reached by executing the label
operations in the instrumentation of log_init depicted in Fig. 8.1, which
create a category c stored in category variable c. The play p0 in which the
Defender chooses label operations that drive the game to the state with
control location L9-0 models an execution of an instrumentation of logger
that returns control to its environment with the label of memory updated
to map c to level Low and with the declassification of memory. p0 ends in
an Attacker winning state, which models the fact that if logger returns
to its environment after executing the modeled label operations, then the
environment can write to LOG, which violates log_ni.

The play p1 in which the Defender chooses label operations that drive
the game to the state with control location L9-1 models an execution of
an instrumentation of logger that returns control to its environment with
the label of memory updated with category c set to Low and with a declas-
sification that does not contain category c. p1 ends in an Attacker winning
state, which models the fact that if logger returns to its environment after
executing the modeled label operations, then the environment will not be

87

able to read from LOG, which would violate log_ar.
The play p2 in which the Defender chooses label operations that drive

the game to the state with control location L9-2 models an execution
of an instrumentation of logger in which logger returns control to its
environment with the label and declassification of memory. p2 ends in a
winning state for the Attacker, for a reason analogous to the reason that
play p0 ends in a winning Attacker state.

The play p3 in which the Defender chooses label operations that drive
the game to the state with control location L9-3 models an execution
of an instrumentation of logger in which logger returns control to its
environment with the label of memory and with the declassification of
memory with the category c removed. pr,r ends in a state q that is not
a winning state for the Attacker. Furthermore, there is a winning De-
fender strategy from q for the complete game constructed by hiweave
for auth_log, log_ar, and log_ni. This models the fact that the modeled
label operations satisfy the log_ar and log_ni, as explained in detail in
§8.3.

88

9
Technical approach

In this chapter, we describe the technical details of our approach to solving
the HiStar weaving problem. In §9.1, we define the syntax and semantics of
a DIFC programming language difc. In §9.2, we formulate the conditions
under which one difc program is a valid instrumentation of another
difc program. In §9.3.2, we define a language of DIFC policies for difc
programs. In §9.4, we define the problem of instrumenting a difc program
to satisfy a DIFC policy. In §9.5, we describe our technique for solving the
instrumentation problem.

9.1 difc: a language of DIFC programs

In this section, we first define a core language difccore of imperative
programs (§9.1.1) without DIFC features. We then use difccore to define
the syntax (§9.1.2) and semantics (§9.1.3) of our subject DIFC language,
difc.

9.1.1 difccore: a core language

difccore syntax

A difccore program reads values from a rooted graph of objects into mem-
ory, computes operations on the loaded values, and writes the computed
values to objects. The syntax of a difccore program is given in Fig. 9.1,
and is defined over fixed finite sets of module symbols (MODSYMS), con-

89

Prog := (MODSYMS : (LOC : Op)∗)∗ (9.1)
Op := DATAVARS := OP(DATAVARS) (9.2)

| DATAVARS ? LOC : LOC (9.3)
| DATAVARS := RD(OBJVARS) (9.4)
| WR(OBJVARS, DATAVARS) (9.5)
| OBJVARS := ld_root() (9.6)
| OBJVARS := ld(OBJVARS, LINKS) (9.7)
| OBJVARS := create(OBJVARS, LINKS) (9.8)
| g := creategate(OBJVARS, LINKS, MODSYMS) (9.9)
| gatecall(OBJVARS) (9.10)

Figure 9.1: Syntax of difccore, a core programming language that operates over
data values.

trol locations (LOC), link symbols (LINKS), object variables (OBJVARS), and
data variables (DATAVARS). A difccore program is a sequence of bind-
ings from a module symbol to a sequence of operations, each annotated
with a control location (Eqn. (9.1)); each location may annotate at most
one operation. An operation may compute a value from values in data
variables and store the result in a data variable (Eqn. (9.2), where OP is a
set of standard arithmetic operations over integers), or may branch control
flow based on the value in a data variable (Eqn. (9.3)). An operation also
may read a value from an object to a data variable (Eqn. (9.4)), may write
a value in a data variable to an object (Eqn. (9.5)), may load the root object
into an object variable (Eqn. (9.6)), may load an object linked from an
object in an object variable into an object variable (Eqn. (9.7)), may create
an object (Eqn. (9.8)), may create a gate, (Eqn. (9.9)), or may call a gate
(Eqn. (9.10)).

A difccore program P can be represented as an annotated control-flow
graph. Each difccore program P defines (1) a function LocModP : LOC→

90

MODSYMS from each control location L to the module that contains an
operation annotated with L, (2) a function ModInitP : MODSYMS→ LOC
from each module M to the location that annotates the initial operation of M
in P, and (3) a control-flow graph (NP,EP). The control nodes NP are the
control locations LOC, and the control edges E ⊆ N× Op×N are defined
by the structure of each module in P.

Example 6. Let nolbl_log be the difccore program formed by removing
all label and declassification operations from auth_log (§8.1, Fig. 8.1). The
log_init module of nolbl_log is a sequence of operations that load the
root object (rt := ld_root()), create a log object as a child of the root
(create(rt, LOG)), create a gate as a child of the root (creategate(rt,
LOGGER, logger)), load the return gate (ret := ld(rt, RET)), and call
the return gate (gatecall(ret)).

difccore semantics

A difccore program P defines a transition relation over difccore states.
Let the set of control locations LOCE be the set of control locations extended
with a distinguished control location ENV that models the program’s
environment. Each difccore state consists of a control location in LOCE
and a value store, which is a graph of objects in which each object is bound
to a data value and each edge between objects is annotated with a link
symbol. Let O∗ be an infinite universe of objects, containing elements
Mem and Root. A value store σ = (D,O, δ,µ, ρ,ν) is a six-tuple of (1) a
valuation of data variablesD : DATAVARS→ Z, (2) a set of objectsO ⊆ O∗

containing distinguished elements Mem and Root, (3) a map from each
object to a data value δ : O→ Z, (4) a partial map from objects to module
symbols µ : O → MODSYMS, (5) an evaluation of object variables ρ :

OBJVARS ↪→ O, and (6) a partial map from objects and link symbols to
objects ν : O × LINKS ↪→ O. We denote the components of a value store
σ as Dσ, Oσ, δσ, µσ, ρσ, and νσ, respectively, and denote the space of all

91

intra
(L, o, L’) ∈ E ′P 〈σ, o〉 →dc σ

′

〈(L,σ), o〉 →P 〈L’,σ ′〉

gatecall-P
L ′ = ModInitP(µσ(g))

〈(L,σ), gatecall(g)〉 →P (L ′,σ)

gatecall-non-P
ModInitP(µσ(g)) =↑

〈(L,σ), gatecall(g)〉 →P (ENV,σ)

Figure 9.2: Inference rules that define transition relation→P of a difccore pro-
gram P.

value stores as DIFCCoreStores. A difccore state (L,σ) is a control location
L ∈ LOCE and value store σ. We denote the space of all difccore states as
CoreStates = LOCE × DIFCCoreStores.

Example 7. A difccore state that can be reached by executing nolbl_log
(Ex. 6) is (L9,σ), where σ is the following value store:

• The set of objects contains memory, the root object, the log object, the
message object, the logger gate, and a return gate bound to object
variable ret.

• There are links from the root object to (1) the log object on link symbol
LOG, (2) the message object on link symbol MSG, and (3) the logger
gate on link symbol LOGGER.

• The object linked from root on symbol LOGGER is bound to module
logger.

For difccore program P, the transition relation→P⊆ CoreStates×Op×
CoreStates of a difccore program P is defined by semantic inference rules
given in Fig. 9.2. Let E ′P ⊆ LOCE × OP × LOCE be EP extended to contain
an edge from ENV to ENV on each operation that is not a gatecall (i.e.,

92

Op := CVAR := create_cat() (9.11)
| set_op_label(LExpr) (9.12)
| set_op_declass(DExpr) (9.13)

LExpr := mem_label() (9.14)
| upd_lv(LExpr, CVAR, LEVELS) (9.15)

DExpr := mem_decl() (9.16)
| rem_decl_cat(DExpr, CVAR) (9.17)

Figure 9.3: Label operations of difc that extend Op.

each intra-module operation). If o is an intra-module operation (Rule intra),
then pre-state (L,σ) transitions to post-state (L ′,σ ′) on o if L ′ is a control-
successor of L on o ((L, o, L ′) ∈ E ′P) and pre-store σ transitions to post-store
σ ′ on o (〈σ, o〉 →dc σ

′). The definition of→dc is straightforward from the
informal definitions of each intra-module operation, and we omit a full
description.

For an operation gatecall(g), if the gate g bound to g is bound to
a module M in P (Rule gatecall-P), then pre-state (L,σ) transitions to a
post-state whose control location is the initial location of M, and whose
store is σ. If g is not bound to any module (Rule gatecall-P), then pre-state
(L,σ) transitions to a post-state whose control location is ENV (the control
location of the environment), and whose store is σ.

9.1.2 difc syntax

A difc program is a difccore program whose operations are the difccore
operations extended with a set of label operations, given in Fig. 9.3; we
refer to the space of all operations of difc programs as Op. Op is defined
over the space of category variables (CVAR), and the space of levels LEVELS,
ordered Low < Mid < High. A label operation may create a fresh category

93

(Eqn. (9.11)), set the value of a label expression as the label to be used by
the next operation (i.e., the operation label; Eqn. (9.12)) or set the value of
a declassification expression to be the declassification used by the next
operation (i.e., the operation declassification; Eqn. (9.13)).

A label expression is either the memory label (Eqn. (9.14)) or a
label expression updated to map a category in a variable to a level
(Eqn. (9.15)). A declassification expression is either the memory declassifi-
cation (Eqn. (9.16)) or a category removed from a declassification expres-
sion (Eqn. (9.17)).

Example 8. auth_log contains the label operation o ≡
set_op_label(upd_lv(mem_label(), c,LOW)). o sets the operation la-
bel to be the label of memory, updated to map the category in category
variable c to level Low.

9.1.3 difc semantics

In this section, we define a semantics for difc by defining a space of difc
states (§9.1.3), and, for each difc program P, a transition relation over
difc states (§9.1.3).

difc states

A difc program defines a transition relation over the space of difc states.
A difc state consists of a control location, a value store, and a label store.
Let C∗ be an infinite set of categories that do not overlap with the set of
objects (i.e., O∗ ∩ C∗ = ∅). Let a label L ∈ L be a function that maps each
category to a level (i.e., L = C∗ → LEVELS), and let a declassificationD ∈ D

be a set of categories (i.e., D = P(C∗), where for a set S, P(S) denotes the
power-set of S). A label store (C, λ, κ,Lop,Dop) is a five-tuple consisting of
(1) categories C ⊆ C∗ created by the program, (2) a store label λ : O→ L, (3)
a store declassification κ : O ↪→ D, (4) the operation label Lop ∈ L, and (5)

94

the operation declassificationDop ∈ D. The operation label and operation
declassification store the value of the next label and declassification to be
used by an operation.

Labels and declassifications are notions that should only be visible at
the difc level, not the difccore level. Thus, difccore operations, such as
create, creategate, and gatecall, should not require any label-valued
or declassification-valued parameters. To avoid having to redefine the
signatures of create, etc. at the difc level, we introduced the operation
label (i.e., (4)) and the operation declassification (i.e., (5)) in the difc state,
along with the operations set_op_label and set_op_declass in the difc
syntax to manipulate them.

We denote the space of label stores as LabelStores. For label store σ, we
denote the categories, environment categories, store label, store declassifi-
cation, operation label, and operation declassification of σ as Cσ, λσ, κσ,
Lσop, and Dσop, respectively.

For label store σ, we refer to λσ(Mem), and κσ(Mem) as the memory label
and memory declassification, respectively, in σ.

A difc store is a value store paired with a label store; we denote the
space of difc stores as difcStores = DIFCCoreStores× LabelStores. A difc
state is a control location paired with a difc store; we denote the space of
difc states as Qd = LOCE × difcStores.

Example 9. Before auth_log executes the operation at control location L9
(§8.1, Fig. 8.1), it can reach the difc state (L9, (σV ,σL)), where σV is the
value store introduced in Ex. 7 and σL consists of the following compo-
nents:

1. The set of categories contains the category c created at location LBL1a.

2. The store label maps each object other than LOG to a label that maps
c to Mid. The label of LOG maps c to Low.

95

3. The store declassification maps memory and the logger gate to a
declassification that contains only c, and maps the return gate to a
declassification that is the empty set of categories.

4. The operation label is equal to the label of memory.

5. The operation declassification is the empty set of categories.

The premises of many rules that define the semantics of difc operations
use a flows-to relation over labels, which defines when information may
flow from one object to another.

Definition 16. For labels L0 and L1 and categories C, L0 flows to L1 over C
(denoted by L0 vC L1) if the level of L0 is at least as low as the level of L1 at
each category in C. That is, L0 vC L1 if and only if ∀c ∈ C. L0(c) 6 L1(c).

The semantics of difc operations often will be defined using the flows-
to relation over the set of categories not declassified by memory. For label
store Λ, we use vΛMem to denote vC∗\κΛ(Mem). Typically, a label store maps
objects to labels with a labeling function λ, and the premises of a semantic
rule or property of stores in a policy compares the labels of two objects o
and p under λ. When λ is clear from context, for simplicity, we will simply
say that “o flows to p,” rather than saying that “the label of o under λ
flows to the label of p under λ.”

difc transitions

A difc program P defines a transition relation→P⊆ Qd × Op ×Qd. →P
is defined by the transition relation →d⊆ difcStores × Op × difcStores
that relates difc pre-states, operations, and post-stores. Inference rules
that define →d for a selection of difc operations are given in Fig. 9.4
and Fig. 9.5. The rules in Fig. 9.4 define the semantics of operations that
check, but do not update, the label store of a pre-store. For difc stores

96

read
〈V , x := RD(o)〉 →dc V

′ λΛ(ρV(o))vΛMem λ
Λ(Mem)

〈(V ,Λ), x := RD(o)〉 →d (V ′,Λ)

write
〈V , WR(o, x)〉 →dc V

′ λΛ(Mem)vΛMem λ
Λ(ρV(o))

〈(V ,Λ), WR(o, x)〉 →d (V ′,Λ)

load
〈V , o := ld(d, l)〉 →dc V

′ λΛ(ρV(d))vΛMem λ
Λ(Mem)

〈(V ,Λ), o := ld(d, L)〉 →d (V ′,Λ)

Figure 9.4: Semantic inference rules for difc. The rules partially define a transi-
tion relation→d⊆ difcStores×Op× difcStores from a difc pre-store
and operation to a post-store.

σ,σ ′ ∈ difcStores and operation op ∈ Op, σ transitions to σ ′ on op under
the following conditions:

• If op is an operation on data variables or a control branch, then σ ′ is
identical to σ.

• If op is an operation x := RD(o) and the object o bound to object
variable o flows to memory, then σ ′ is σwith a value store updated
according to the difccore semantics (Rule read).

• If op is an operation WR(o, x) and memory flows to the object o bound
to object variable o, then σ ′ is σwith a value store updated according
to the difccore semantics (Rule write).

• If op is an operation x := ld(d, l) and the object d bound to object
variable d flows to memory, then σ ′ is σwith a value store updated
according to the difccore semantics (Rule load).

