
Algebraic Program Analysis

Zachary Kincaid1(B), Thomas Reps2(B), and John Cyphert2(B)

1 Princeton University, Princeton, NJ 08540, USA
zkincaid@cs.princeton.edu

2 University of Wisconsin, Madison, WI 53706, USA
reps@cs.wisc.edu, jcyphert@wisc.edu

Abstract. This paper is a tutorial on algebraic program analysis. It
explains the foundations of algebraic program analysis, its strengths and
limitations, and gives examples of algebraic program analyses for numer-
ical invariant generation and termination analysis.

1 Introduction

This tutorial provides an introduction to algebraic program analysis, focusing
upon techniques for (numerical) invariant generation and termination analysis.
By reading this paper, you will learn the answers to the following questions:

– How does one design an algebraic program analysis?
– What new opportunities does algebraic program analysis enable?
– What are the limitations and important open problems in algebraic program

analysis?

The origin of algebraic program analysis is the algebraic approach to solving
path problems in graphs [1,6,48,59]: (1) compute a regular expression recogniz-
ing a set of paths of interest, and (2) interpret that regular expression within an
algebraic structure corresponding to the problem at hand. Various path problems
(e.g., computing shortest paths, path-finding problems, and dataflow analysis) can
be solved by using different algebraic structures to interpret regular expressions.

In the context of program analysis, the graph of interest is a control flow
graph for a program, and the algebra defines a space of summaries (approxima-
tions of program behavior) and a means for composing them. The algebraic app-
roach amounts to computing a summary for a program in “bottom-up” fashion,
building summaries for larger and larger subprograms by applying the operators
of the summary algebra.

The general pattern of an algebraic program analysis is: given a system of
(recursive) equations defining the semantics of a program, (1) symbolically com-
pute a closed-form solution, and then (2) interpret the closed form within an
algebraic structure corresponding to the analysis. The algebraic approach can
be contrasted with classical iterative abstract interpretation, which also starts
with a system of (recursive) equations defining the semantics of a program. How-
ever, the iterative approach is to (a) interpret the operations in the equations in
an abstract domain, and then (b) solve the equations over the abstract domain
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 46–83, 2021.
https://doi.org/10.1007/978-3-030-81685-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_3

Algebraic Program Analysis 47

by successive approximation. Thus, the classical approach is one of “interpret
and then solve,” whereas the algebraic approach is “solve and then interpret.”

The algebraic approach can be applied to various kinds of equations and alge-
braic structures. Three cases we consider in this article, and the corresponding
kind of program-analysis problems they can be used to solve, are:

Section 2 (Non-recursive) program summarization: left-linear equations over reg-
ular algebras.

Section 4 Linearly-recursive procedure summarization: linear equations over
tensor-product domains.

Section 5 Conditional termination analysis: right-linear equations over ω-regular
algebras.

Why Algebraic Program Analysis? Algebraic program analysis is a general frame-
work for understanding compositional program analyses. The principle of com-
positionality states that “the meaning of a complex expression is determined by
its structure and the meanings of its constituents” [57]. A program analysis is
compositional when the result of analyzing a composite program is a function
of the results of analyzing its components. Compositionality enables program
analyses to scale to large programs, to be parallelized, to be applied incremen-
tally, and to be applied to incomplete programs [18]. Algebraic program analysis
provides a structure in which to think about how to design such an analysis.

Insistence upon compositionality also demands a different perspective on
program analysis, which can suggest solutions to problems that may otherwise
not be apparent. We demonstrate this principle with a series of examples that
illustrate a variety of different ideas that are enabled by thinking of program
analysis in compositional terms.

Last, the algebraic framework enables a style of reasoning about the behavior
of program analyses themselves. By exploiting compositionality, it is possible to
design effective algebraic analyses that satisfy certain laws (e.g., monotonicity—
“more information in yields more information out”). Analyses can be classified
on the basis of algebraic laws that they satisfy, and we can reason how program
transformation affects analysis using these laws.

Why Not Algebraic Program Analysis? While compositionality brings many
desirable properties, it comes at the price of losing context. Compositionality
requires that the analysis of a program component is a function of the source
code of that component, and therefore cannot depend on the surrounding con-
text in which the component appears in the program. Many program analysis
techniques make essential use of context, for example:

– In an iterative abstract interpreter, which propagates information about
reachable states from the program entry forwards, the analysis of a com-
ponent depends on every component that may precede it in an execution.

– In a refinement-based software model checker, which inspects paths that go
from entry to an error state, the analysis of a component depends on the
whole program.

48 Z. Kincaid et al.

One of the main challenges of designing a good algebraic program analysis is to
overcome this loss of contextual information.

Secondly, algebraic program analysis is less general than iterative program
analysis, in the sense that any set of semantic (in)equations can be solved itera-
tively using the same basic algorithm, whereas each particular type of equation
system requires a specialized algorithm. Some problems—e.g., resolving semantic
equations of recursive procedures—have no known practical algebraic solutions.

2 Regular Algebraic Program Analysis

This section describes the algebraic approach to solving path problems in graphs
[1,6,48,59]. The basic structure of the method is to use regular expressions to
capture the set of paths of a graph, and then interpret these expressions to
obtain a desired result. We illustrate the approach by considering the problem
of computing shortest paths, and then show how it can be applied to numerical
invariant generation.

First, we establish some basic definitions. The syntax of regular expres-
sions over an alphabet Σ is as follows:

a ∈ Σ

R ∈ RegExp(Σ) :: = a | 0 | 1 | R1 + R2 | R1 · R2 | R∗

We will sometimes use juxtaposition R1R2 (rather than R1 · R2) to denote con-
catenation.

The semantics of regular expressions over Σ is given by a Σ-interpretation
I = 〈A, f〉, which consists of regular algebra A and a semantic function f . A
regular algebra A =

〈
A, 0A, 1A,+A, ·A, ∗A

〉
is an algebraic structure consist-

ing of a set A (called its universe) equipped with two distinguished elements
0A, 1A ∈ A, two binary operations +A (choice) and ·A (sequencing), and a
unary operation (−)∗A

(iteration).1 When the algebra is clear from context, we
will drop the superscript. A semantic function f : Σ → A maps each letter in
Σ to an element of A’s universe.

A Σ-interpretation I = 〈A, f〉 assigns to each regular expression R over Σ
to an element I �R� of A by interpreting each letter according to the semantic
function and each regular operator using its counterpart in A:

I �0� = 0A

I �1� = 1A

I �a� = f(a) For a ∈ Σ

I �R1 · R2� = I �R1� ·A I �R2�

I �R1 + R2� = I �R1� +A I �R2�

I �R∗� = I �R�∗A

Notice that the interpretation is compositional: for any expression R, I �R�
is a function of the top-level operator in R and the interpretations of its sub-
expressions.
1 Note that no particular laws are assumed to govern these operations. We will return

to this issue in Sect. 3.

Algebraic Program Analysis 49

Example 1 (Standard interpretation). The standard interpretation of regular
expressions is the language interpretation, L = 〈L, �〉 where L is the regular
algebra of languages. The universe of the interpretation is the set of regular lan-
guages over Σ, 0 � ∅ is the empty language, 1 � {ε} is the singleton language
containing the empty word, and the operators are

X + Y � X ∪ Y Union

X · Y � {xy : x ∈ X, y ∈ Y } Concatenation

X∗ � {x1x2 . . . xn : x1, . . . , xn ∈ X} Kleene closure

The semantic function � maps each letter a to the singleton language {a}. For
any regular expression R, L �R� is the (regular) set of words recognized by R. ⌟

We now describe how non-standard interpretations can be used to solve prob-
lems over directed graphs. A directed graph G = 〈V,E〉 consists of a finite set
of vertices V and a finite set of directed edges E ⊆ V × V . A path in G is a
finite sequence e1e2 . . . en with ei ∈ E such that for each i, the destination of ei

matches the source of ei+1. A path expression (in G) is a regular expression
over the alphabet of edges E that recognizes a set of paths in G. For any pair
of vertices u, v ∈ V , there is a path expression PathExpG(u, v) that recognizes
exactly the set of paths in G that begin at u and end at v. There are several ways
to compute path expressions. The classical method is Kleene’s algorithm [44] for
computing a regular expression for a finite state automaton (thinking of G as an
automaton over the alphabet E with start state u and final state v). For sparse
graphs, there are more efficient alternatives to Kleene’s algorithm, in particular
Tarjan’s algorithm [58]. The insight of the algebraic approach to path problems
is that these algorithms can be re-used for multiple purposes: first use a path
expression algorithm to find a regular expression recognizing a set of paths of
interest, and then compute a problem-dependent (non-standard) interpretation
of that expression.

Example 2 (Shortest paths). Consider the integer-weighted graph depicted in
Fig. 1a. Suppose that we wish to compute the length of the shortest path from
a to c. We begin by computing a path expression recognizing all paths from a
to c:

(
〈a, b〉 〈b, d〉 (〈d, e〉 〈e, d〉)∗ 〈d, a〉

)∗ 〈a, b〉
(
〈b, c〉 + 〈b, d〉 (〈d, e〉 〈e, d〉)∗ 〈d, c〉

)

This path expression can be represented succinctly by the directed acyclic
graph (DAG) pictured in Fig. 1b. Define the distance interpretation D where
the semantic function maps each edge to its weight, and the algebra’s universe
consists of the integers along with ±∞, 0 is interpreted as ∞, 1 as 0, and the
operators are as follows:

50 Z. Kincaid et al.

Fig. 1. An integer weighted graph and a path expression DAG representing the paths
from a to c

d1 + d2 � min(d1, d2) Minimum

d1 · d2 � d1 + d2 Addition

d∗ �
{

−∞ if d < 0
0 otherwise

Closure

The weight of the shortest weighted path from a to c is D�PathExpG(a, c)� = 1,
which can be calculated efficiently by interpreting the path expression DAG
“bottom-up” (see gray labels in Fig. 1b). ⌟

Algebraic path-finding can be used to generate invariants by representing a
program by a control flow graph, and interpreting path expressions within an
algebra of program summaries. A control flow graph (CFG) G = 〈V,E, r, C〉
is a directed graph 〈V,E〉 with a distinguished root (or entry) vertex r ∈ V ,
and where each edge e ∈ E is labeled by a command C(e); see Fig. 2a for an
example. In the remainder of this section, we give examples of interpretations
that can be used to generate (numerical) program summaries.

2.1 Transition-Formula Interpretations

Fix a finite set of variables, X, representing the variables of a program. A tran-
sition formula is a logical formula F (X,X ′) whose free variables range over X

Algebraic Program Analysis 51

and a set of “primed copies” X ′ � {x′ : x ∈ X}. For the purposes of this expo-
sition, we further suppose that variables range over integers, and that transition
formulas are expressed in the language of linear integer arithmetic. A transition
formula can be interpreted as a binary relation →F over states State � Z

X ,
where s →F s′ if and only if F is true when s is used to interpret the un-primed
variables and s′ is used to interpret the primed variables. For example, if F is
the transition formula

F � x′ = x + 1 ∧ y = y′ ∧ x < y ,

then we have

s →F s′ ⇐⇒ s′(x) = s(x) + 1, s(y) = s′(y), and s(x) < s(y) .