The rules in Fig. 9.4 define the semantics of operations that check and
update the label store of a pre-store:

97

create

〈V , o := create(d, L)〉 →dc V
′ o ∈ OV ′ \OV

λΛ(Mem)vΛMem λ
Λ(ρV(d))

λΛ(Mem)vΛMem L
Λ
op λ ′ = λΛ[o 7→ LΛop]

Λ ′ = (CΛ, λ ′, κΛ,LΛop,DΛop)
〈(V ,Λ), o := create(d, L))〉 →d (V ′,Λ ′)

create-gate

〈V , g := creategate(d, L, M)〉 →dc V
′ o ∈ OV ′ \OV

λΛ(Mem)vΛMem λ
Λ(ρV(d))

λΛ(Mem)vΛMem L
Λ
op λ ′ = λΛ[o 7→ LΛop]

Dop ⊆ κΛ(Mem) κ ′ = κΛ[o 7→ Dop]
Λ ′ = (CΛ, λ ′, κ ′,LΛop,DΛop)

〈(V ,Λ), g := creategate(d, L, M)〉 →d (V ′,Λ ′)

gatecall

g = ρV(g) DΛop ⊆ κΛ(Mem) D = DΛop ∪ κΛ(g)
λΛ(Mem)vC∗\D LΛop λΛ(g)vC∗\D LΛop
λ ′ = λΛ[Mem 7→ LΛop]] κ ′ = κΛ[Mem 7→ D]

Λ ′ = (CΛ, λ ′, κ ′,LΛop,DΛop)
〈(V ,Λ), gatecall(g))〉 →d (V ′,Λ ′)

createcat

c ∈ C∗ \ CΛ κ ′ = κΛ[Mem 7→ κΛ(Mem) ∪ {c}]
Λ ′ = (CΛ ∪ {c}, λΛ, κ ′,LΛop,DΛop)

〈(V ,Λ), c := create_cat()〉 →d (V ,Λ ′)

Figure 9.5: Inference rules that define the transition relation→d over difc stores.

98

• If op is an operation o := create(d, L) (Rule create), then (1) mem-
ory flows to the object bound to object variable d (λΛ(Mem) vΛMem

λΛ(ρΛ(d))) and (2) memory flows to the operation label LΛop
(λΛ(Mem)v LΛop).

Let o be the fresh object created according to the difccore semantics
for a create operation (〈o := create(d, L),V〉 →d V

′ and o ∈ OV ′ \
OV). σ ′ is σwith a label store that maps o to LΛop (λ ′ = λΛ[o 7→ LΛop]).

• If op is an operation g := creategate(l, L, M) (Rule create-gate) then
the conditions on σ, σ ′, and op for op ≡ o := create(d, L) apply.
Furthermore, the operation declassification DΛop must be contained
by the declassification of memory (DΛop ⊆ κΛ(Mem)).

σ ′ is σwith a label store that maps o to declassification DΛop.

• If op is an operation gatecall(g) (Rule gatecall), then let g be the
object bound to object variable g (g = ρΛ(g)) and let D be the
union of the operation declassification and the declassification of g
(D = DΛop ∪ κΛ(g)). Then (1) the operation declassification is con-
tained by the declassification of memory (DΛop ⊆ κΛ(Mem)); (2) & (3)
memory and g flow to the operation label over all categories not in
D (λΛ(Mem)vC∗\D L and λΛ(o)vC∗\D LΛop).

σ ′ is σwith a label store updated to map memory to label LΛop and
declassification DΛop.

• If op is an operation c := create_cat(), then σ ′ (1) contains a fresh
category c not in σ and (2) memory declassifies c.

The semantics of the label operations that set the operation label and oper-
ation declassification are straightforward from their informal descriptions
(§9.1.2), and so we omit a full description.

99

Example 10. Each execution of auth_log that completes logger contains
a transition on a gatecall operation. Let σ be the difc store introduced
in Ex. 9. When logger executes the operation gatecall(ret) from σ, the
program successfully takes a step of execution. In particular, the union
of the operation declassification Dσop = ∅ and the declassification of the
return gate r stored in ret is D = {d}. The operation declassification
is (trivially) contained by the memory declassification; thus, σ satisfies
premise (1) of a gatecall operation. Memory and r flow to the operation
label over all categories not in D; thus, σ satisfies premises (2) and (3).

The post-store σ ′ that results from executing gatecall(ret) is σ up-
dated as follows: the label of memory maps c and d to Mid; the declassifi-
cation of memory contains only d.

For difc program P and difc states q,q ′ ∈ Qd, if there is some opera-
tion op ∈ Op for which 〈q,op〉 →P q ′, then q reaches q ′, denoted q⇒P q ′.
The reflexive transitive closure of⇒P is denoted as⇒∗P⊆ Qd ×Qd.

9.1.4 Program runs

A run of a difc program P is a sequence of difc states in which each
adjacent pair of states are in the transition relation of P.

Definition 17. Let P be a difc program. Then a sequence of difc states
q0,q1, . . . ,qn is a run of P if for 0 6 i < n, qi ⇒P qi+1.

For module symbol M ∈ MODSYMS, difc state qi = (L,σ) ∈ Qd is an
M-state if LocModP(L) = M. The union of M states over all module symbols
M are the module states of P. If r is a run of P, then the subsequence of all
module states of r is a module run of P. The sequence of all operations
executed in a module state of r is a module trace of P.

100

9.2 Valid instrumentation as label refinement

We formulate a valid instrumentation of a difc program by adapting
definitions of simulation and refinement (defined in Chapter 2, Defn. 2).
Unfortunately, neither simulation nor refinement formulate our intuitive
notion of a valid instrumentation, as demonstrated by auth_log (intro-
duced in §8.1).

Example 11. Formulating a valid instrumentation of a difc program
P as a simulation of P disallows difc programs that satisfy our intu-
itive notion of a valid instrumentation. E.g., let nolbl_log be a version
of auth_log with the label operations (highlighted in gray in Fig. 8.1)
removed. Intuitively, we wish to allow auth_log as an instrumenta-
tion of nolbl_log, but auth_log is not a simulation of nolbl_log from
any pair of difc states. In particular, consider a state q at control loca-
tion L1 of nolbl_log. q transitions on operation log := create(d, l) to
a state with a fresh log object o, and in which the set of categories is
the set of categories in σ. No state of auth_log can simulate q, because
any such state would transition over the operations c := create_cat();
set_op_label(upd_lv(mem_label(), c, LOW));, log := create(rt, LOG) to a
state with a store in which there is some category c that is not a category
in σ.

Conversely, formulating a valid instrumentation of a difc program as
a refinement allows an instrumentation of a difc program P to be a trivial
program that reproduces none of the behaviors of P. E.g., let halt be a
trivial difc program that contains a control location Lh, and no control
edges. halt is a refinement of nolbl_log.

Intuitively, difc program P ′ is an instrumentation of P if P ′ can match
any sequence of value stores “chosen” over a run of P, but P ′ can choose
the label stores paired with each value store in the sequence. We formulate

101

this intuition by defining that under such a condition, P ′ is a label refinement
of P.

Definition 18. For difc programs P and P ′, a label-refinement relation ∼⊆
Qd×Qd is a relation over difc states that satisfies the following conditions:

1. ∼ only relates states with equal value stores. I.e., for q0 =

(L0, (V0,L0)) ∈ Qd and q1 = (L1, (V1,L1)) ∈ Qd, if q0 ∼ q1, then
V0 = V1.

2. If a pair of states (q,q ′) is in ∼, then each successor of q on one step
of P is paired with a successor of q ′ over multiple steps of P ′. I.e., for
q0,q ′0 ∈ Qd such that q0 ∼ q ′0, if q0 ⇒P q1, then there is some state
q ′1 such that q ′0 ⇒∗P ′ q ′1 and q1 ∼ q

′
1.

P ′ is a label refinement of P if there is a label-refinement relation ∼ for P and
P ′ such that for each store σ ∈ difcStores, (ENV,σ) ∼ (ENV,σ).

Label refinement, like capability refinement (§5.2), may be viewed as a
special case of alternating refinement [2].

9.3 DIFC policies

In §8.2, we presented a policy for auth_log as an automaton whose sym-
bols were conditions on DIFC states and an automaton whose symbols
were conditions on pairs of DIFC states. In this section, we define the
structure and semantics of DIFC automata in general. In §9.3.1, we define
a space of conditions on difc stores. In §9.3.2, we use store conditions
to define a space of DIFC policy automata, and define under what con-
ditions a difc program satisfies a DIFC policy automaton. We describe
how each non-interference automaton can be compiled into a DIFC policy
automaton over an extended store vocabulary in App. A.1.

102

9.3.1 Conditions on difc stores

Store conditions are used in DIFC policies to define assumed and required
conditions on difc states. Store conditions are formulas over a first-order
relational vocabulary Vd whose predicates model properties of difc stores.
Vd is the union of two vocabularies Vdc and V ′d; Vdc describes features of
difccore states.

Definition 19. Each difccore store σ ∈ DIFCCoreStores defines a model
mdc
σ = 〈Uσ, ισ〉 over a first-order relational vocabulary Vdc. The universe

Uσ ofmσ contains the objects of σ. The vocabulary Vdc and the interpreta-
tion ισ of each predicate symbol in Vdc in the universe Uσ are defined as
follows.

• Vdc contains a unary predicate symbol IsRoot. IsRoot holds for exactly
one individual; in particular, ισ(IsRoot)(Root) holds.

• Vdc contains the set of module names MODSYMS as unary predicate
symbols. At most one module-name predicate can hold for a given
object. If in σ the program executes module M ∈ MODSYMS, then
ισ(M)(Mem) holds. If in σ a gate g is bound to M, then ισ(M)(g) holds.

• Vdc contains the set of object variables OBJVARS as unary predicate
symbols. Each object-variable predicate can hold for at most one
object. If in σ there is an object o in object variable o, then ισ(o)(o)
holds.

• Vdc contains the set of links LINKS as binary predicate symbols. Each
link-symbol predicate is a partial function over objects. If in σ there
are objects o and p such that there is a link from o to p on link symbol
l ∈ LINKS, then ισ(l)(o,p) holds.

Definition 20. Each difc store σ defines a model md
σ = 〈Uσ, ισ〉 over a

first-order relational vocabulary V ′d. The universe Uσ contains the objects

103

and categories of σ and an individual io that models the operation label
and operation declassification. ισ of each predicate symbol in V ′d in the
universe Uσ is defined as follows.

• Vd contains a unary predicate symbol IsObj. For each object o,
IsObj(o) holds.

• Vd contains a unary predicate symbol IsMem. ισ(IsMem)(Mem) holds.

• Vd contains a unary predicate symbol IsCat. If in σ, c is a category
(c ∈ Cσ), then ισ(IsCat)(c) holds.

• Vd contains the set of category variables CVAR. If in σ there is a
category c bound to c, then ισ(c)(c) holds.

• Vd contains a unary predicate symbol IsOp. IsOp(io) holds.

• For each level lv ∈ LEVELS, Vd contains a binary predicate symbol
label[lv]. If in σ the label of object o has level lv at category c, then
ισ(label[lv])(o, c) holds.

• Vd contains a binary predicate symbol Declassifies. If in σ the declas-
sification of object o contains category c, then ισ(Declassifies)(o, c)
holds.

For difc store σ, the model of σ over the vocabulary Vd is the union of
the models (defined in §2.3, Defn. 6)mσ = mdc

σ ∪md
σ.

A store condition is a closed first-order Vd-formula; we denote the space
of all store conditions as StoreCond. A store σ satisfies store condition ϕ if
mσ is a model of ϕ.

The store conditions used to define log_ar (§8.2) are defined over a set
of derived difc predicates. The derived ternary predicate LeqLv(x,y, c)

104

holds if the label of object x is less than or equal to the label of object y at
category c:

LeqLv(x,y, c) ≡ label[Low](x, c)
∨(label[Mid](x, c)
∧(label[Mid](y, c)∨ label[High](y, c))

∨(label[High](x, c)∧ label[High](y, c))

The derived unary predicate CanRead(x) holds if memory can read from
object x:

CanRead(x) ≡ ∀m, c. IsMem(m)∧ IsCat(c) =⇒

LeqLv(x,m, c)∨ Declassifies(m, c)

The derived unary predicate CanWrite(x) holds if memory can write to
object x:

CanWrite(x) ≡ ∀m, c. IsMem(m)∧ IsCat(c) =⇒

LeqLv(m, x, c)∨ Declassifies(m, c)

Example 12. In log_ar, assumptions on the access rights held when each
module of auth_log is entered and assertions on the access rights held
when each module exits can be represented as store conditions; these store
conditions were depicted for clarity in Fig. 8.3 as a set of derived Vd nullary
predicates. The derived nullary store predicate RD[MSG] denotes the store
condition:

∀r, l. IsRoot(r)∧ MSG(r, l) =⇒ CanRead(l)

The derived nullary store predicate RD[LOG] denotes the store condition:

∀r, l. IsRoot(r)∧ LOG(r, l) =⇒ CanRead(l)

105

The derived nullary store predicate WR[LOG] denotes the store condition:

∀r, l. IsRoot(r)∧ LOG(r, l) =⇒ CanWrite(l)

9.3.2 Policy automata

A DIFC policy is a finite-state automaton in which each alphabet symbol
is a control location paired with a store condition.

Definition 21. A DIFC policy is a finite-state automaton whose alphabet
Σ is a finite set in which each element is a control location paired with a
store condition. I.e., Σd = LOCE × StoreCond. The class of DIFC policies is
denoted DIFCPols.

Each DIFC policy defines a language of traces of difc states to be
policy violations. A trace t is in the language if each state in t satisfies a
corresponding store condition in some trace of conditions accepted by A.

Definition 22. Let t = (L0,σ0), . . . , (Ln,σn) ∈ Q∗d be a trace of difc states,
and let D ∈ DIFCPols be a DIFC policy. If the trace of state conditions
tA = a0, . . . ,an ∈ Σ∗d is such that for each 0 6 i 6 n and ai = (L ′i,ϕi), (1)
Li = L ′i and (2) σi |= ϕi, then tA is a store-condition trace of t. t violates A
if A accepts some store-condition trace of t. For difc program P, if each
trace t of P does not violate A, then P satisfies A (denoted P |= A).

9.4 The DIFC labeling problem

The DIFC labeling problem is to take a program P and a DIFC policy Π,
and instrument P to satisfy Π.

Definition 23. Let P be a difc program and letΠ be a DIFC policy. A solu-
tion to the DIFC instrumentation problem LABEL(P,Π) is a difc program
P ′ such that (1) P ′ is a label refinement of P and (2) P ′ satisfies Π.

106

9.5 DIFC labeling as game-solving

In this section, we describe a sound, but incomplete, procedure hiweave
for solving the DIFC labeling problem.

9.5.1 Overview

In principle, a solution to a labeling problem LABEL(P,Π) can be any in-
strumentation of Pwhich, at particular control locations, checks predicates
of its current state and chooses an appropriate label operation to execute
next in order to satisfy Π. The problem of synthesizing a set of predi-
cates to be checked and acted on at runtime raises daunting challenges.
In particular, a difc state is defined by an unbounded set of objects and
categories, and thus checking many properties of a difc state at runtime
could be expensive, and in the worst case impossible if components of the
state are created by the environment to be unreadable when instrumented
modules of the program execute.

Instead of attempting to synthesize a difc program that chooses label
operations based on properties of its execution state, hiweave attempts to
synthesize a program that chooses label operations based on properties of
the history of executed operations. We reduce the problem of searching for a
valid instrumentation to finding a winning Defender strategy to a game,
where the symbols of the game model difc operations. This approach has
several advantages:

• hiweave can be parameterized on advice “templates” from an ex-
pert user, which specify restricted languages of operations for an
instrumented program to potentially execute.

• hiweave can apply any analysis that builds a sound abstraction of
the transition relation of a difc program, independent of the repre-
sentation of states in the abstraction.

107

Input :A difc program P and DIFC policy Π.
Output :A solution to LABEL(P,Π).

1 GP,Π := DIFCProgPolicyGame(P,Π) ;
2 if HasWinningDefStrategy(GP,Π) then
3 D := FindWinningDefStrategy(GP,Π) ;
4 return DIFCCodeGen(D) ;
5 else
6 Fail () ;

Algorithm 9.6: hiweave: a sound solver for the DIFC labeling problem.

• hiweave can use standard automata-theoretic language operations
to model the instrumented program’s inability to directly observe
the actions of the environment.

hiweave attempts to solve a labeling problem LABEL(P, F) in three
main steps, presented in pseudo-code as Alg. 9.6. hiweave first constructs
(line [1]) from P and Π a finite two-player game GP,Π whose alphabet is
the space of operations of P, such that for any Defender strategy D that
wins GP,Π, the plays of D are the traces of a solution to LABEL(P,Π) (in
such a case, we say that D defines a solution to LABEL(P,Π)). This step is
described in more detail in §9.5.2.

hiweave then applies a classical algorithm HasWinningDefStrategy to
determine if GP,Π has a winning Defender strategy (line [2]). If GP,Π has
a winning Defender strategy, then hiweave applies a classical algorithm
FindWinningDefStrategy to construct a winning Defender strategy D
(line [3]). Otherwise, hiweave aborts (line [6]); we discuss this limitation,
and possible extensions of our work to overcome it, in Chapter 14.

If hiweave finds a winning Defender strategyD forGP,Π, then hiweave
instruments P to form a new difc program P ′ that is a solution to
LABEL(P,Π) (line [4]). During each run, P ′ stores two tables that rep-
resent the transition function of D. One table, TA, represents the transition
function of D from Attacker states. TA is indexed by an Attacker pre-state

108

and a difc operation, and maps each index-pair to a post-state. As P ′

executes, it stores the current state ofD in a variable cur. When P ′ executes
a difccore operation o, it updates cur to store the value in TA indexed by
the current value in cur and o.

The second table, TD, represents the transition function of D from De-
fender states. TD is indexed by a Defender pre-state, and maps each index
to a label operation-state pair (o,q ′). As long as the state stored by cur is a
Defender state, P ′ performs the label operation o and updates cur to store
q ′. When cur stores an Attacker state, P ′ executes the next operation of P.

In the remainder of this section, we describe in detail how hiweave
takes an input difc program P and DIFC policy Π, and constructs a finite
game GP,Π that it solves in order to solve LABEL(P,Q).

9.5.2 From a program and DIFC policy to a game

From an input program P and input DIFC policy Π, hiweave constructs a
finite two-player game GP,Π such that each winning Defender strategy of
GP,Π defines an instrumentation of P that satisfies Π. To construct GP,Π,
hiweave performs the following steps.

1. Let T = (QT , ιT , FT , Op,∆T) be a finite acceptor of traces of difc oper-
ations that serves as a template of potential traces of label operations
that an instrumented version of P may execute before each operation
of P. From T , hiweave constructs a finite two-player game GT such
that each play of T is a sequence of difc operations accepted by T
chosen by the Defender, followed by a difc operation chosen by the
Attacker. We describe our experience designing operation templates
in §9.5.3.

2. From P and T , hiweave constructs a structure program (defined in
§2.3) SP,T such that each execution of SP,T models an execution E of

109

P with a sequence of operations accepted by T injected before each
operation of E.

3. From SP,T , hiweave constructs a finite-state acceptor A#
P,T of traces

of difc operations such that each trace that drives SP,T to an error
location is accepted by A#

P,T .

4. From Π, hiweave constructs a structure program SΠ such that each
difc trace of a run that does not satisfyΠ drives SΠ to an error control
location.

5. From SΠ, hiweave constructs a finite-state acceptor A#
Π of traces of

difc operations such that each trace that drives SΠ to an error control
location is accepted by A#

Π.

6. hiweave constructs GP,Π as the product of GT , A#
P, and A#

Π.

We now describe each step of the construction of GP,Π in more detail.

Constructing a game of template instrumentations

From template T , hiweave constructs a two-player safety gameGT in which
the Defender is restricted to play only sequences of operations accepted by
T . In particular, each play of GT not won by the Attacker is an unbounded
sequence of phases, in which each phase consists of (1) a sequence of
label operations chosen by the Defender that are accepted by T , followed
by (2) any difc operation, chosen by the Attacker. The construction of
GT is straightforward from its informal description, and we omit a full
definition.

From a difc program to a structure program

From the input program P and template T , hiweave constructs a structure
program SP,T = (LOCS, ιS, OS,ES,VS, TS) such that each trace of SP,T is a

110

trace t of Pwith a sequence of operations accepted by T injected before each
operation in t. hiweave constructs SP,T from the following components:

Control locations of SP,T The control locations LOCS of SP,T contain
“copies” of the states of T for each control location of P, and a control
location at which SP,T models the environment of P. I.e., LOCS contains
the following:

• For each control location L ∈ LOC and each state q ∈ QT , a control
location (L,q). We refer to (L,q) as the copy of q for L.

• The control location ENV.

Initial control location of SP,T The initial control location of SP,T is the
control location ENV.

Operations of SP,T The operations of SP,T are the difc operations Op.

Control edges of SP,T The control edges ES of SP,T induce SP,T to execute
a trace of operations accepted by T and then execute the next operation to
be executed by P. In particular, ES contains the following edges:

• For each transition (q, o,q ′) ∈ ∆T of T , SP,T may execute o from each
copy of q. I.e., for each control location L ∈ LOC and each transition
(q, o,q ′) ∈ ∆T , ES contains a control edge ((L,q), o, (L,q ′)).

• If P transitions from control location L to control location L ′ on an
intra-module operation o, then SP,T transitions on operation o from
each copy of a final state of T for L to the copy of the initial state of
T for L ′. I.e., for each intra-module control edge (L, o, L ′) ∈ EP and
each final state q ∈ FT , ES contains a control edge ((L,q), o, (L ′, ιT)).

111

• If P contains a control location L with a gatecall operation, and L0 is
the initial control location of a module or ENV, then ES contains a
control edge from the copy of each final state of T for L to the copy of
the initial state of T for L0. I.e., for operation gatecall(g) at location
L ∈ LOC, L0 ∈ LOC an initial location of a module in P, and q ∈ FT a fi-
nal state of T , ES contains a control edge ((L,q), gatecall(g), (L0, ιF)).

• If P models the program environment, then P can execute any
intra-module operation and continue to model the environment.
I.e., for each intra-module operation o, ES contains a control edge
(ENV, o, ENV).

Vocabulary of SP,T The vocabulary of TP,F is the DIFC vocabulary Vd,
defined in §9.3.1, Defn. 20.

Predicate transformers of SP,T For each difc operation o, hiweave de-
fines a predicate transformer over the vocabularyVd that models the seman-
tics of o. We now describe how each condition over labels in the premise
of an operation o and each update of a label store in Figs. 9.4 and 9.5 is
modeled as a predicate transformer τ[o] over Vd structures. We present the
predicate transformers of difc as the union of predicate transformers that
model the semantics of difccore, denoted Tdc, and predicate transformers
that model the semantics of difc, denoted Td. The transformers Tdc that
update the values of Vdc predicates are defined as follows:

• A difccore operation o := ld_root() loads the root object into the
object variable o. The transformer for the operation o := ld_root()
updates Vdc predicates as follows:

o(o) := IsRoot(o)

112

• A difccore operation o := ld(d, L) loads into object-variable o the
object linked from the object stored in object-variable d at link symbol
L. The transformer for o := ld(d, L) updates Vdc predicates as follows:

o(o) := ∃d. d(d)∧ L(d,o)

• A difccore operation o := create(d, l) (1) binds a fresh object o to
object variable o and (2) links the object bound to d to o on link sym-
bol L. The transformer for o := create(d, l) updates Vdc predicates
according to the follow predicate updates:

o(o) := new(o) (1)
L(d,o) := ITE(d(d), new(o), L(d,o)) (2)

• A difccore operation g := creategate(d, L, M), updates pre-store σ
analogously to how o := create(d, L) updates its pre-store, and in ad-
dition, sets the module of the freshly-allocated object g to M. The trans-
former for g := creategate(d, L, M) updates difccore predicates ac-
cording to the predicate updates for operation g := create(d, L) and
the predicate update:

M(g) := M(g)∨ new(g)

The transformers Td that update the values of V ′d predicates are defined
as follows:

• A difc operation x := ld(d, L) checks that in pre-store σ, the ob-
ject stored in object variable d flows to memory. For the derived
unary formula CanRead defined in §9.3.1, the predicate transformer
τ[x := ld(o)] asserts that its pre-structure satisfies the following Vd

formula:
∀o. d(o) =⇒ CanRead(o)

113

• A difc operation x := RD(o) checks that in pre-store σ, the object
o bound to object-variable o flows to memory over categories not
declassified by memory. The predicate transformer τ[x := RD(o)]
asserts that its pre-structure satisfies the following Vd formula:

∀o. o(o) =⇒ CanRead(o)

• A difc operation WR(o, x) checks that in pre-store σ, memory flows
to the object o bound to object-variable o. For the derived unary for-
mula CanWrite defined in §9.3.1, the predicate transformer τ[WR(o, x)]
asserts that its pre-structure satisfies the following Vd formula:

∀o.o(o) =⇒ CanWrite(o)

If σ passes the check of WR(o, x), then WR(o, x) binds to o the data
value bound to data variable x. τ[WR(o, x)] does not change its pre-
structure.

• A difc operation o := create(d, L) checks that in pre-store σ, (1)
memory flows to the object bound to d over categories C not de-
classified by memory and (2) memory flows to the operation label
over C. The predicate transformer τ[o := create(d, L)] asserts that
its pre-structure satisfies the following Vd formula:

∀m,d,o, c. IsMem(m)∧ d(d)∧ IsOp(o)∧ IsCat(c) =⇒

(Declassifies(m, c)

∨ ((1)LeqLv(m,d, c)∧ (2)LeqLv(m,o, c)))

If σ passes the check of o := create(d, l), then o := create(d, l) (1)
allocates a fresh object o and (2) sets the label of o to be the operation
label. If a pre-structure S satisfies the assertion of τ[o := create(d, L)],

114

m

IsCat

Mid

Decl.

log:=create(rt, LOG)

LOG

c

r
IsRoot
rt

IsMem

m

IsCat

Mid

c

r
IsRoot
rt

IsMem

l

Mid Mid

Low
log

Operation Post-structure S’Pre-structure S

o

Low

o

Low

Decl

IsOp IsOp

Figure 9.7: A graphical depiction of the predicate transformer that models the
create operation executed by log_init (see Chapter 8). The pre-
structure S is depicted on the left, and the resulting post-structure
S ′ is depicted on the right. Each structure is depicted as a graph
in which each node depicts an individual, and each edge depicts a
binary relation between nodes. Each node n depicting an individual
in is annotated with a name inside n, and unary predicate symbols
to the side of n that hold for in, and each edge from nodem to node
n is annotated with the binary relation that holds for (m,n). In the
S ′, nodes and edges depicting individuals and relations created by
log := create(d, LOG) are highlighted in bold.

then τ[o := create(d, L)] updates the universe and predicates of S by
introducing a new individual and applying the following predicate
updates:

for lv ∈ LEVELS:
label[lv] ′(o, c) := label[lv](o, c)

∨(new(o)∧ ∃p.IsOp(p)∧ label[lv](p, c)) (4)

Fig. 9.7 depicts the predicate transformer for the operation o ≡
log := create(rt, LOG) contained in the difc module log_init in-
troduced in Chapter 8, applied to a pre-structure that models a
store σ of log_init when log_init executes the operation o ≡

115

log := create(rt, LOG). The pre-structure contains four individu-
als that model (1) program memory (annotated “m”), (2) the root
object (annotated “r”), (3) the operation label (annotated “o”), and (4)
a category created by auth_log (annotated “c”). For individualm,
the unary predicate IsMem holds, for individual r the unary predicate
IsRoot holds, and for individual o, the unary predicate IsOp holds,
which model the facts that m, r, and o model memory, root, and the
operation label, respectively. Individual c is in the unary predicate
IsCat, which models that fact that c is a category. The edges from
m to c and from r to c annotated label[Mid] model the fact that the
labels of the memory and root objects have level Mid at c. The edge
from o to c annotated label[Low] models the fact that the operation
label has level Low at c. The edge fromm to c annotated Declassifies
models the fact that in σ, memory declassifies c.

The post-structure S ′ in Fig. 9.7, obtained by applying the predicate
transformer τ[log := create(rt, LOG)] to the pre-structure S, is S ex-
tended with an additional individual (annotated “l”) that models
the log file created by executing log := create(rt, LOG). Individual l
is annotated with a unary predicate log, which models the fact that
in S ′, the log object is stored in object variable log. S ′ contains (1)
an edge from l to c which models the fact that in σ ′, the label of the
log object has level Low at c and (2) an edge annotated LOG from r to
l which models the fact that in σ ′, there is a link with symbol LOG
from the root to the log.

• A difc operation g := creategate(d, L, M) checks that in pre-store
σ, (1) over all categories not declassified by memory, (2) memory
flows to the operation label; and (3) the operation declassification is
contained by the memory declassification. The predicate transformer
τ[g := creategate(d, l, M)] asserts that a pre-structure S satisfies the

116

following formula:

∀m,d,o, c. IsMem(m)∧ d(d)∧ IsOp(o)∧ IsCat(c) =⇒
∧((1)Declassifies(m, c)
∨((2)LeqLv(m,d, c)∧ (3)¬Declassifies(o, c))

If σ satisfies the check of g := creategate(d, L, M), then
g := creategate(d, L, M) updates σ analogously to how
o := create(d, L) updates its pre-store, and in addition sets the
declassification of g to the operation declassification. If pre-
structure S satisfies the assertion of τ[creategate(d, l, M)], then
τ[creategate(d, L, M)] adds a new individual to the universe of S,
and updates the predicates of S according to the following predicate
updates:

for lv ∈ LEVELS :

label[lv] ′(x, c) := label[lv](x, c)
∨(new(x)∧ ∃o.IsOp(o)∧ label[lv](o, c))

Declassifies ′(x, c) := Declassifies(x, c)
∨ (new(x)

∧∃o. IsOp(o)∧ Declassifies(o, c))

• A difc operation gatecall(g) checks that in pre-store σ, over all
categories not in the set of D of categories declassified by memory
or the gate object g bound to g, (1) the operation declassification
contains the memory declassification and over all categories not
declassified by the operation declassification or the gate declassifica-
tion, (2) memory flows to the operation label, and (3) g flows to the
operation label. The predicate transformer τ[gatecall(g)] asserts

117

that pre-structure S satisfies the following condition:

∀m,g,o, c. IsMem(m)∧ g(g)∧ IsOp(o)∧ IsCat(c) =⇒
((1)Declassifies(o, c) =⇒ Declassifies(m, c))
∧(Declassifies(o, c)∨ Declassifies(g, c)
∨((2)LeqLv(m,o, c)∧ (3)LeqLv(g,o, c)

If pre-store σ satisfies the check of gatecall(g), then gatecall(g)
updates σ so that (1) the module of memory is the module of the
gate object g bound to g in σ, (2) the memory label is the operation
label, and (3) the memory declassification is the operation declassifi-
cation. If a pre-structure S satisfies the assertion of τ[gatecall(g)],
then τ[gatecall(g)] updates S according to the following predicate
updates.

forM ∈ MODSYMS:
M ′(x) := ITE(IsMem(x),∃g. g(g)∧M(g),M(x)) (1)

for lv ∈ LEVELS:
label[lv] ′(x, c) := ITE(IsMem(x),

∃o. IsOp(o)∧ label[lv](c), label[lv](x, c)) (2)
Declassifies ′(x, c) := ITE(IsMem(x),

∃o. IsOp(o)∧ Declassifies(o, c),
Declassifies(x, c)) (3)

• A difc operation c := create_cat() updates pre-store σ by (1) allo-
cating a fresh category c, (2) binding c to category variable c, and
(3) extending the declassification of memory to contain c. (4) The
label of each object has level Mid at c. The predicate transformer
τ[c := create_cat()] adds a new individual to the universe of pre-
structure S and updates the predicates of S according to the following

118

predicate updates:

IsCat(c) := IsCat(c)∨ new(c) (1)
c ′(c) := new(c) (2)

Declassifies ′(o, c) := Declassifies(o, c)∨ (IsMem(o)∧ new(c)) (3)
for lv ∈ LEVELS:
label[Mid] ′(o, c) := label[Mid](o, c)∨ (IsObj(o)∧ new(c)) (4)

• A difc operation set_op_label(E) with label expression E updates
pre-store σ to hold an operation label with the value of E in σ. The
predicate transformer τ[set_op_label(E)] updates the predicates of
its pre-structure according to the following predicate updates:

for lv ∈ LEVELS :

label[lv] ′(o, c) := ITE(IsOp(o),E[lv](c), label[lv](o, c))

E[lv] is a unary derived predicate defined below.