Suppose that G = 〈V,E, r, C〉 is a control flow graph, where commands range
over assignments x := e and assumptions [c], where e is a linear integer term
and c is a linear arithmetic formula. (An assumption [c] is a command that does
not change the program state, but which can only be executed if the formula c
holds.) We define a semantic function tf that maps each control flow edge into
the universe of transition formulas by translating the command associated with
the edge into logic:

tf(e) �

⎧
⎨
⎩

(x′ = e) ∧
(∧

y �=x∈X y′ = y
)

if C(e) is x := e

c ∧
(∧

y∈X y′ = y
)

if C(e) is [c]

We define an algebra of transition formulas as follows:

0 � false Empty relation

1 �
∧

x∈X

x′ = x Identity relation

F + G � F ∨ G Union

F · G � ∃X ′′.F (X,X ′′) ∧ G(X ′′,X ′) Relational composition

Above and elsewhere, we use positional notation for substitution; e.g., F (X,X ′′)
denotes the formula obtained by replacing all the X ′ symbols with “double
primed” symbols in X ′′ (and leaving the un-primed X symbols as they are).
Intuitively, F ∗ should be interpreted as the reflective transitive closure of F .
However, in general it is not possible to compute the reflexive transitive closure
of a formula (nor even to represent it as a formula). Hence, we must be content
with an over-approximate transitive closure operator. There are many different
methods for over-approximating transitive closure, so we speak of the family of
algebras of transition formulas, which have the same basic structure and dif-
fer only in the interpretation of the iteration operator. In the remainder of this
section, we describe a selection of methods for implementing the iteration opera-
tor. Disclaimer : for each example, the presentation differs somewhat (sometimes
substantially) from the cited source. The examples should be read as “how the
cited analysis might be presented in the algebraic framework.”

52 Z. Kincaid et al.

Example 3 (Transitive Predicate Abstraction [47]). Fix a set of variables X. Say
that a transition formula p(X,X ′) is

– reflexive if
∧

x∈X x = x′ |= p(X,X ′)
– transitive if p(X,X ′) ∧ p(X ′,X ′′) |= p(X,X ′′)

Let P be a finite set of candidate reflexive and transitive transition formulas.
For example we might choose

P � {x �� x′ : x ∈ X, ��∈ {≤,≥}}
∪{x �� 0 ⇒ x′ �� 0 : x ∈ X, ��∈ {≤,≥, <,>}}

We can define an iteration operator that over-approximates the reflexive transi-
tive closure of a formula F by the conjunction of the subset of P that is entailed
by F :

F ∗ �
∧

{p ∈ P : F |= p} . ⌟

Example 4 (Interval analysis [51]). Let F (X,X ′) be a transition formula. An
inductive interval invariant for F assigns to each variable x ∈ X a pair of integers
ax, bx ∈ Z such that if s is a state such that s(x) ∈ [ax, bx] for all x ∈ X and
s →F s′, then s′(x) ∈ [ax, bx] for all x ∈ X. Monniaux showed that it is possible to
determine optimal inductive interval invariants by posing the inductive-invariance
condition symbolically and quantifying over the bounds [51].

Let P = {px : x ∈ X} and Q � {qx : x ∈ X} be sets of fresh variables, which
we use to the lower and upper bounds of intervals, respectively. The set of
inductive interval invariants for a formula F can be represented by the formula

Inv(F, P,Q) � ∀X,X ′.

(
F ∧

∧
x∈X

px ≤ x ≤ qx

)
⇒
(∧

x∈X

px ≤ x′ ≤ qx

)

That is, the models of Inv (which assign integers to the lower and upper bound
variables P and Q) are in one-to-one correspondence with the interval invariants
of F . We may universally quantify over all inductive interval invariants to arrive
at the following iteration operator:

F ∗ � ∀P,Q.

(
Inv(F, P,Q) ∧

∧
x∈X

px ≤ x ≤ qx

)
⇒
(∧

x∈X

px ≤ x′ ≤ qx

)

In contrast to the typical iterative approach with classical widening and nar-
rowing operators, this operator computes a formula that implies all (and
therefore most precise) inductive interval invariants.2 For example, for the

2 Note that while the formula implies all interval invariants, it does not itself take the
form of an interval invariant.

Algebraic Program Analysis 53

loop (while (i �= n) do i := i + 1), this method yields the following over-
approximation of the reflexive transitive closure of F :

F ∗ ≡ n′ = n ∧ i ≤ i′ ∧ (i ≤ n ⇒ i′ ≤ n)

If we suppose that i is initially 0 and n is initially 100, then this formula implies
the loop invariant that n is equal to 100, and i is in the interval [0, 100]. ⌟

Example 5 (Recurrence analysis [4,27]). Let F (X,X ′) be a transition formula,
and let x and x′ denote vectors containing the variables X and X ′, respectively.
A linear recurrence inequation of F is a formula of the form aᵀx′ ≤ aᵀx + b that
is entailed by F . The idea behind recurrence analysis is to extract a set of linear
recurrence inequations for a formula, {aᵀ

i x
′ ≤ aᵀ

i x + bi}i∈I , and to use the closed
form of those recurrences to over-approximate the transitive closure of F :

F ∗ � ∃k.k ≥ 0 ∧
∧
i∈I

aᵀ
i x

′ ≤ aᵀ
i x + kbi

For instance, consider the following loop:

while (x > 0) do
if (y < 0) { x := x + y; y := y - 1 }
else { x := x - 2; y := y - 3}

The loop exhibits the following recurrences

(2x′ − y′) ≤ (2x − y) − 1
y′ ≤ y − 1

−y′ ≤ −y + 3
or in matrix form,

⎡
⎣
2 −1
0 1
0 −1

⎤
⎦

[
x′

y′

]
≤

⎡
⎣
2 −1
0 1
0 −1

⎤
⎦

[
x
y

]
+

⎡
⎣

−1
−1
3

⎤
⎦

which yields the following transition formula that summarizes the loop:

∃k.k ≥ 0 ∧ (2x′ − y′) ≤ (2x − y′) − k ∧ y′ ≤ y − k ∧ −y′ ≤ −y + 3k .

The loop also exhibits other recurrences (such as x′ ≤ x−1); however, the three
selected recurrences are complete in the sense that all implied recurrences are
non-negative linear combinations of these three (e.g., x′ ≤ x − 1 is obtained by
adding 1/2-times the first and second recurrences).

Such a complete set of recurrences exists for any transition formula F , which
can be computed as follows. First, observe that the set of linear recurrences of F ,

Rec(F) � {(a, b) : F |= aᵀx′ ≤ aᵀx + b}

is closed under non-negative linear combinations (i.e., it is a convex cone). Our
goal is to find a (finite) set of generators for Rec(F)—a finite set {(ai, bi)}i∈B

such that

Rec(F) =

{
(0, λ0) +

∑
i∈B

λi(ai, bi) : λ0 ≥ 0, λi ≥ 0 for all i ∈ B

}
.

54 Z. Kincaid et al.

To compute generators for Rec(F), we first introduce a fresh set of “difference”
variables, {δx}x∈X and form a formula

Δ(F) � ∃X,X ′.F ∧
∧

x∈X

δx = x′ − x .

Observe that (a, b) ∈ Rec(F) if and only if Δ(F) |= aᵀδ ≤ b. Thus, a set of
generators for Rec(F) corresponds exactly to a half-space representation for the
convex hull of Δ(F), which can be computed using the algorithm from [27].

The class of linear recurrence inequations considered in this example can be
generalized in various ways to yield more powerful invariant generation proce-
dures. In particular,

– [27] computes linear recurrences with polynomial closed forms
– [42] computes polynomial recurrences with polynomial and complex exponen-

tial closed forms.
– [41] computes polynomial recurrences with polynomial and rational exponen-

tial closed forms. ⌟

2.2 Weak Interpretations

Transition formulas are an appealing basis for algebraic program analysis, since
all the operators (except the iteration operator) are precise—they simply encode
the meaning of the program into logic. The significance of this is that transition
formula algebras delay precision loss as long as possible, which helps to overcome
loss of contextual information. However, there are algebraic analyses of interest
that are defined on weak logical fragments that cannot precisely express union
and/or relational composition.

Example 6 (Affine relation analysis [38]). An affine relation is a relation that
corresponds to the set of models of a transition formula of the form Ax′ = Bx+c.
Define the algebra of affine transition relations to be the regular algebra where
the universe is the set of affine transition relations, 0 is interpreted as the empty
relation, 1 is interpreted as the identity relation, + is interpreted as the affine
hull of R1 ∪ R2 (the smallest affine relation that contains both R1 and R2), · is
interpreted as relational composition, and ∗ is interpreted as the operation that
sends any affine relation R to the limit of the sequence {Ri}∞

i=0 defined by

R0 = 0 Ri+1 = Ri + (Ri · R) for i ≥ 0

Since we have R0 ⊆ R1 ⊆ . . . and if any Ri+1 properly contains Ri the dimension
of Ri+1 is strictly greater than that of Ri, this sequence must stabilize in finite
time, so the operation R∗ is computable. ⌟

3 Semantic Foundations

This section presents a general view of algebraic program analysis, with the goal
of elucidating its underlying principles so that they may be understood outside

Algebraic Program Analysis 55

the setting of graphs and regular expressions. This sets the stage for Sect. 4 and
Sect. 5, wherein we will develop program analysis schemes that follow the same
general “recipe” that we lay out in this section, but deviate from the instance
of this recipe that we saw in Sect. 2.

Following the theory of abstract interpretation [22], we begin with a concrete
semantics that defines the meaning of a program. The concrete semantics is
specified as the least (or greatest) solution to a system of recursive equations.
The concrete semantics is not computable—the goal of a program analysis is
to approximate it. The way that this is accomplished in an algebraic analysis
is by symbolically computing a closed-form solution to the semantic equations
(i.e., a non-recursive system of equations whose (unique) solution coincides with
the concrete semantics), and then interpreting that closed-form solution in an
algebraic structure that approximates the algebra of the concrete semantics.

3.1 Semantic Equations

Given a control flow graph G, we can syntactically derive a system of equations
E(G)—see Fig. 2. For each vertex v, we introduce a variable Xv and an equation
(Xv = Rv) that relates that variable to the variables for v’s predecessors. Notice
that this system of equations can be viewed as a (left-)regular grammar, with
each non-terminal symbol Xv recognizing the set of paths from the root r to the
vertex v. This is an instance of the more general concept of a solution to a system
of equations over an algebraic structure. A solution to the system of equations
E(G) = {Xv = Rv}v∈V over a regular interpretation I = 〈A, f〉 is a function σ
that maps each variable to an element of A such that each equation is satisfied:
for each equation (Xv = Rv) in E(G), we have σ(X) = Iσ�R�, where Iσ is
the interpretation obtained by extending the semantic function to variables by
interpreting them according to σ.

The prototypical concrete semantics of interest in algebraic analysis is the
relational semantics. The relational semantics of a program associates to every
control flow vertex v a reachability relation Rv, which is the set of pairs 〈s, s′〉
such that if the program begins at r in state s, then it may reach v with state
s′. The relational semantics may be obtained as the least solution to the sys-
tem of semantic equations over the relational interpretation, which is defined as
follows. The regular algebra of state relations, R, has binary relations on states
as its universe, 0 is interpreted as the empty relation ∅, 1 is interpreted as the
identity relation {〈s, s〉 : s ∈ State}, · is interpreted as relational composition,
+ as union, and ∗ as reflexive, transitive closure. The relational interpreta-
tion R is the interpretation over the regular algebra of state relations where the
semantic function maps each command to its associated transition relation; e.g.,
i := i + 2 is associated with the set of all pairs 〈s, s′〉 such that s′(i) = s(i) + 1
and s′(x) = s(x) for all x �= i. The relational semantics of a CFG G is the least
solution to E(G) over the relational interpretation.