• A difc operation set_op_declass(E) with declassification expres-
sion E updates pre-store σ by setting the operation declassification to
the value of E in σ. The predicate transformer τ[set_op_declass(E)]
updates the predicates of its pre-structure according to the following
predicate updates:

for lv ∈ LEVELS:
Declassifies ′(o, c) := ITE(IsOp(o),E(c), Declassifies(o, c))

E is a unary derived predicate defined below.
For a label expression E and a level predicate lv, the derived Vd

unary predicate E[lv](c) used in the predicate updates for operation
set_op_label is defined as follows:

119

• If E is the label expression mem_label, then:

E[lv](c) ≡ ∃y.IsMem(y)∧ label[lv](y, c)

• If E is a level-update expression upd_lv(E0, c, lv0), then:

– If lv = lv0, then E[lv](x) ≡ E0[lv](x)∨ c(x).

– Otherwise, if lv 6= lv ′, then E[lv](x) ≡ E0[lv](x)∧ ¬c(x).

For a declassification expression E, the derived Vd unary predicate E(c)
used in the predicate update for set_op_declass is defined as follows:

• If E is the declassification expression mem_decl(), then:

E(c) ≡ ∃y.IsMem(y)∧ Declassifies(y, c)

• If E is the declassification expression rem_decl_cat(E0, c) for declas-
sification expression E0, then: E ′(c) ≡ E ′0(c)∧ ¬c(c).

From a structure-program model of P to a finite abstraction

To construct a finite over-approximation of the language of module traces
of executions of the structure program SP,T , hiweave applies a proce-
dure AbsStruct that solves the structure-abstraction problem (defined
in §2.3) STRUCT_ABS(SP,T). Let (S#

P,T , AbsNode) = AbsStruct(SP,T) be
a solution produced by AbsStruct to the structure-abstraction problem
STRUCT_ABS(SP,T). Then from S#

P,T = (Q#,Σ,∆#) and AbsNode, hiweave
constructs the finite acceptor A#

P,T = (QP, IP, FP,ΣP,∆P), where

• The states QP are the states of the abstraction S#
P,T . I.e., QP = Q#.

• The initial states IP are the states of S#
P,T that abstract states at the

initial control location of SP,T . I.e., IP = {ι | ι ∈ Q#, AbsNode(ι) = ιS}.

120

• The alphabet ΣP is the space of difc operations.

• The transition relation ∆P is the transition relation of S#
P,T , with each

operation that SP,T executes to model the environment replaced with
an ε transition. I.e.,

∆P ={(q, o,q ′) | (q, o,q ′) ∈ ∆#, AbsNode(q) 6= ENV}

∪ {(q, ε,q ′) | o ∈ Op, (q, o,q ′) ∈ ∆#, AbsNode(q) = ENV}

• The final states FP are all states of S#
P,T . I.e., FP = Q#.

From DIFC policy Π to a structure program

From the input DIFC policy Π = (QΠ, ιΠ,AΠ,ΣΠ,∆Π), hiweave constructs
a structure program SΠ = (LOCS, ιS, OS,ES,VS, TS) such that each trace of
difc operations that violates Π drives SΠ to the error control location ERR.
The components of SΠ are defined as follows.

Control locations of SΠ The control locations LOCS of SΠ store the state
of Π inhabited by the difc run simulated by SΠ. In particular, for each
state q ∈ QΠ, LOCS contains control locations q and q ′. LOCS also contains
an error location ERR.

Initial control location of SΠ The initial control location ιS of SΠ is the
initial state of Π, ιΠ.

Operations of SΠ The operations OS of SΠ are the difc operations ex-
tended with a set of operations of the form assume[ϕ], where ϕ ∈ ΣF is a
store condition in the alphabet of Π.

121

Control edges of SΠ The control edges ES of SΠ define how SΠ maintains
the state of Π inhabited by its current execution. In particular, ES contains
the following edges:

• For each pair of states q0,q1 ∈ QF and store condition ϕ such that
Π transitions from q0 to q1 on ϕ (i.e., (q0,ϕ,q1) ∈ ∆F), ES contains a
control edge (q0, assume[ϕ],q ′1).

• For each policy state q ∈ QF and each difc operation o, ES contains
a control edge (q ′, o,q).

Vocabulary of SΠ The vocabulary of SΠ is the difc vocabulary Vd, de-
fined in §9.3.1, Defn. 20.

Predicate transformers of SΠ The predicate transformers in SΠ of the
difc operations are the predicate transformers of the difc operations in
SP,T . For each store condition ϕ ∈ StoreCond, the predicate transformer
for operation assume[ϕ] checks that its pre-structure satisfies ϕ.

From a structure-program model of Π to a finite abstraction

To construct a finite over-approximation of the module traces of runs that
violate Π, hiweave applies the procedure AbsStruct for solving a structure-
program-abstraction problem (described in §9.5.2) to construct a finite
abstraction S#

Π of SΠ, and replaces each transition of S#
Π that does not

model a step of execution of a policy transition of Π with an ε tran-
sition. Let (S#

Π, AbsNode) = AbsStruct(SΠ) be a solution produced by
AbsStruct to the structure-abstraction problem STRUCT_ABS(SΠ). Then
from S#

Π = (Q#,Σ,∆#) and AbsNode, hiweave constructs the finite acceptor
A#
Π = (Q, I, F,Σ,∆), where:

• The states Q of A#
Π are the states of the abstraction S#

Π. I.e., Q = Q#.

122

• The initial states I ofA#
Π are the states of S#

Π that abstract states at the
initial control location of SΠ. I.e., I = {ι | ι ∈ Q#, AbsNode(ι) = ιΠ}.

• The final states F of A#
Π are the states of S#

Π that abstract states of SΠ
whose control location is ERR. I.e., F = {q | q ∈ Q#, AbsNode(q) =
ERR}.

• The alphabet Σ of A#
Π is the space of difc operations Op.

• The transition relation ∆ of A#
Π is the transition relation of S#

Π, with
transitions from locations in which SΠ does not execute a policy
transition replaced with ε transitions:

∆ ={(q, L : o,q ′) | (q, L : o,q ′) ∈ ∆#, L 6= ENV}

∪ {(q, ε,q ′) | (q, L : o,q ′) ∈ ∆#, L = ENV}

From template game, program approximation, and policy to a game

hiweave constructs GP,Π as a product of the template game GT , the over-
approximation A#

P of the module traces of P, and the over-approximation
A#
Π of violations of Π. In particular GP,Π = GT ×G,A (det(A#

P)× det(A#
Π)),

where for a non-deterministic finite-state acceptor A, det(A) is a deter-
ministic acceptor that accepts the same language as A, and ×G,A is the
game-automaton product defined in §2.2.

9.5.3 Designing label-operation templates

The label-operation template given to hiweave directly affects both the
space of instrumentations considered by hiweave, as well as the size of
the game constructed by hiweave. We found that templates for many
practical programs on a DIFC system can be defined as regular languages
that accept traces of (i) category creations and (ii) updates to the level of
the operation label and operation declassification at categories stored in a

123

bounded set of category variables. In §10.2, we discuss the effect of using
templates of varying sophistication to instrument practical programs.

124

10
Evaluation

We carried out a series of experiments, designed to answer the following
questions about our instrumentation technique:

1. Can practical information-DIFC policies be written as DIFC policies?

2. Can our instrumentation algorithm efficiently instrument practical
programs to satisfy a policy represented as a DIFC policy?

3. Do programs instrumented by our algorithm perform comparably
with programs instrumented by hand?

To answer the above questions, we implemented our weaving algo-
rithm as a tool, hiclang, that performs a source-to-source translation in
the LLVM intermediate language [37] to instrument programs to be run
on HiStar. The steps of the hiweave algorithm described in §9.5 are imple-
mented in hiclang as follows:

1. From an input program P, hiweave constructs a structure program
SP that simulates the executions of P. hiclang constructs SP using
the API provided by LLVM.

2. From an input DIFC policy F, hiweave constructs a structure program
SF whose executions violate F. hiclang constructs SF by parsing F
using a custom parser for DIFC policies.

3. hiweave constructs finite abstractions of the language of traces of SP
and SF by applying a solver for the structure-program-abstraction

125

problem. hiclang constructs finite abstractions S#
P and S#

F of SP and
SF by applying the TVLA logic-analysis engine [40].

4. hiweave constructs a game G from S#
P and S#

F, and attempts to find
a winning Defender strategy to G by applying a classical algorithm
for solving two-player games. hiclang attempts to find a winning
Defender strategy to G by applying a the game-solving algorithm
implemented in the Goal tool [56].

5. If hiweave determines that the game G has a winning Defender
strategyD, then fromD, hiweave instruments P to satisfyC. hiclang
checks if Goal found a winning Defender strategy D, and if so, uses
the LLVM API to (1) generates multi-dimensional arrays the LLVM
intermediate language that represent D, and instruments P with
LLVM functions calls that invoke a fixed runtime-library function
that updates program state and executes label operations.

To determine if practical policies can be expressed as DIFC policies
(item 1), we collected a set of benchmark programs that were manually
instrumented to be label programs by HiStar’s developers [61]. For each
benchmark program, we wrote a policy as a DIFC policy.

To determine if hiweave could instrument practical programs to satisfy
their policies (item 2), we applied hiclang to each benchmark program
and its policy. For each benchmark, we provided to hiweave multiple
label-operation templates, which (1) directed hiweave to consider using
either all levels or a restricted subset of levels derived from applying a
simple heuristic to the policy,1 and (2) either directed hiweave to choose
in which states to allocate a fresh category or fixed a control location at
which to allocate a category. We ran hiclang on a server with 16 2.4-GHz
cores, and 32 GB of RAM, although hiclang executes in a single thread.

1If the policy specified a non-interference policy for the program’s resources, then the
template directed hiweave to use only middle-to-high levels, and if the policy specified
an integrity policy, then the template directed hiweave to use only low-to-middle levels.

126

To determine if programs instrumented automatically by hiclang per-
form comparably to programs instrumented manually by an expert devel-
oper (item 3), we ran versions of each benchmark written manually and
instrumented automatically by hiclang on representative workloads for
the program. We ran each program in a HiStar virtual machine on the
same server on which we ran hiclang.

In short, we found that policies for practical programs could be ex-
pressed as DIFC policies. We also found that hiweave could instrument rel-
atively small, simple programs with trivial guidance from a label-operation
template, and could instrument larger, more complex programs from
label-operation templates that partially narrowed the search for an instru-
mentation using simple heuristics. The runtime-performance overhead of
programs generated by hiweave compared to those written manually was
negligible.

10.1 Benchmark Programs and Policies

In this section, we describe each benchmark program, describe the policy
that we defined for the program, and describe the label operations that
hiweave instrumented each program to execute.

10.1.1 A mutually-untrusting login service

The HiStar login service [61] allows a client with a username and password
to request ownership of the user’s private category upriv, while control-
ling to which objects on the system the client’s password may flow. The
login service is implemented as four distinct programs: a logging ser-
vice auth_log, a login directory auth_dir, a user-authenticator auth, and
an authentication client clnt. In a login session between a cooperating
auth, auth_dir, clnt, and auth_log, clnt obtains a pointer to auth from
auth_dir, and provides a client’s password to auth. If the client’s pass-

127

chk_pw grant

auth

logger

log_init

clnt

1

76

5

2

4

3

dir_init

dir

2
8

Figure 10.1: Gates created during an authentication session of the mutually-
untrusting login service. Each node denotes a gate; a solid edge
g→ h denotes that a state executing gate g creates gate h; a dashed
edge g→ h denotes that a state executing g calls h.

word matches the user’s password, then auth grants the client ownership
of upriv and calls auth_log to log the event.

In each login session, auth creates multiple gates to check a password
provided by a client, grant the client the user’s access rights, and log the
completion of a login session. The key interactions between gates in an
authentication session are depicted in Fig. 10.1. Each node in Fig. 10.1
denotes a gate. A solid line from gate g to gate h annotated with n denotes
that in step n of the session, a program executing gate g creates gate h; a
dashed line denotes that while executing gate g, the program calls gate h.

Before a login session occurs, users who need not be trusted by auth
with the user’s access rights or by clnt with the client’s password initialize
services used by the authenticator and client. In particular, some user
executes log_init, which creates a log file and a gate bound to the module
logger, which any program in log_init’s environment can invoke to
append a message to the log (arc (1)); this step serves as the running
example in Chapter 8. A potentially-distinct user executes dir_init, which
creates a login directory, which is a map from each username to the user’s
authentication gate (which a user will typically choose to bind to the

128

module auth), and a directory gate dir_entry bound to module dir, which
a client can invoke to obtain a pointer to the user’s authenticating gate.

clnt initiates a login session by calling the directory gate to obtain a
pointer to the user’s authenticating gate (arc (2)), which clnt then calls
(arc (3)). In response, auth creates a gate bound to a module chk_pw (arc
(4)) and a gate bound to a module grant (arc (5)). clnt then calls the
chk_pw gate with the client password (arc (6)). If chk_pw determines that
the client’s password matches the user’s password, then chk_pw allows
the client to call the grant gate, and clnt does so (arc (7)). grant calls the
logger gate to log that clnt has provided the user’s password (arc (8)),
and exits with a store in which the client owns upriv.

The key challenge in instrumenting the four programs that constitute
login is to instrument the programs so that (1) if they each cooperate, then
they can carry out the above session successfully, but (2) each program
can ensure that if the other programs with which it interacts are malicious,
then the security guarantees of the program are still upheld. In particular:

• auth_log ensures that a malicious program can only modify the log
file by calling the logger gate, as described in Chapter 8.

• auth_dir ensures that a malicious program cannot directly modify
the login directly.

• auth ensures that a malicious client cannot obtain the user’s access
rights unless the client provides a correct password and allows auth
to log that it has granted the user’s access rights.

• clnt ensures that a malicious authenticator cannot leak the password
that it provides to any file on the system, including the log file.