Having formulated the concrete semantics as the solution to a system of
equations, we must now solve the system symbolically. The classical algorithm
is a variation of Gaussian elimination, given in Algorithm 1. This algorithm
is essentially Kleene’s algorithm [44] for computing a regular expression for a

56 Z. Kincaid et al.

r

a

b

c

d

ef

i := 0

j := 0 [i < 1000] i := i + 2

[j < 500]j := j + 1

[j ≥ 500]

i ≥ 1000

(a)

Xr = 1

Xa = Xr · 〈r, a〉
Xb = Xa · 〈a, b〉

+Xd · 〈d, b〉
+Xe · 〈e, b〉

Xc = Xb · 〈b, c〉
Xd = Xc · 〈c, d〉
Xe = Xd · 〈d, e〉
Xf = Xb · 〈b, f〉

(b)

Xr = 1

Xa = 〈r, a〉
Xb = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗
Xc = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗ 〈b, c〉
Xd = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗ 〈b, c〉 〈c, d〉
Xe = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗ 〈b, c〉 〈c, d〉 〈d, e〉
Xf = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗ 〈b, f〉

(c)

Fig. 2. (a) A control flow graph; (b) the corresponding systems of equations; and (c)
a closed-form solution.

finite state automaton, recast in the language of equations. The front-solving
step eliminates variables one-by-one, at each step i producing a system of equa-
tion of equations that is equivalent to the original, but in which the variable
Xi does not appear in the right-hand-side of any equations Xj = Rj for j ≥ i.
The back-solving step eliminates all variable occurrences from right-hand-sides,
at each step replacing Xi with its closed form Ri in each equation Xj = Rj for
j < i. An example illustrating the result of solving the system of equations in
Fig. 2b symbolically appears in Fig. 2c. The significant difference to the famil-
iar Gaussian elimination algorithm in linear algebra is the “loop-solving” step,
which solves a single recursive equation Xi = Ri symbolically by re-arranging
Ri into the form XiA + B and taking BA∗ to be the solution. The loop-solving
step is justified under the relational interpretation, and more generally for any
interpretation over a Kleene algebra.3

3 The laws of Kleene algebra are not minimal in this regard.

Algebraic Program Analysis 57

Input : Left-linear system of equations, E = {Xi = Ri}n
i=1

Output : Closed-form solution to E
for i = 1 to n do /* Front-solving */

Re-arrange Ri in the form XiA + B;
Ri ← BA∗ ; /* “Loop-solving” */
foreach j > i do Rj ← Rj [X �→ Ri] ;

end
for i = n to 2 do /* Back-solving */

foreach j < i do Rj ← Rj [Xi �→ Ri] ;
end
return E;
Algorithm 1: Gaussian elimination for left-linear systems of equations

Definition 1. Let A = 〈A,+, ·, ∗, 0, 1〉 be a regular algebra. We say that A is
an idempotent semiring if it satisfies the following (for all a, b, c,∈ A):

a + (b + c) = (a + b) + c a(bc) = (ab)c Associativity
a(b + c) = ab + ac (b + c)a = ba + ca Distributivity

a + 0 = a 1a = a1 = a Identity
a + b = b + a Commutativity of +

a + a = a Idempotence
a0 = 0a = 0 Annihilation

In any idempotent semiring, we may define a natural order ≤, where a ≤ b iff
a + b = b. Note that + is the least upper bound with respect to this order.

We say that A is a Kleene algebra if it is an idempotent semiring and the
following hold (for all a, x ∈ A):

1 + a(a∗) = a∗ 1 + (a∗)a = a∗ Unfolding
ax ≤ x ⇒ a∗x ≤ x xa ≤ x ⇒ xa∗ ≤ x Induction

Exercise 1. Show that in any Kleene algebra, the least solution to a (left-)linear
recursive equation X = a + Xb exists and is equal to ab∗

The sense in which Gaussian elimination computes a “closed-form solutions”
to a system of left-linear equations E is that:

– (closed form) the right-hand sides do not refer to variables, and
– (solution) for any interpretation I over a Kleene algebra, for each equation

(X = R) ∈ E, we have σ(X) = I �R� where σ is the least solution to E
over I .

The connection between Gaussian elimination and graph algorithms like
Floyd-Warshall inspired Tarjan’s path-expression algorithm [58]. In the language
of graphs, Tarjan’s algorithm computes for each vertex v of a control flow graph
G with root r a path expression PathExpG(r, v) that recognizes the set of paths
from r to v; in the language of equations, it solves left-linear systems of equations

58 Z. Kincaid et al.

symbolically. Tarjan’s algorithm is preferred to Gaussian elimination in practice:
is more efficient (nearly linear time for reducible flow graphs, compared to cubic
time for Gaussian elimination) and produces simpler solutions. For expository
purposes, we will continue to refer to Gaussian elimination for solving systems
of equations, viewing Tarjan’s method as an efficient variation.

3.2 Abstract Interpretation

Gaussian elimination can solve a system of left-linear equations over a Kleene
algebra (e.g., relational semantics) symbolically. However, the solution cannot be
interpreted in the concrete algebra, since operators are not effective (that is, they
cannot be implemented by a machine). We approximate the concrete semantics
by interpreting the closed-form solution in an effective abstract algebra (e.g., one
of the transition-formula algebras from Sect. 2).

Following the theory of abstract interpretation [22], the correctness of this
approach is justified by establishing a relationship between the “concrete” and
“abstract” interpretations. In the algebraic framework, a natural way to express
the relationship is via a soundness relation [24], which is a binary relation
between two algebras that is preserved by the operations of the algebra. Mem-
bership of a (concrete, abstract) pair in the relation indicates that the concrete
element is approximated by the abstract element.

Definition 2 (Soundness relation). Given two Σ-interpretations I � =〈
A�, f �

〉
and I � =

〈
A�, f �

〉
, − � − ⊆ A� × A� is a soundness relation

if f �(a) � f �(a) for all a ∈ Σ and � is a sub-algebra of the product algebra
A� × A�; i.e., 0� � 0�, 1� � 1�, and for all x1 � y1 and x2 � y2 we have

– x1 +� x2 � y1 +� y2
– x1 ·� x2 � y1 ·� y2
– x∗�

1 � y∗�

1

The definition of soundness relation generalizes to interpretations over other
classes of algebraic structures in the natural way: it is a binary relation over
two algebras of the same signature that is preserved by every operation in the
signature.

Example 7 (Transition formula overapproximation). Let R denote the algebra
of state relations and TF denote an algebra of transition formulas. The over-
approximation relation is defined by

R �O F ⇐⇒ ∀〈s, s′〉 ∈ R, s →F s′.

Preservation of constants and the sequencing and choice operations is easily veri-
fied; to show that �O is a soundness relation, we need only to show that R �O F

implies R∗R �O F ∗TF

; i.e., (−)∗TF

over-approximates reflexive transitive closure.
Of course, this proof depends on the particular implementation of the iteration
operator.

The over-approximate soundness relation allows us to verify safety properties:
if R �O F and F entails some property P , then R satisfies P . ⌟

Algebraic Program Analysis 59

Example 8 (Transition formula underapproximation). The under-approximation
relation is defined by

R �U F ⇐⇒ ∀s, s′.s →F s′ ⇒ 〈s, s′〉 ∈ R,

Preservation of constants and the sequencing and choice operations is again
easily verified; to show that �U is a soundness relation, we need only to show
that R �O F implies R∗R �O F ∗TF

; i.e., (−)∗TF

under-approximates reflexive
transitive closure. The iteration operators in Sect. 2 are all over-approximate.
An example of an under-approximate iteration operator is

F ∗ �
n∨

i=0

F ◦ · · · ◦ F︸ ︷︷ ︸
i times

(for some fixed choice of n) which corresponds to bounded model checking [9],
with an unrolling bound of n.

The under-approximate soundness relation allows us to refute safety prop-
erties: if R �U F and F does not entail some property P , then R does not
satisfy P . ⌟

The problem of “approximating the behavior of a program” can be formalized
as follows:

Given a system of semantic equations over a set of variables X describing
the concrete semantics of a program (i.e., its least solution σ� over some
interpretation I �), find some σ� : X → A� such that for each variable
X ∈ X , we have σ�(X) � σ�(X).

The algebraic approach to this problem is to compute for each variable X a
closed form RX (such that σ�(X) = I �(RX)), and define σ�(X) � I �(RX).
The correctness of this approach is justified by the following soundness lemma,
which follows by induction on regular expressions.

Lemma 1 (Soundness). Let Σ be an alphabet, let I � =
〈
A�, f �

〉
and I � =〈

A�, f �
〉

be Σ-interpretations, and let �⊆ A� ×A� be a soundness relation. Then
for any regular expression R ∈ RegExp(Σ), we have I ��R� � I ��R�

3.3 Discussion

A subtlety of algebraic program analysis is that most algebras of interest in pro-
gram analysis are not Kleene algebras (for instance, none of the algebras in Sect. 2
are), and so in general, Gaussian elimination does not find solutions to systems of
equations over “abstract” interpretations corresponding to programanalyses. This
technical difficulty is sidestepped by appealing to the concrete semantics (which
typically is defined over a Kleene algebra, such as the algebra of state relations)
to justify the use of path-expression algorithms, and a sound approximating alge-
bra to interpret the resulting expressions. The fact that the abstract interpreta-
tion of the closed-form solution to the concrete system of equations does not yield

60 Z. Kincaid et al.

a solution to the abstract system of equations is immaterial: our goal is to over-
approximate the concrete rather than solve the abstract.

Formalizing a program analysis as an algebraic structure allows one to under-
stand the behavior of program analyses in terms of algebraic laws, and use the
language of algebra to reason about program analyses. For example, any tran-
sition formula algebra (in the family described in Sect. 2.1) is an idempotent
semiring, and so any two ∗-free regular expressions that denote the same lan-
guage have the same (up to logical equivalence) interpretation as a transition
formula. While none of the iteration operators in Sect. 2.1 satisfy the Unfolding
and Induction laws of Kleene algebra, they do satisfy weaker pre-Kleene algebra
iteration laws:

1 ≤ a∗ Reflexivity
a ≤ a∗ Extensivity

a∗a∗ = a∗ Transitivity
a ≤ b ⇒ a∗ ≤ b∗ Monotonicity

For any n, (an)∗ ≤ a∗ Unrolling

A concrete use-case for these laws appears in [25], which develops regular expres-
sion transformation techniques that preserve concrete semantics but are guar-
anteed to produce (non-strictly) more precise abstract semantics.

Such laws can also be useful for users of program analysis tools. For exam-
ple, since all operations are monotone (as a consequence of the monotonicity and
idempotent-semiring laws), a user can rely on the principle that “more informa-
tion in yields more information out.” If a user alters a program P by adding addi-
tional assume commands to get a program P ′ (e.g., expressing invariants that
are found by some other automated invariant generation technique, user-provided
hints, etc.), monotonicity means that they may rely on the fact that the analysis
will produce summaries for P ′ that are at least as precise as those for P .

A Recipe for Algebraic Program Analysis. We conclude this section by presenting
a general view of algebraic program analysis, abstracted from the language of
graphs and regular expressions:

1. (Modeling) Express the concrete semantics as the least (or greatest) solution to
a system of recursive equations (e.g., relational semantics as the least solution
to the left-linear system of equations corresponding to a control flow graph).