The guarantees desired for the authentication directory are analogous
to the guarantees desired for the logging service (i.e., an untrusted user
should be able to read from but not directly modify the login directory),

129

and so we do not describe the DIFC policy or the instrumentation of
dir_init in further detail. The policies and instrumentation of auth and
clnt, however, do differ significantly from the policies and instrumenta-
tion of auth_log and auth_dir, and we discuss them further below.

auth policy The policy for auth can be represented as a simple DIFC
policy that ensures that (1) auth’s environment can call a gate gc whose
module is chk_pw, (2) if auth’s environment calls gc with a valid password,
then the environment can call a gate gr whose module is grant, and (3)
if auth’s environment calls gr, then it owns upriv. However, if auth’s
environment does not call gc with the user’s password and does not call
gr, the environment does not own upriv.

auth instrumentation hiweave instrumented a version of auth that im-
plements the described DIFC policy. In particular, hiweave uses clearance
labels in a non-trivial way to instrument auth, chk_pw, and grant to sat-
isfy the above policy. The key invariant on labels maintained by auth,
chk_pw, and grant is that the environment can only own upriv after calling
grant, but the environment cannot call grant until it owns a session cate-
gory sesh_cat. The environment can only own sesh_cat if it provides a
client password to chk_pw that matches the user’s password. To maintain
the above invariants, the instrumented auth, chk_pw, and grant execute
the following label operations:

1. auth creates a category sesh_cat.

2. auth creates the chk_pw gate so that it owns sesh_cat, and so that
its clearance is high at sesh_cat.

3. auth creates the grant gate so that it does not own sesh_cat and its
clearance is low at sesh_cat.

130

4. auth exits to its environment in a state in which memory has level
Mid at sesh_cat. Thus the environment of auth is not able to call the
grant gate directly, but the environment can call the chk_pw gate.

5. If the environment calls the chk_pw gate with a client password that
matches the user’s password, then chk_pw exits to the environment in
a state in which memory owns sesh_cat, and thus the environment
can call the grant gate. Otherwise, chk_pw exits in a state in which
memory does not own sesh_cat.

6. If the grant gate is executed, then grant exits in a state in which
memory owns the category upriv.

clnt policy The policy for clnt is a simple flow policy that ensures that
(1) when clnt calls the chk_pw gate with clnt’s password, information
cannot flow from the environment to any other object and (2) clnt calls
the grant gate with a label such that grant can call the logger gate.

clnt instrumentation hiweave instrumented a version of clnt that sat-
isfies the above policy. The secure version of clnt executes the following
label operations during an execution:

1. After clnt calls the auth gate to create the session’s chk_pw and grant
gates, clnt creates a category pw_cat.

2. clnt calls the chk_pw gate to execute with memory that is high at
pw_cat.

3. If the chk_pw gate determines that the client provided a password
that matched the user’s password, then clnt calls the grant gate
with memory whose label has level Mid at pw_cat.

131

Instrumenting a practical login service Modules in the actual imple-
mentation of HiStar’s login service perform several additional interactions
not discussed above. In particular, auth_dir logs each request by a client
to access the login directory, and auth logs the beginning of each login
session, before the client provides a password. Furthermore, auth and
clnt cooperate to construct a retry file such that chk_pw can maintain, in
the retry file, a persistent count of the number of authentication attempts
made by clnt, chk_pw ensures that the client cannot corrupt the retry file,
and the client ensures that chk_pw can leak the client password only to the
retry file. We omit a full description of these features for simplicity, but
hiweave instruments auth_dir, auth, and clnt to satisfy the described
policies.

10.1.2 clamwrap: a wrapper for ClamAV

The clamav virus scanner checks if the files on a filesystem match signa-
tures from a database of viruses. Virus scanners are themselves targets of
security attacks, because they must execute with the right to observe all
files on a system, but execute large, complex code that can be exploited
by a maliciously-crafted file, potentially to execute arbitrary code [15, 61].
In previous work [61], the HiStar developers wrote a wrapper program,
clamwrap, that runs the ClamAV virus scanner so that ClamAV can only
leak information to a personal temporary directory that cannot be read by
any other process.

We expressed the requirements of clamwrap as a simple DIFC policy
that specifies that:

1. When clamwrap creates a process executing clamav, the clamav pro-
cess can write to its standard input/output file descriptors and a
temporary directory allocated as a scratch space.

132

2. No matter what label operations the clamav process performs, it
cannot modify any file other than its standard input/output file
descriptors or files that are descendants of its temporary directory.

3. No matter what operations any process in the environment of
clamwrap perform, the process cannot read from the standard in-
put/output file descriptors for the clamav process, and cannot read
from any file that is a descendant of the clamav process’s temporary
directory.

We applied hiweave to a version of clamwrap that performed no label
operations and the above DIFC policy. hiweave instrumented clamwrap to
perform the following label operations to satisfy the above DIFC policy:

1. clamwrap creates a fresh category clamcat.

2. clamwrap creates the standard file descriptors and temporary direc-
tory of clamav to be high at clamcat.

3. clamwrap creates the process that executes clamav to execute with a
label that is high at clamcat, and with a declassification that does
not contain clamcat.

This instrumentation of clamcat is semantically equivalent to the version
of clamwrap written manually in previous work by the HiStar developers.

10.2 Results

Tabs. 10.2 and 10.3 contain the results of our experience applying hiweave.
Tab. 10.2 contains data describing features of the benchmarks that we
used when we applied hiweave. The columns of Tab. 10.2 are divided into
(1) features of the input program, (2) features of the input policy, and (3)
features of the templates to which we applied hiweave. Tab. 10.3 contains

133

Program Policy Template

Name LoC Label LoC Trans. Levels Cat.
sites creation

auth_log 54 5 21 4

Low Fixed
Low Choose
All Fixed
All Choose

auth_dir 157 6 34 6

Low Fixed
Low Choose
All Fixed
All Choose

auth 281 19 58 4

Low Fixed
Low Choose
All Fixed
All Choose

clnt 254 15 47 7

High Fixed
High Choose
All Fixed
All Choose

clamwrap 83 5 22 2

High Fixed
High Choose
All Fixed
All Choose

Table 10.2: Features of benchmark programs and policies to which we applied
hiweave. Under the “Program” header, “Name” contains the name
of the program, “LoC” contains the number of lines of code of the
program, measured with the cloc utility (which does not count white
space or comments); “Label Sites” contains the number of sites in
the program that use a label when run on HiStar (e.g., when creating
an object). Under the “Policy” header, “LoC” contains the number
of lines of code of the DIFC policy; “Trans.” contains the number of
transitions in the flow policy. Under the “Template” header, “Levels”
contains which levels the template directed hiweave to consider; “Cat
creation” contains whether the template allowed hiweave to choose
at which control locations an execution may create a category.

134

Benchmark hiweave Inst.
Prog.

Name T. Time Mem. Structs Game Slow-
(MB) States down

auth_log

Low, Fix. 0m33s 4,509 441 55 1
Low, Ch. 0m38s 4,524 998 71 1
All, Fix. 0m39s 4,510 1428 55 1
All, Ch. 1m05s 7,116 4113 71 1

auth_dir

Low, Fix. 1m18s 7,009 599 60 1
Low, Ch. 1m42s 7,142 2796 93 1
All, Fix. 2m05s 7,307 3429 60 1
All, Ch. 23m23s 10,359 20332 122 1.1

auth

Low, Fix. 29m57s 15,981 16389 345 1.1
Low, Ch. MEM - - - -
All, Fix. MEM - 152,155 - -
All, Ch. MEM - - - -

clnt

High, Fix. 9m22s 8,033 1,380 200 1.1
High, Ch. 9m54s 9,462 3,221 459 1.2
All, Fix. MEM - 44,072 - -
All, Ch. TIME - 93,451 - -

clamwrap

High, Fix. 0m50s 1,754 564 116 1
High, Ch. 1m03s 4,582 943 151 1.1
All, Fix. 9m00s 11,826 11,720 241 1.1
All, Ch. 32m18s 15,496 20,674 281 1.1

Table 10.3: Results of applying hiweave to the benchmarks described in Tab. 10.2.
The “Benchmark” header contains the name of each benchmark pro-
gram and the template that we provided to hiweave (whether hiweave
fixes the location at which a category is created or directs hiweave to
choose is abbreviated as “Fix.” and “Ch.,” respectively. The hiweave
header contains data about the runtime behavior of the program
instrumented under a given template. “Time” contains the execu-
tion time of hiweave; “Mem.” contains the peak memory usage of
hiweave; “Structures” contains the number of structures constructed
by the solver for structure-analysis problems that was applied by
hiweave; “Game States” contains the number of states in the min-
imal game constructed by hiweave from the transition graph over
structures. Under the “Instrumented Program” header, “Slowdown”
contains the running time of the instrumented program expressed as
a multiple of the running time of the original, manually-instrumented
program.

135

data describing features of the performance of applying hiweave. The
columns of Tab. 10.3 are divided into (1) identification of the benchmark
program and template described in Tab. 10.2, (2) data concerning the
performance of hiweave in instrumenting the benchmark, and (3) data
concerning the runtime performance of the version of the benchmark
instrumented by hiweave.

The results indicate that hiweave can be used to efficiently instrument
small programs that perform multiple, complex operations on the system
store. In particular, we observe the following:

• We were able to write succinct DIFC policies that described the
information-flow components of the login service. Relatively larger
modules of the login service that used labels in more operations did
not require proportionately larger policies.

• hiweave could instrument clamwrap and the smaller, simpler com-
ponents of the login service using each template that we provided,
even templates that gave few directives for searching for a correct
instrumentation. However, hiweave could not instrument the larger,
more complex modules of the login service unless it was provided
with a template that gave non-trivial directives for searching for an
instrumentation. In particular, we found that templates that limited
the set of levels considered by hiweave were effective in directing
hiweave’s search, even if the templates did not give any direction
as to where an instrumented program should allocate a category.
We conjecture that this is because the abstraction used by hiweave’s
structure analysis distinguishes cells that model objects with dis-
tinct levels, but compactly summarizes multiple categories at which
relevant objects have identical levels.

• The set of abstract states in the abstract transition system generated
by the structure analysis is often significantly larger than the set of

136

states in the minimal automaton that accepts the same language of
traces. This property indicates that “local” decisions that the struc-
ture analysis makes for distinguishing structures based on a fixed
abstraction tend to cause the analysis to maintain distinct structures
that are equivalent in terms of which traces executed from states
abstracted by the structures violate the DIFC policy.

• Although the code generated by hiweave requires the instrumented
program to lookup a post-state and pointer to a label operation
and then invoke the label operation, the runtime cost of executing
instrumentation code appears to be negligible compared to the cost
of other program operations: an effect was only measurable on very
small workloads, which we suspect is due to the relatively high fixed
cost of initializing the strategy table into program data structures.

137

Part III

Generating Weavers

138

In this part of the dissertation, we generalize the designs of the policy
weavers for Capsicum and HiStar by describing the design of a policy-
weaver generator WeaverGen. WeaverGen takes as input a semantics
for both a language and system primitives, and outputs a policy weaver
for the input language and system. In Chapter 11, we define the policy-
weaving problem parameterized on input language and system semantics.
In Chapter 12, we describe the design of WeaverGen.

139

11
The Parameterized Weaving

Problem

In this chapter, we introduce the parameterized weaving problem, which
generalizes the weaving problems for Capsicum (§5.4) and HiStar (§9.4).
We first define models of languages (§11.1) and systems (§11.2). We then
generalize definitions of valid instrumentation (§11.3), policy satisfaction
(§11.4), and weaving (§11.5) to be parameterized on given language and
system models.

For the rest of the discussion, we fix a space of control locations LOC
that contains the distinguished control locations INIT, which represents
the initial control location of programs, and and ENV, which represents the
environment of programs, a space of operations O, and a space of objects
O. O is also the fixed universe of all logical structures discussed.

11.1 Language models

A language model is a language semantics paired with a function that
instruments programs in the language to have runs described by a finite
state machine. A language semantics defines a transition system for each
program in the language.

Definition 24. A language semantics L is a triple consisting of:

140

• A transition system (Stores, O,→) over a space of stores Stores, with
transition relation→.

• A space of programs Q.

• A function ProgCFG : Q→ P(LOC×O×LOC) that maps each program
in Q to its control-flow graph.

The state space of L isQL = LOC×Stores. For program P, the transition
relation →L

P⊆ QL × O × QL of P is defined by the control-flow graph
of P and the transition relation over L-stores. In particular, for control
locations L, L ′ ∈ LOC and stores σ,σ ′ ∈ Stores, if (L, o, L ′) ∈ ProgCFG(P)
and (σ, o,σ ′) ∈→, then ((L,σ), o, (L ′,σ ′)) ∈→L

P .

Example 13. A language semantics for capcore is defined in §5.1.1; a
language semantics for difccore is defined in §9.1.1.

An instrumentation generator I for language semantics L is a proce-
dure that takes as input a program P of L and transition functions over
finite state spaces, which define how P must be instrumented to execute
additional operations. I instruments P to execute operations as specified
by the transition functions.

Definition 25. Let L be a language semantics, let M be a finite space of
monitor states, letA be a finite space of action states disjoint fromM, let ι ∈M
be an initial monitor state, let τM :M× O→ (M ∪A) be a monitor function,
and let τI : A → (O × (M ∪ A)) be an operation-injection function. A valid
instrumentation of P underM, A, ι, τM, and τI is a program P ′ ∈ QL such
that for each trace of operations t = o0, . . . , on ∈ O∗ from a run of P ′, there
is a sequence of monitor and action states Q = q0, . . . ,qn+1 ∈ (M ∪ A)∗

such that:

• The first state of Q is the initial state (i.e., ι = q0).

141

• For each 0 6 i 6 n, if qi ∈M, then τM(qi, oi) = qi+1. Otherwise, if
qi ∈ A, then τA(qi) = (oi+1,qi+1).

An instrumentation generator of a language semantics L is a procedure
that takes each program P ∈ L, finite space of monitor states, finite space
of action states, and transition functions over the states, and generates a
valid instrumentation of P.

Example 14. The instrumentation generators for capcore and difccore
are CapCodeGen and DIFCCodeGen, introduced in §5.5.1 and §9.5.1, re-
spectively.

Definition 26. A language model is a triple consisting of (1) a language
semantics L, (2) a structure simulation (§2.3, Defn. 8) RL of the transition
system of L, and (3) an instrumentation-generator IL for L.

Example 15. Chapter 5 presents a structure simulation Scc for capcore.
The state vocabulary of Scc—Vcc—and structure-simulation function from
capcore stores are defined in §5.3.1, Defn. 11, and the predicate trans-
formers for predicates in Vcc are defined in §5.5.2. The capcore seman-
tics (Ex. 13), structure simulation Scc, and instrumentation generator
CapCodeGen (Ex. 14) form a language model for capcore.

Chapter 9 presents a structure simulation Sdc for difccore. The state
vocabulary of Sdc—Vdc—and structure-simulation function from difccore
stores to Vdc structures are defined in §9.3.1, Defn. 19, and the predicate
transformers for predicates Vdc are defined in §9.5.2. The difccore se-
mantics (Ex. 13), structure simulation Sdc, and instrumentation generator
DIFCCodeGen (Ex. 14) form a language model for difccore.

11.2 System models

A system model S consists of a system semantics as a transition relation
over system stores, a structure simulation for the semantics, and a tem-

142

plate language of sequences of operations that the weaver may consider
instrumenting before any given operation.

Definition 27. A system semantics is a transition system (Stores, O,→).

Example 16. A system semantics for cap is presented in §5.1.3; A system
semantics for difc is presented in §9.1.3.

Definition 28. A system model is a triple of (1) a system semantics S and
(2) a structure simulation RS for S, and (3) a template language TS of opera-
tion sequences, represented as a finite-state acceptor over the alphabet of
operations O.