2. (Closed forms) Design a suitable language of “closed-form solutions” and an
algorithm for computing them (e.g., regular expressions and path-expression
algorithms).

3. (Interpretation) Design an abstract interpretation of the language of closed
forms and a soundness relation connecting the concrete and abstract interpre-
tations (e.g., transition-formula algebras (Sect. 2.1) and the over-approximate
soundness relation (Ex. 7)).

Section 4 and Sect. 5 give two more instances of this generic recipe, generalizing
beyond left-linear equations and regular-expressions as closed forms. Section 4
considers linear equations (and an appropriate language of closed forms); Sect. 5
considers another form of equation with ω-regular expressions as closed forms.

Algebraic Program Analysis 61

4 Interprocedural Analysis

Algebraic program analyses are oriented around computing summaries for pro-
gram fragments, and are naturally suited to analyzing programs with procedures.
Following Cousot & Cousot [23] and Sharir & Pnueli [56], the idea is to structure
the analysis in two phases:

Phase I: compute for each procedure X a summary that approximates the
behavior of X (including the actions of all procedures called transitively from
X).

Phase II: analyze whole-program paths from the start of the main procedure,
using the summaries to interpret procedure calls.

An example of a program with procedures is given in Fig. 3(a). The CFGs for
its procedures are shown in Fig. 3(b) along with a set of equations corresponding
to the CFGs (Fig. 3(c)). For Phase I, it is also useful to consider the following
equations in which we have eliminated all variables except for those of the form
Xs,x, which represent the procedure summaries.

Xs1,x1 = (〈s1, a〉 · Xs2,x2 + 〈s1, b〉) · Xs2,x2

Xs2,x2 = Xs3,x3 · Xs3,x3

Xs3,x3 = 〈s3, x3〉
(1)

This system of equations can be obtained either by a process of successively
eliminating variables from Fig. 3(c), or they can be read off directly from each
control-flow graph: sequential composition corresponds to ·, and branching cor-
responds to +.

We can also construct a graph of the dependencies among the variables in
the equation system. In this case, we would have

Xs3,x3 −→ Xs2,x2 −→ Xs1,x1 (2)

(which is also isomorphic to the program’s call graph). Note that the equations
in Eq. (1) are not left-linear. However, by eliminating variables in a topological
order of Eq. (2), these systems can still be solved using Gaussian elimination
(Algorithm 1).

Xs3,x3 = 〈s3, x3〉
Xs2,x2 = 〈s3, x3〉 · 〈s3, x3〉
Xs1,x1 = (〈s1, a〉 · 〈s3, x3〉 · 〈s3, x3〉 + 〈s1, b〉) · 〈s3, x3〉 · 〈s3, x3〉

(3)

Unfortunately, this strategy breaks down for programs with recursive pro-
cedures: the essential difficulty is in computing the summaries of procedures
that are directly recursive or part of a set of mutually recursive procedures. We
will return to this issue shortly, after a brief discussion of Phase II, which can
be addressed via algebraic program analysis, regardless of whether the original
equation system contains recursion.

62 Z. Kincaid et al.

Fig. 3. (a) A three-procedure program scheme. (b) Control-flow graphs for program
(a). The edges labeled “X2” and “X3” represent calls to the respective procedures. (c)
A system of equations corresponding to (b).

Fig. 4. Graph corresponding to the equation system used for Phase II for the program
from Fig. 3.

With closed-form solutions for the procedure summaries in hand, Phase II
can be addressed with Gaussian elimination. (Note that for a program with
recursive procedures, the transformed Phase II system is still recursive. However,
it is left-recursive, and so can be handled with regular expressions, and analyzed
using the transition-formula interpretations of Sect. 2—the “loops” in Phase II
correspond to sequences of recursive calls). Figure 4 shows the equation system

Algebraic Program Analysis 63

Fig. 5. (a) A two-procedure program scheme, where X1 represents the main procedure,
X2 represents a recursive subroutine, and C〈s1,a〉, C〈s2,x2〉, C〈s2,b〉, and C〈b,x2〉 represent
four program statements. (b) Control-flow graphs for program (a). The three edges
labeled “X2” represent calls to procedure X2. (c) A system of equations corresponding
to (b).

used for Phase II for the program from Fig. 3 in graphical form. The graph
is similar to Fig. 3(b) with (i) additional edges from each call-site to the start
node of the called procedure, and (ii) the edges previously labeled with “X2”
and “X3” are now labeled with the values from Eq. (3) for the corresponding
procedure summaries: 〈s3, x3〉 · 〈s3, x3〉 and 〈s3, x3〉, respectively.

The remainder of this section focuses on Phase I: computing procedure sum-
maries. Consider the two-procedure program shown in Fig. 5(a). CFGs for its
procedures are shown in Fig. 5(b) along with a set of recursive equations cor-
responding to the interprocedural CFG. Unfortunately, equations like those in
Fig. 5(c) do not fit naturally with the recipe given in Sect. 3.3. The essential
difficulty is with item 3.3: “Design a suitable language of ‘closed-form solutions’
and an algorithm for computing them.” In particular, we cannot use regular
expressions and path-expression algorithms because the equations in Fig. 5(c)
are not left-linear (and they cannot be put in left-linear form).

Two ideas are involved in using algebraic program analysis to summarize
recursive procedures:

1. The generalization by Esparza et al. [26] of Newton’s method—the classical
numerical-analysis algorithm for finding roots of real-valued functions—to a
method for solving a system of equations over a semiring S, called Newtonian
Program Analysis (NPA). As in its real-valued counterpart, each iteration of
NPA solves a simpler “linearized” problem. (See Sect. 4.1.)

2. The technique of Reps et al. [53] for applying the algebraic-program-analysis
recipe to the linearized problems that arise in NPA. (See Sect. 4.2.)