Example 17. Chapter 5 describes a structure simulation Sc for cap. The
state vocabulary of Sc—V ′c—and structure simulation function are defined
in §5.3.1, Defn. 12, and the predicate transformers for predicates in Sc are
defined in §5.5.2. §5.5.3 describes a useful template Tc of cap operations.
The system semantics for cap (Ex. 16), Sc, and Tc form a system model for
cap.

Chapter 9 describes a structure simulation Sd for difc. The state vocab-
ulary of Sd—V ′d—and structure simulation function are defined in §9.3.1,
Defn. 20, and the predicate transformers for predicates in Sd are defined in
§9.5.2. §9.5.3 describes practical templates of difc operations. The system
semantics for difc (Ex. 16), Sd, and the templates form a system model for
difc.

Each language model L and system model S define a transition relation
for each L-program that executes on S.

Definition 29. For language model L and system model S, let an L, S-state
be a triple of a control location, a L store, and a S store; i.e., the space of
L, S states is QL,S = LOC× StoresL × StoresS.

For L-program P, let the transition relation of P executing on S, denoted
by→L,S

P ⊆ QL,S×O×QL,S, be a transition relation over L, S-states, defined

143

as follows. For control locations L, L ′ ∈ LOC, L-stores L and L ′, S-stores S
and S ′, and operation o ∈ O, if ((L,L), o, (L ′,L ′)) ∈→L

P and S→S S ′, then
(L,L,S)→L,S

P (L’,L ′,S ′).
For L, S-states q,q ′ ∈ QL,S, q reaches q ′, denoted by q⇒L,S

P q ′, if there
is some operation o ∈ O such that (q, o,q ′) ∈→L,S

P .

Each language model L and system model S define a map from each
pair of an L-store and S-store to a structure over the union VL,S of the
vocabularies of L and S. The map from stores to structures defines a map
from each run of an L-program on S to a sequence of control locations
paired with structures over vocabulary VL,S.

Definition 30. For language model L and system model S, let the store
simulation function of L and S StoreToStructL,S : StoresL × StoresS →
STRUCTS[VL∪VS] map each pair of an L-store L and S-store S to the union
of the structures that model L and S (the union of structures is defined
in §2.3, Defn. 6). I.e., for each L-store L ∈ StoresL and S-store S ∈ StoresS,
StoreToStructL,S(L,S) = StoreToStructL(L) ∪ StoreToStructS(S).

For a run r = q0, . . . ,qn ∈ (QL,S)
∗, let the corresponding structure

run of r be the sequence of control locations paired with structures r ′ =
(L ′0, StoreToStructL,S(L0,S0)), . . . , (Ln, StoreToStructL,S(Ln,Sn)).

11.3 Parameterized valid instrumentation

A valid instrumentation P ′ of a program P in language model L for system
model S is any program for which the L-store of each successive state in a
run is determined by the transition relation of P.

Definition 31. For L programs P and P ′, an L, S-refinement relation ∼⊆
QL,S ×QL,S is a binary relation over QL,S such that:

1. ∼ only relates L, S states with equal L-stores. I.e., for states q =

(L,Λ,S) ∈ QL,S and q ′ = (L ′,Λ ′,S ′) ∈ QL,S, if q ∼ q ′, then Λ = Λ ′.

144

2. If a pair of states (q,q ′) is in ∼, then each L-store of a successor of
q ′ in one step of P is paired with a successor over multiple steps of
P ′. I.e., for q,q ′ ∈ QL,S such that q ∼ q ′, if q⇒L,S

P q1, then there is
some L, S-state q ′1 such that q⇒L,S∗

P ′ q ′1, and q1 ∼ q
′
1.

P ′ is an L, S-refinement of P if there is some L, S refinement relation ∼

such that for each L store L and S-store S, (INIT,L,S) ∼ (INIT,L,S).

Example 18. Capability refinement (defined in §5.2) is an instance of an
L, S refinement relation for the capcore language and cap system. Label
refinement (defined in §9.2) is an instance of an L, S refinement relation
for the difccore language and difc system.

11.4 Parameterized Policy Satisfaction

For language model L and system model S, a policy specifies disallowed
runs of states of an L-program executing on S.

Definition 32. For language model L and system model S, let a state con-
dition be a control location paired with a closed formula over the union
of the state vocabularies for L and S; i.e., the space of state conditions is
StateConds = LOC× FORMS[VL ∪ VS].

A policy for L and S is a finite-state automaton over the alphabet
StateConds; the space of all policies over L and S is denoted by PolsL,S.

Let r ∈ (QL,S)
∗ be a run of L-program P on S, and let tS =

(L0, s0), . . . , (Ln, sn) ∈ (LOC× STRUCTS[VL ∪VS])
∗ be the structure run of

r (Defn. 30). If a sequence of state conditions rA = a0, . . . ,an ∈ StateConds
is such that for each 0 6 i 6 n and ai = (L ′i,ϕi), (1) Li = L ′i and (2)
si |= ϕi, then rA is a state-condition run of r. r violates policy Π if Π accepts
some state-condition run of r. If each run r of P does not violate Π, then P
satisfies Π.

145

Example 19. The space of capability policies CapPols (defined in §5.3.2) is
an instance of PolsL,S for language model capcore and system model cap.
The space of DIFC policies DIFCPols (§9.3.2) is an instance of PolsL,S for a
language difccore and system difc.

11.5 Problem definition

For a language model L and system model S, the policy-weaving problem
for L and S is to take a program P in L and a policy Π ∈ PolsL,S and
instrument P so that it satisfies Π when it executes on S.

Definition 33. Let L be a language model, let S be a system model, let P
be an L-program, and let Π ∈ PolsL,S be a policy for L and S. A solution
to the policy-weaving problem for L and S, denoted WV_PROBL,S(P,Π), is
a valid instrumentation of P that satisfies Π. A procedure that solves the
policy-weaving problem for L and S is a policy weaver for L and S.

Example 20. capweave (§5.5) is a policy weaver for language capcore and
system cap. hiweave (§9.5) is a policy weaver for language difccore and
system difc.

A policy-weaver generator takes as input a language model L and a
system model S, and outputs a policy weaver for L and S.

146

12
Design of a Weaver Generator

In this chapter, we describe the design of a policy weaver generator
WeaverGen. WeaverGen is a single procedure that takes as input a lan-
guage model L, a system model S, program P in L, and policy Π for L

and S, and produces an L-program P ′ that is a valid instrumentation of P
that satisfies Π when it executes on S. The design of WeaverGen can be
resolved with the definition of a weaver generator in §11.5 by viewing the
partial application of WeaverGen applied to only the language model L
and the system model S as the policy weaver generated by WeaverGen
for L and S.

In §12.1, we give an overview of the design of WeaverGen. In §12.2,
we describe in more detail the game construction performed by Weaver-
Gen. In §12.3, we claim the soundness of WeaverGen and, by extension,
capweave and hiweave.

12.1 Overview

Alg. 12.1 contains pseudocode for the WeaverGen algorithm. Weaver-
Gen first constructs (line [1]) from L, S, P, and Π a finite two-player game
GL,S
P,Π whose alphabet is the space of operations O, such that for any De-

fender strategy D that wins GL,S
P,Π, the plays of D are the traces of a solu-

tion to WV_PROBL,S(P,Π) (for brevity, we say that D defines a solution to
WV_PROBL,S(P,Π)). The construction of GL,S

P,Π, represented in Alg. 12.1
as ProgPolicyGame, is a generalization of the constructions of games per-

147

Input :A language model L, system model S, program P ∈ L,
policy Π ∈ PolsL,S

Output :A solution to WV_PROBL,S(P,Π)
1 GL,S

P,Π := ProgPolicyGame(L, S,P,Π) ;
2 if HasWinningDefenderStrategy(GL,S

P,Π) then
3 D := FindWinningDefenderStrategy(GL,S

P,Π) ;
4 return InstrumentationGenL(P,D) ;
5 else
6 Fail () ;

Figure 12.1: Pseudocode for the WeaverGen algorithm. The algorithm is de-
scribed in detail in §12.1.

formed by capweave and hiweave, described in §5.5.2 and §9.5.2, and rep-
resented as CapProgPolicyGame and DIFCProgPolicyGame in Algs. 5.5
and 9.6. The implementation of ProgPolicyGame is described in more
detail in §12.2.

WeaverGen then applies a classical algorithm
HasWinningDefenderStrategy to determine if GL,S

P,Π has a winning
Defender strategy (line [2]). If GL,S

P,Π has a winning Defender strategy, then
WeaverGen applies a classical algorithm FindWinningDefenderStrategy
to construct a winning Defender strategy D (line [3]). Otherwise, Weaver-
Gen fails (line [6]); we discuss conditions under which WeaverGen fails,
and possible extensions to our work to mitigate such conditions, in
Chapter 14.

If WeaverGen finds a winning Defender strategy D for GL,S
P,Π, then

WeaverGen applies InstrumentationGenL to P and D to generate an
instrumentation P ′ of P that satisfies Π (line [4]). Implementations of
InstrumentationGenL for capcore and difccore are described in Ex. 14.

In the remainder of this section, we describe in more detail how Weaver-
Gen constructs a finite game GL,S

P,Π whose winning Defender strategies de-
fine instrumentations of P that satisfy Π (i.e., how WeaverGen implements

148

ProgPolicyGame in Alg. 12.1).

12.2 From models, program, and policy to a
game

From language model L, system model S, program P ∈ L, and policy
Π ∈ PolsL,S, WeaverGen constructs a game GL,S

P,Π such that each winning
Defender strategy of GL,S

P,Π defines an instrumentation of P for S that satis-
fies Π. In this section, we describe the construction, which is a generaliza-
tion of the game construction for cap described in §5.5.2, and the game
construction for difc described in §9.5.2.

To construct GL,S
P,Π, WeaverGen performs the following steps.

1. From the S-template T = TS, WeaverGen constructs a finite two-
player game GT such that each play of GT won by the Defender is
a sequence of operations accepted by TS chosen by the Defender,
followed by an operation chosen by the Attacker. The construction
of GT is an immediate generalization of the constructions described
in §5.5.2 for cap and in §9.5.2 for difc; we thus omit a detailed
description.

2. From P and TS, WeaverGen constructs a structure program (defined
in §2.3) SP,T such that each run of SP,T simulates a run r of Pwith a se-
quence of operations accepted by TS injected before each operation of
r. To construct SP,T , WeaverGen applies ProgCFGL to P to construct
the control-flow graph of P. WeaverGen injects a “copy” of TS before
each non-environment control location in SP to construct SP,T . The
predicate transformers of SP,T are defined directly from the union
of the predicate transformers of the structure simulation RL and RS.
The construction of SP,T from SP is an immediate generalization of

149

the constructions of SP,T for cap and difc given in §5.5.2 and §9.5.2;
we thus omit a detailed description.

3. From SP,T , WeaverGen constructs a finite-state acceptorA#
P,T of traces

of operations such that each trace that drives SP,T to a designated
control location is accepted by A#

P,T . To construct A#
P,T , WeaverGen

applies a procedure AbsStruct that solves the structure-abstraction
problem (described in Chapter 2) AbsStruct(SP,T). The construction
of A#

P,T is an immediate generalization of the constructions given in
§5.5.2 and §9.5.2; we thus omit a detailed description.

4. From policy Π, WeaverGen constructs a structure program SΠ such
that each trace of a run that does not satisfy Π drives SΠ to an er-
ror control location. The intuition behind the construction is that
each control location of SΠ is a copy of a state of Π, and each transi-
tion of SΠ checks that the store condition in the state condition of a
corresponding transition of Π holds in the current state of SΠ. The
predicate transformers of SΠ are defined directly from the union of
the predicate transformers of the structure simulation RL and RS.
The construction is an immediate generalization of the constructions
given in §5.5.2 and §9.5.2; we thus omit a detailed description.

5. From SΠ, WeaverGen constructs a finite-state acceptor A#
Π of traces

of operations such that each trace that drives SΠ to an error control
location is accepted by A#

Π. To construct A#
Π, WeaverGen applies the

procedure AbsStruct to construct a finite abstraction S#
Π of SΠ. From

S#
Π, WeaverGen constructs a finite-state acceptor that accepts an over-

approximation A#
Π of the traces of violations of Π by replacing each

operation at an environment location with an ε transition. The con-
struction of A#

Π is an immediate generalization of the constructions
given in §5.5.2 and §9.5.2; we thus omit a detailed description.

150

6. WeaverGen constructs GL,S
P,Π as the product of GT , A#

P,T , and A#
Π.

In particular GL,S
P,Π = GT ×G,A (det(A#

P,T) × det(A#
Π)), where for a

non-deterministic finite-state acceptor A, det(A) is a deterministic
acceptor that accepts the same language as A, and ×G,A is the game-
automaton product defined in §2.2.

12.3 Soundness

WeaverGen is sound: if it generates a program, then the program is a valid
instrumentation of its input program that satisfies its input policy.

Theorem 12.2. For each language model L, system model S, L-program P, and
policy Π ∈ PolsL,S, if WeaverGen(L, S,P,Π) = P ′, then P ′ is a solution of
WV_PROBL,S(P,Π).

Proof. (Sketch) To show that P ′ satisfies Π, we will show that for each
run r of P ′, if r violates Π, then the trace of r, denoted τ(r), would be an
Attacker-winning play of GL,S

P,Π, which, combined with the construction of
P ′, implies a contradiction.

For the sake of deriving a contradiction, suppose that r is a run of P ′ that
violates policy Π. For operation template T = TS, the trace of operations of
r is a trace of the structure program SP,T by the construction of SP,T (§12.2,
item 2)—in particular, the fact that the state space and transformers of SP,T

are constructed from structure simulations RL and RS of L and S. τ(r)
is accepted by A#

P,T (item 3), by the fact that A#
P,T accepts the traces of a

solution to the structure-abstraction problem AbsStruct(SP,T), which is a
simulation of SP,T (see §2.3). τ(r) is a trace of the structure program SΠ

(item 4) by the assumption that r is a violation of Π and the definition of
SΠ—in particular, the fact that the structures and predicate transformers of
SΠ are constructed from RL and RS, which are valid structure simulations
of L and S. τ(r) is thus accepted byA#

Π (item 5), by the fact thatA#
Π accepts

151

all traces of a solution to the structure-abstraction problem AbsStruct(SΠ),
which is a simulation of SΠ (see §2.3). Thus τ(r) is a winning Attacker play
of the game GL,S

P,Π (item 6), by the fact that M(r) is accepted by A#
P,T and

A#
Π.

However, each trace of a run of P ′ is not a winning play of GL,S
P,Π, by the

fact that P ′ = InstrumentationGenL(P,D), where InstrumentationGenL

is a valid instrumentation generator for L and D is a winning Defender
strategy forGL,S

P,Π. Thus, the existence of a run r of P ′ that violatesΠ implies
a contradiction, and there can be no such run.

As a result, capweave and hiweave are sound policy weavers for their
respective languages and systems.

Corollary 12.3. For each capcore program P and cap policy Π ∈ CapPols, if
capweave(P,Π) = P ′, then P ′ is a solution of CAP(P,Π).

Proof. (Sketch) capweave is an instance of WeaverGen applied to a lan-
guage model for capcore, described in Ex. 15, and a system model for
cap, described in Ex. 17. The correctness of capweave follows from
Thm. 12.2.

Corollary 12.4. For each difccore program P and difc policy Π ∈ DIFCPols,
if hiweave(P,Π) = P ′, then P ′ is a solution of LABEL(P,Π).

Proof. (Sketch) hiweave is an instance of WeaverGen applied to a language
model for difccore, described in Ex. 15, and a system model for difc,
described in Ex. 17. The correctness of hiweave follows from Thm. 12.2.

152

Part IV

Conclusion

153

In this chapter, we conclude by comparing the work presented in this
dissertation to related work (Chapter 13), and describing potential future
work (Chapter 14).

154

13
Related Work

Capability systems Capabilities were introduced in the MULTICS sys-
tem [48], and were developed further in the capability systems PSOS [43]
and EROS [49]. They provide capabilities as a fine-grained mechanism
that mediate each access that an application requests to perform on a
system resource, including loading and storing memory pages. The Cap-
sicum operating system [58] provides capabilities that mediate accesses
at a coarser granularity than the capabilities of PSOS or EROS: Capsicum
capabilities only mediate accesses to file descriptors. However, because
Capsicum capabilities only mediate accesses to file descriptors, it was pos-
sible for Capsicum to be rapidly developed as an extension to FreeBSD9, a
widely-deployed version of UNIX. The work described in this dissertation
describes the design and evaluation of a program weaver that automati-
cally instruments programs to use capabilities on Capsicum. We suspect
that the instrumentation techniques described in this dissertation could
be reapplied to generate program weavers for other capability systems,
such as EROS or PSOS, and that the utility of such weavers may in fact
be greater for such systems than for Capsicum, given that such systems
require applications to use capabilities at a finer granularity.

Programming for capability systems Instrumenting programs for Cap-
sicum encompasses both partitioning a program into modules that execute
in separate processes, and instrumenting the program modules that exe-
cute in each process to correctly invoke primitives that manage capabilities.

155

Previous work [16, 17] automatically partitions programs so that high and
low confidentiality data are processed by separate processes, or on sepa-
rate hosts. The SOAP project [27] proposes a semi-automatic technique in
which a programmer annotates a program with a hypothetical sandbox,
and a program analysis validates that the sandbox does not introduce
unexpected program behavior. In contrast, capweave automatically instru-
ments a program to invoke system calls that cause the program to execute
in different processes (if necessary), and instruments the program execut-
ing in each process to use capabilities as necessary to satisfy a security
policy.

Skalka and Smith [50] present an algorithm that takes a Java program in-
strumented with capability security checks, and attempts to show statically
that some checks are always satisfied. Our work introduces a technique
for instrumenting a program to use capability primitives so that it interacts
securely with program modules that are not trusted to execute capability
checks, either because the untrusted modules may contain vulnerabilities
that can be exploited to violate control-flow integrity, or the modules are
provided by an untrusted source.

DIFC systems Information-flow operating systems, such as As-
bestos [22], HiStar [61], and Flume [36], explicitly track the flow of infor-
mation between system objects, such as processes and files. Such systems
are designed so that a program can, in principle, implement desired func-
tionality when interacting with cooperative programs, but satisfy strong
information-flow properties when interacting with an adversarial environ-
ment. In practice, a programmer must (1) write a program to use custom
low-level instructions that operate on a persistent information-flow lattice,
and (2) informally reason that the rewritten program satisfies desired func-
tionality and information-flow guarantees. Our technique complements
information-flow operating systems: we have described a program weaver

156

that takes from a programmer explicit functionality and security policies,
and instruments a program to invoke label operations so that it satisfies
the policies.

Programming for DIFC systems Prior work on labeling programs for
the Flume operating system takes an uninstrumented program and a
policy as a conjunction of flow relations and negations of flow relations
between threads, and instruments the program to satisfy the policy. Prior
work performed by Efstathopoulos and Kohler uses a syntax-directed
technique to generate code that initializes the labels of each thread to
satisfy such a policy [21]. Preliminary work [30, 31] performed by myself
and collaborators used techniques that either (1) verify that a program
instrumented with label operations satisfies a given policy using a model-
checking algorithm or (2) choose labels that a program can hold at each of
its control locations throughout an execution to satisfy such a policy. The
technique for choosing program labels allocated a fixed set of label vari-
ables to be used by the instrumented program and reduced the problem
of determining the labels that should be stored in each label variable to
solving a system of set constraints. Because the fragment of set constraints
considered was NP-complete, the technique solved such constraints using
a SAT-solver.

The technique described in this dissertation instruments programs to
satisfy policies described in a policy language more expressive than the
languages supported in previous work. In particular, the policy language
described in this dissertation can express temporal properties over an
execution trace in which each state is a set of labeled objects of unbounded
size. Such features are necessary to describe policies of the programs to
which we applied hiweave. The game-based weaver described in this dis-
sertation relies critically on an engine that can soundly but finitely abstract
transition systems over state spaces of unbounded size in order to weave

157

programs to satisfy such policies. We believe that it would be extremely
difficult to weave programs to satisfy such policies by extending our pre-
vious technique of solving a system of set constraints over a bounded set
of variables.

An inline reference monitor (IRM) [24] is code inserted by an IRM rewriter
into an untrusted program, which monitors the program’s behavior at
runtime and halts the program immediately before the program carries
out an insecure execution. A technique described by Hamlen et al. [29]
verifies that programs rewritten by an IRM rewriter are correct. An IRM
mediates the operations of the program in which it is instrumented. Our
program weavers address a different problem: to rewrite a program so
that the program can ensure the security of its resources even after the
program transfers control to untrusted, uninstrumented programs in its
environment.

Information-flow languages Information-flow languages allow a pro-
grammer to ensure that sensitive information flows securely through data
objects internal to a program’s state. Such languages provide either a type-
checker that statically analyzes all program executions [41], or a runtime
system that dynamically monitors a single program execution [33]. Our
program weaver for HiStar, hiweave, instruments a program written in
an “ordinary” language to interact with HiStar to control how sensitive
resources are accessed by other untrusted programs.

Recent work [6, 55] has proposed languages with value-dependent
types that enable programmers to write secure distributed applications.
Such languages reduce the problem of checking that a program correctly
implements a cryptographic protocol to checking that the program has
a type in a type system that includes value-dependent and affine types.
hiweave enables programmers to write distributed applications that inter-
act with a DIFC system to satisfy information-flow guarantees, which are

158

different from cryptographic guarantees.

Partial synthesis Game-solving has been applied to synthesize finite-
state controllers [3], and to “repair” programs to satisfy a specification
given in linear-temporal logic (LTL) [35]. The work described in this disser-
tation applies games to instrument programs automatically for interactive-
security systems. Program sketching, as a form of syntax-guided syn-
thesis [4], takes a program with “holes” for program expressions and
statements and a specification for a complete program, and synthesizes a
complete program by choosing an expression or statement for each hole.
Sketching has been applied to synthesize bit-streaming programs [51], fi-
nite programs [52, 53], and concurrent data structures [54]. Our technique
may be viewed as a variation of sketching, in which expression holes are
filled by labels, and statement holes are filled by label operations. Unlike
previous applications of sketching, our weaver must maintain an abstract
but accurate model of a relational store.

159

14
Future Work

In this chapter, we discuss current limitations of our technique, and discuss
potential future work that could address such limitiations.

Verifying trustworthiness of trusted programs One limitation of our
current technique is that policies in our language require a policy writer to
completely trust particular program modules to have access to particular
resources, but we do not provide techniques with which a policy writer
can formally argue that a trusted program module (which, in practice,
tends to be small) uses such resources in an acceptably restricted way. As
one example, the Capsicum policy for tcpdump allows a module executing
the DNS resolver (which consists of only 410 lines of code) to execute
with ambient authority, but our technique does not provide an analysis
that a policy writer can use to verify that the DNS resolver uses ambient
authority only to access a network connection to perform DNS resolution
(and not, e.g., to write to other files on a host system). As another example,
the HiStar policy for auth_log allows the logger module (which consists
of only 17 lines of code) to write to the log file, but does not provide an
analysis that a policy writer can use to verify that auth_log only writes to
the log file by appending a message. We believe that previous work on
analyzing information flow within a given program [33, 41] or verifying
shim programs that mediate all accesses to a sensitive resource [34] can
complement our technique to address this limitation. In particular, such
verification techniques seem applicable for verifying trusted program

160

modules due to the fact that such modules tend to be small.

Providing diagnostics of failure For programs on any practical
interactive-security system, including Capsicum and HiStar, there are
many policies—some seemingly feasible—that the program cannot be
instrumented to satisfy. Given a program and policy that the program
cannot be instrumented to satisfy, the program weavers described in this
work abort without providing to the user any information that explains
why the weaver could not instrument the program successfully. However,
when a weaver fails to find an instrumentation, it constructs a game de-
scribing executions of all considered instrumentations of a program, and
constructs a winning Attacker strategy that, intuitively, explains why the
weaver could not successfully instrument the program. In some cases, the
winning Attacker strategy explains why the abstraction of the program
constructed by the weaver was too coarse to find a winning strategy; we
discuss below how weavers can be extended to handle this case. In other
cases, such a strategy gives a procedure that describes how the Attacker
can always violate the input policy, no matter what primitives are executed
as Defender actions. We believe that such strategies can be analyzed to
provide to the user a succinct explanation of why the weaver could not
instrument an input program to satisfy a policy.

Refining abstractions for instrumentation From an uninstrumented
program P and policy, each of the program weavers described in this
work constructs a program P ′ that models all considered instrumentations
of the uninstrumented program, and then constructs a fixed abstraction P ′#

of P ′. If P ′# is too coarse an abstraction of P ′ to distinguish a sufficient set
of executions of P ′ that do not violate the input policy from the set of execu-
tions of P ′ that violate the policy, then from P ′#, the weaver will construct
a game with no winning Defender strategy, and will abort execution. We
believe that the program weavers described in this work can be improved

161

by iteratively refining P ′# abstractions of P ′ based on a failure to instru-
ment a given abstraction of P ′. In particular, we believe that our program
weavers can be extended to attempt to instrument a program under a par-
ticular abstraction, and if the attempted instrumentation results in a game
Gwith no winning Defender strategy, use a winning Attacker strategy A
of G to refine P ′# so that it defines a game for which A is not a winning
Attacker strategy. Such an extension could be founded on a technique that
adapts counterexample-guided abstraction refinement (CEGAR) [5, 18] from
its previous uses in checking that a program has a desired property to
synthesizing a program that has a desired property.

Generating optimal instrumentations The program weavers described
in this work only attempt to generate a program that is correct (i.e., secure
and functional), but not necessarily optimal: the program may execute un-
necessary primitives that degrade its runtime performance. For example,
the instrumented version of tar produced by our weaver for Capsicum
placed a call to a fork primitive within a frequently executed loop in tar,
and as a result, significantly degraded the performance of tar compared
to an alternative satisfying instrumentation that placed the call to fork out-
side of the loop. We believe that our program weavers can be extended to
generate optimal code by reducing an instrumentation problem to solving
a mean-payoff game [23], which is a turn-based two-player game in which
each action is associated with a cost. The goal of one player is to maximize
the cost of the play of the game, and the goal of the competing player is to
minimize the cost of the play. An optimal strategy for the cost-minimizing
player is a procedure that minimizes the worst-case mean cost (i.e., the
total cost of a play divided by its length) of all plays. We believe that our
weavers can be extended to reduce a given instrumentation problem to a
mean-payoff game for which an optimal strategy for the cost-minimizing
player of the game defines an optimal program instrumentation.

162

A
Appendix

A.1 Non-interference policies

In this section, we describe how hiweave as described in Part II can be
extended to instrument a program to satisfy a non-interference policy. In
§A.1.1, we give an overview of the extension. In §A.1.2, we describe how
we extend difc (§9.1.3) to a language difc-ni with state predicates that
are used to approximate non-interference policies. In §A.1.3, we describe
the relationship between properties of a single run r of a difc-ni program
and properties of pairs of runs, one of which is r.

A.1.1 Overview

The key challenge in extending difc to capture properties relevant for non-
interference is extending the state to capture information from a single run
r that captures useful information about states in other runs, compared to
the states of r. Existing static analyses accomplish an analogous task by
analyzing all possible control paths through a program, and setting the
label of a program to be the join of the labels over all paths [41]. Existing
dynamic languages accomplish an analogous task during runtime moni-
toring by extending the state of a difc program with a floating label [26]
that is set before the program chooses a control-flow branch, and enforcing
that the label of the program respects a flow relation with the floating
label. difc-ni does so by extending the difc semantics with a taint predi-

163

cate, which stores a sound approximation of how information has flowed
between objects during an execution. The design of difc-ni combines the
approaches implemented by static and dynamic languages by maintaining
a taint predicate, and requiring a program to choose label bounds that the
label of memory must stay within over the course of any execution, no
matter which control path is taken. The taint predicate approximates the
actual possible differences in state between multiple runs; updates of the
taint predicate are determined by the label bounds.

We now describe the key features of the extension from difc to difc-ni.
For simplicity, we do not include a complete list of features, which include
analogous extensions for declassifications, as well as the labels described
below, and only present the key result concerning difc-ni (Lem. A.1)
without proof.

A.1.2 Extensions to difc semantics

In this section, we describe difc-ni, an extension of the difc semantics
that allows non-interference policies to be expressed as automata in which
each alphabet symbol is a condition over an extension of a difc state.
We then describe difc-ni as an extension of the difc space of stores
(§A.1.2), space of operations (§A.1.2), and space of predicate transformers
(§A.1.2). In §A.1.2, we describe how the predicates and their transformers
are modeled in an extension of the class of structure transition systems
used to model difc programs (§9.5.2).

Extensions of difc stores

The label stores of difc-ni are the label stores of difc, extended with the
following components (the universe of objects O∗ and space of labels L

were defined in §9.1).

• A unary predicate Taint over objects.

164

• A lower-bound label LowerBound ∈ L that stores a lower bound on the
label of memory allowed over all executions of the module currently
being executed by the program.

• An upper-bound label UpperBound ∈ L that stores an upper bound
on the allowed label of memory over all executions of the module
currently being executed by the program.

We denote the space of states constructed from difc-ni stores as QNI.

Extensions of the difc operations

The operations of difc-ni are the operations of difc, extended with the
following additional operations:

• set_lower_bound (E) sets the lower-bound label to the evaluation
of the label expression E (see §9.1.2).

• set_upper_bound (E) sets the upper-bound label to the evaluation
of the label expression E (see §9.1.2).

Extensions of difc operational semantics

Each of the components in a difc-ni state is updated by difc operations
as follows:

• Each operation updates the Taint predicate non-deterministically,
based on the flow relation over system objects. In particular, each
operation updates Taint so that for each object o, Taint may hold for
o under the following conditions: if o is memory, then o may be
tainted if some tainted object flows to UpperBound. Otherwise, omay
be tainted if memory is tainted and LowerBound flows to o.

• When a difc-ni program begins executing a module, the program
must immediately choose the value of LowerBound and UpperBound

165

by invoking the operations set_lower_bound and set_upper_bound.
After setting the bound labels, each program operation asserts that
in a given pre-state, LowerBound flows to the label of memory, and
the label of memory flows to UpperBound.

Note that both the state and operations unique to difc-ni are purely
modeling artifacts that model approximate information about multiple
runs in a single run. They do not correspond to additional runtime state,
or effects on state.

Modeling a difc-ni program as a structure-transition system

Each difc-ni program can be modeled soundly as a structure program by
extending the logical vocabulary Vd (§9.3.1) and extending the structure
transformers for the extended logical vocabulary given in §9.5.2. The
intuition behind the extension is that Taint is modeled as a unary predicate
over objects. LowerBound and UpperBound are modeled analogously to the
operation label. The formal definitions of the predicate updates for each
operation are straightforward from their informal descriptions given in
§A.1.2; we thus omit a full description.

A.1.3 Reasoning about pairs of traces

The key property of difc-ni is that each run r of a difc-ni program P

soundly approximates information about all pairs of runs of P that execute
the same sequence of modules. We consider only pairs of runs that execute
the same sequence of modules because such pairs naturally generalize
the condition on pairs of inputs that establish that an individual function
satisfies non-interference. That is, determining if a single function fails to
satisfy non-interference is equivalent to determining if there is any single
fixed “low” input under the attacker’s control that when paired with dis-
tinct “high” input values, causes sensitive channels to hold distinct output

166

values [41]. For difc-ni programs, the sequence of modules executed is
a “low” input in that it is under control of the attacker. Thus, one aspect
of generalizing non-interference from the traditional setting, in which
a function is executed once, to a reactive setting, in which modules are
executed multiple times by an environment, is to consider only pairs of
runs in which the sequence of executed modules is fixed.

Example 21. To obtain an intuition as to why it suffices to only consider
pairs of executions with a fixed sequence of executed modules as potential
violations of non-interference, consider auth_log as instrumented in §8.1,
Fig. 8.1, which intuitively satisfies a non-interference policy—i.e., ensuring
that the value stored in LOG is influenced only by the value stored in MSG
and the previous value stored in LOG. However, two executions of auth_log
that execute logger a different number of times can result in distinct values
stored in LOG.

Because the Taint predicate is updated using labels that bound the
actual labels over all possible executions of a module, the Taint predicate
can be used to reason about pairs of runs that execute the same sequence
of modules.

Lemma A.1. Let r, r ′ ∈ Q∗NI be a pair of runs of a difc-ni program P that each
execute the same sequence of modules M0, . . . , Mn ∈ MODSYMS∗. For each object
o and q ∈ r and q ′ ∈ r ′ the final states of r and r ′, respectively, if the value of o
in q is unequal to the value of o in q ′, then Taint(o) holds in qi.

Previous approaches to DIFC analysis and monitoring use labels on the
program counter as artifacts to prove [41] or enforce [26] that a program
satisfies non-interference over pairs of traces. Analogously, difc-ni pro-
grams instrumented to satisfy policies expressed using the Taint predicate
satisfy non-interference policies over pairs of traces.

167

Example 22. The instrumented version of auth_log satisfies the difc-ni
policy given in §8.2, Fig. 8.4. As discussed in Ex. 5, there is thus no run of
auth_log in which (i) log_init, with LOG untainted, enters logger with
MSG untainted, and (ii) reaches a state in which LOG is tainted. By Lem. A.1,
there is no pair of traces of auth_log in which the values stored in MSG are
equal each time that the runs enter logger, and in which the runs reach
states with unequal values stored in LOG.

168

Bibliography

[1] cl-capsicum-discuss – Capsicum project discus-
sion list. https://lists.cam.ac.uk/mailman/
listinfo/cl-capsicum-discuss, 2012.

[2] Rajeev Alur, Thomas A. Henzinger, Orna
Kupferman, and Moshe Y. Vardi. Alternating
refinement relations. In CONCUR, 1998.

[3] Rajeev Alur, Thomas A. Henzinger, and Orna
Kupferman. Alternating-time temporal logic. J.
ACM, 49(5), 2002.

[4] Rajeev Alur, Rastislav Bodík, Garvit Juniwal,
Milo M. K. Martin, Mukund Raghothaman, San-
jit A. Seshia, Rishabh Singh, Armando Solar-
Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-guided synthesis. In FMCAD, 2013.

[5] Thomas Ball and Sriram K. Rajamani. The
SLAM project: debugging system software via
static analysis. In POPL, 2002.

[6] Gilles Barthe, Cédric Fournet, Benjamin Gré-
goire, Pierre-Yves Strub, Nikhil Swamy, and San-
tiago Zanella Béguelin. Probabilistic relational
verification for cryptographic implementations.
In POPL, 2014.

[7] Andrea Bittau, Petr Marchenko, Mark Handley,
and Brad Karp. Wedge: Splitting applications
into reduced-privilege compartments. In NSDI,
2008.

[8] CVE Editorial Board. CVE-2004-1488.
http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CAN-2004-1488, Feb 2005.

[9] CVE Editorial Board. CVE-2007-4476.
http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2007-4476, Aug 2007.

[10] CVE Editorial Board. CVE-2007-3798.
http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2007-3798, July 2007.

[11] CVE Editorial Board. CVE-2010-0405.
http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2010-0405, April 2010.

[12] CVE Editorial Board. GNU Tar and GNU Cpio
rmt_read__() function buffer overflow. http:
//xforce.iss.net/xforce/xfdb/56803, Mar
2010.

[13] CVE Editorial Board. Vulnerability note
VU#381508. http://www.kb.cert.org/vuls/
id/381508, July 2011.

[14] CVE Editorial Board. Vulnerability note
VU#520827. http://www.kb.cert.org/vuls/
id/520827, May 2012.

[15] CVE Editorial Board. CVE - CVE-2013-2021.
http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2013-2021, Feb 2014.

[16] David Brumley and Dawn Xiaodong Song. Priv-
trans: Automatically partitioning programs for
privilege separation. In USENIX Security Sym-
posium, 2004.

[17] Stephen Chong, Jed Liu, Andrew C. Myers, Xin
Qi, K. Vikram, Lantian Zheng, and Xin Zheng.
Secure web application via automatic partition-
ing. In SOSP, 2007.

[18] Edmund M. Clarke, Orna Grumberg,
Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refine-
ment for symbolic model checking. J. ACM, 50
(5), 2003.

[19] The MITRE Corporation. Cwe - 2011 cwe/sans
top 25 most dangerous software errors, 2011.
URL http://cwe.mitre.org/top25/.

[20] Dorothy E. Denning. A lattice model of secure
information flow. Commun. ACM, 19(5), 1976.

[21] Petros Efstathopoulos and Eddie Kohler. Man-
ageable fine-grained information flow. In Eu-
roSys, 2008.

[22] Petros Efstathopoulos, Maxwell N. Krohn, Steve
Vandebogart, Cliff Frey, David Ziegler, Eddie
Kohler, David Mazières, M. Frans Kaashoek,
and Robert Morris. Labels and event processes
in the Asbestos operating system. In SOSP,
2005.

https://lists.cam.ac.uk/mailman/listinfo/cl-capsicum-discuss
https://lists.cam.ac.uk/mailman/listinfo/cl-capsicum-discuss
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1488
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-1488
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4476
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4476
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3798
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3798
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0405
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0405
http://xforce.iss.net/xforce/xfdb/56803
http://xforce.iss.net/xforce/xfdb/56803
http://www.kb.cert.org/vuls/id/381508
http://www.kb.cert.org/vuls/id/381508
http://www.kb.cert.org/vuls/id/520827
http://www.kb.cert.org/vuls/id/520827
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2021
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2021
http://cwe.mitre.org/top25/

169

[23] A. Ehrenfeucht and J. Mycielski. Positional
strategies for mean payoff games. International
Journal of Game Theory, 8(2), 1979.

[24] Úlfar Erlingsson and Fred B. Schneider. IRM en-
forcement of java stack inspection. In IEEE Sym-
posium on Security and Privacy, 2000.

[25] freebsd9. FreeBSD 9.0-RELEASE announce-
ment. http://www.freebsd.org/releases/9.
0R/announce.html, January 2012.

[26] Daniel B. Giffin, Amit Levy, Deian Stefan, David
Terei, David Mazières, John C. Mitchell, and Ale-
jandro Russo. Hails: Protecting data privacy in
untrusted web applications. In OSDI, 2012.

[27] Khilan Gudka, Robert N. M. Watson, Steven
Hand, Ben Laurie, and Anil Madhavapeddy. Ex-
ploring compartmentalization hypothesis with
SOAPP. In AHANS 2012, 2012.

[28] Yuri Gurevich. Sequential abstract-state ma-
chines capture sequential algorithms. ACM
Trans. Comput. Log., 1(1), 2000.

[29] Kevin W. Hamlen, Greg Morrisett, and Fred B.
Schneider. Certified in-lined reference monitor-
ing on .NET. In PLAS, 2006.

[30] William R. Harris, Nicholas A. Kidd, Sagar
Chaki, Somesh Jha, and Thomas Reps. Verify-
ing information flow control over unbounded
processes. In FM, 2009.

[31] William R. Harris, Somesh Jha, and Thomas W.
Reps. DIFC programs by automatic instrumen-
tation. In CCS, 2010.

[32] William R. Harris, Somesh Jha, Thomas W. Reps,
Jonathan Anderson, and Robert N. M. Watson.
Declarative, temporal, and practical program-
ming with capabilities. In IEEE Symposium on
Security and Privacy, 2013.

[33] Cătălin Hriţcu, Michael Greenberg, Ben Karel,
Benjamin C. Pierce, and Greg Morrisett. All
your IFCException are belong to us. In IEEE
Symposium on Security and Privacy, 2013.

[34] Dongseok Jang, Zachary Tatlock, and Sorin
Lerner. Establishing browser security guar-
antees through formal shim verification. In
USENIX Security Symposium, 2012.

[35] Barbara Jobstmann, Andreas Griesmayer, and
Roderick Bloem. Program repair as a game. In
CAV, 2005.

[36] Maxwell N. Krohn, Alexander Yip, Micah Z.
Brodsky, Natan Cliffer, M. Frans Kaashoek, Ed-
die Kohler, and Robert Morris. Information flow
control for standard OS abstractions. In SOSP,
2007.

[37] Chris Lattner. http://llvm.org/, November
2011.

[38] Benjamin Livshits and Stephen Chong. Towards
fully automatic placement of security sanitizers
and declassifiers. In POPL, 2013.

[39] V. Benjamin Livshits, Aditya V. Nori, Sriram K.
Rajamani, and Anindya Banerjee. Merlin: spec-
ification inference for explicit information flow
problems. In PLDI, 2009.

[40] Roman Manevich. http://www.cs.tau.ac.
il/~tvla, June 2011.

[41] Andrew C. Myers. JFlow: Practical mostly-
static information flow control. In POPL, 1999.

[42] George C. Necula. Translation validation for an
optimizing compiler. In PLDI, 2000.

[43] P. G. Neumann, R. S. Boyer, L. Robinson, K. N.
Levitt, R. S. Boyer, and A. R. Saxena. A provably
secure operating system. Technical report, Stan-
ford Research Institute, 1980.

[44] United States Department of Defense. Trusted
computer system evaluation criteria. DoD Stan-
dard 5200.28-STD, Dec 1985.

[45] Amir Pnueli, Michael Siegel, and Eli Singerman.
Translation validation. In TACAS, 1998.

[46] Indrajit Roy, Donald E. Porter, Michael D. Bond,
Kathryn S. McKinley, and Emmett Witchel.
Laminar: practical fine-grained decentralized
information flow control. In PLDI, 2009.

[47] Shmuel Sagiv, Thomas W. Reps, and Reinhard
Wilhelm. Parametric shape analysis via 3-
valued logic. ACM Trans. Program. Lang. Syst.,
24(3), 2002.

[48] Jerome H. Saltzer and Michael D. Schroeder.
The protection of information in computer sys-
tems. Proceedings of the IEEE, 63(9):1278–1308,
1975.

[49] Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. EROS: a fast capability system.
In SOSP, pages 170–185, 1999.

http://www.freebsd.org/releases/9.0R/announce.html
http://www.freebsd.org/releases/9.0R/announce.html
http://llvm.org/
http://www.cs.tau.ac.il/~tvla
http://www.cs.tau.ac.il/~tvla

170

[50] Christian Skalka and Scott F. Smith. Static en-
forcement of security with types. In ICFP, pages
34–45, 2000.

[51] Armando Solar-Lezama, Rodric M. Rabbah,
Rastislav Bodík, and Kemal Ebcioglu. Program-
ming by sketching for bit-streaming programs.
In PLDI, 2005.

[52] Armando Solar-Lezama, Liviu Tancau,
Rastislav Bodík, Sanjit A. Seshia, and Vi-
jay A. Saraswat. Combinatorial sketching for
finite programs. In ASPLOS, 2006.

[53] Armando Solar-Lezama, Gilad Arnold, Liviu
Tancau, Rastislav Bodík, Vijay A. Saraswat, and
Sanjit A. Seshia. Sketching stencils. In PLDI,
2007.

[54] Armando Solar-Lezama, Christopher Grant
Jones, and Rastislav Bodík. Sketching concur-
rent data structures. In PLDI, 2008.

[55] Nikhil Swamy, Juan Chen, Cédric Fournet,
Pierre-Yves Strub, Karthikeyan Bhargavan, and
Jean Yang. Secure distributed programming
with value-dependent types. In ICFP, 2011.

[56] Ming-Hsien Tsai, Yih-Kuen Tsay, and Yu-Shiang
Hwang. GOAL for games, omega-automata,
and logics. In CAV, 2013.

[57] Jeffrey A. Vaughan and Stephen Chong. Infer-
ence of expressive declassification policies. In
IEEE Symposium on Security and Privacy, 2011.

[58] Robert N. M. Watson, Jonathan Anderson, Ben
Laurie, and Kris Kennaway. Capsicum: Prac-
tical capabilities for unix. In USENIX Security
Symposium, 2010.

[59] Chris Wright, Crispin Cowan, Stephen Smalley,
James Morris, and Greg Kroah-Hartman. Linux
security modules: General security support for
the linux kernel. In USENIX Security Symposium,
2002.

[60] Steve Zdancewic, Lantian Zheng, Nathaniel
Nystrom, and Andrew C. Myers. Secure pro-
gram partitioning. ACM Trans. Comput. Syst., 20
(3), 2002.

[61] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie
Kohler, and David Mazières. Making informa-
tion flow explicit in HiStar. In OSDI, 2006.

	Contents
	Figures, Tables, and Listings
	Abstract
	Introduction
	Transition Systems
	Simulation, refinement, and abstraction
	Two-player safety games
	Structure Transition Systems

	Weaving for a Capability System
	The Capsicum Capability System
	Overview
	gzip: a compression utility
	gzip_pol: a capability policy for gzip
	Instrumenting gzip

	Technical Approach
	cap: a language of capability programs
	capcore: a core language
	cap syntax
	cap semantics
	Program runs

	Instrumentation as capability refinement
	Capability policies
	Conditions on cap stores
	Capability policies

	The capability-instrumentation problem
	Capability instrumentation as game solving
	Overview
	From a program and policy to a finite game
	Designing capability-operation templates

	Evaluation
	Benchmark programs, policies, and instrumentation
	Compression utilities bzip2 and gzip
	tcpdump
	php-cgi
	tar
	wget

	Performance

	Weaving for a DIFC System
	Background on the HiStar DIFC System
	Overview
	auth_log: an append-only logging service
	Policies for auth_log
	Instrumenting auth_log

	Technical approach
	difc: a language of DIFC programs
	difccore: a core language
	difc syntax
	difc semantics
	Program runs

	Valid instrumentation as label refinement
	DIFC policies
	Conditions on difc stores
	Policy automata

	The DIFC labeling problem
	DIFC labeling as game-solving
	Overview
	From a program and DIFC policy to a game
	Designing label-operation templates

	Evaluation
	Benchmark Programs and Policies
	A mutually-untrusting login service
	clamwrap: a wrapper for ClamAV

	Results

	Generating Weavers
	The Parameterized Weaving Problem
	Language models
	System models
	Parameterized valid instrumentation
	Parameterized Policy Satisfaction
	Problem definition

	Design of a Weaver Generator
	Overview
	From models, program, and policy to a game
	Soundness

	Conclusion
	Related Work
	Future Work

	Appendix
	Non-interference policies
	Overview
	Extensions to difc semantics
	Reasoning about pairs of traces

	Bibliography