64 Z. Kincaid et al.

4.1 Motivation: Newtonian Program Analysis

To motivate why we are interested in the special case of linear equations
(Sect. 4.2), this section provides a brief overview of how linear equations arise
in NPA. Let E = {Xi = Ri}n

i=1 be a system of equations, and fix an inter-
pretation I over some algebra A. Define a function f : An → An by f(σ) =
(Iσ�R1�, . . . ,Iσ�Rn�) (i.e., the n-tuple of interpreted right-hand-sides, where
variables are interpreted according to σ). NPA is an iterative method for pro-
gram analysis that solves the following sequence of problems for ν:

ν(0) = f(0) ν(i+1) = Y(i) (4)

where Y(i) is the value of Y in the least solution of

Y = f(ν(i))+ LinearCorrectionTerm(E, ν(i),Y) (5)

Thus, NPA is similar to Kleene iteration, except that on each iteration, f(ν(i))
is “corrected” by an amount controlled by LinearCorrectionTerm(E, ν(i),Y)—a
function of f , the current approximation ν(i), and (vector) variable Y—which
nudges the next approximation ν(i+1) in the right direction at each step.

The linear correction term is the result of replacing each right-hand side
Ri =

∑
j Rj with a sum

∑n
i=0 Ri,j,k, where each Ri,j,k is obtained from Ri,j by

replacing all variables, except possibly one, with its interpretation in ν. (The
formal definition can be found elsewhere [26, §3.2].) For example, consider the
system of equations below, a simplified variant of Fig. 5(c) that is obtained by
eliminating all variables except Xs1,x1 ,Xs2,b,Xs2,x2 :

Xs1,x1 = 〈s1, a〉 Xs1,x2

Xs2,b = 〈s2, b〉 + Xs2,b · Xs2,x2 · Xs2,x2 · 〈d, b〉
Xs2,x2 = 〈s2, x2〉 + Xs2,b 〈b, x2〉

(6)

The transformation results in the following system (for brevity, we denote
Ys1,x1 , Ys2,b, Ys2,x2 by Y1, Y2, Y3):

Y1 = 〈s1, a〉 · Y3

Y2 = 〈s2, b〉 + Y2 · ν3 · ν3 · 〈d, b〉 + ν2 · Y3 · ν3 · 〈d, b〉 + ν2 · ν3 · Y3 · 〈d, b〉
Y3 = 〈s2, x2〉 + Y2 · 〈b, x2〉

(7)

Note that the two underlined summands are both truly linear : they are linear,
but not left-linear nor right-linear.

The process of solving Eqs. (4) and (5) for ν(i+1), given ν(i), is called
one Newton round. On the initial Newton round, we set 〈ν(0)

1 , ν
(0)
2 , ν

(0)
3 〉 ←

〈0,I �〈s2, x2〉�,I �〈s3, x3〉�〉. On round i + 1, we solve Eq. (7) for 〈Y1, Y2, Y3〉
with 〈ν1, ν2, ν3〉 set to the value 〈ν(i)

1 , ν
(i)
2 , ν

(i)
3 〉 obtained on round i, and then

set 〈ν(i+1)
1 , ν

(i+1)
2 , ν

(i+1)
3 〉 ← 〈Y1, Y2, Y3〉.

Algebraic Program Analysis 65

Operationally, the linearization transformation imposes a particular proto-
col for sampling the program’s space of behaviors. For instance, in Fig. 5(b),
the procedure X2 has two call-sites along the loop through b. In Eq. (7), each
right-hand-side summand in the equation for Y2 has at most one variable: the
transformation inserted ν2 or ν3 at various call-sites (considering Xs2,b as a
pseudo-call-site corresponding to tail recursion), and left at most one variable Yi

in each summand. In essence, during a given Newton round, the analyzer samples
the behavior of f by taking the + of various paths through the transformation
of f . Along each path through a (transformed) right-hand side, the summary for
each pseudo-call-site Xi encountered is held fixed at νi, except for possibly one
pseudo-call-site on the path, which is explored by visiting (the linearized version
of) the called procedure. The summaries ν1, ν2, ν3 are updated according to the
result of this exploration, and the algorithm performs the next Newton round.

The analogy between NPA and Newton’s method in numerical analysis is
that in both cases one creates a linear approximation of f(X) around the “point”
(ν(i), f(ν(i))); the solution of the linear system is the next approximation of X.

4.2 Algebraic Program Analysis for Linear Equations

In this section, we instantiate the recipe for algebraic program analysis from
Sect. 3.3 to solve a system of linear equations, such as the linearized problems
that arise as Eq. (5) [53]. This goal may seem out of reach because item 3.3 of
the recipe requires us to “design a suitable language of ‘closed-form solutions’
and an algorithm for computing them.”

What is a suitable language of closed-form solutions of linear equations?
Clearly the regular expressions and path-expression algorithms used in Sect. 2
and Sect. 3 will not do, because the least solution under the language interpre-
tation to the (truly) linear equation X = aXb + 1 is

{
aibi : i ≥ 0

}
, which is the

canonical example of a linear-context-free language that is not regular. However,
over fifty years ago, formal-language theorists established that linear-context-
free languages have certain similarities to regular languages [17,34,61], and we
can make use of this property to design a language of closed forms for linear
equations. Intuitively,

{
aibi : i ≥ 0

}
can be obtained by (i) introducing paired

alphabet symbols, such as (a, b), (ii) defining concatenation of paired symbols as
(a, b) · (c, d) def= (ca, bd), (iii) defining Kleene-star in the natural way over paired-
symbol concatenation, so (a, b)∗ is the language of paired words

{
(ai, bi) : i ≥ 0

}
,

and (iv) applying an operation that concatenates the left word and right word
of each paired word:

{
(ai, bi) : i ≥ 0

}
�→
{
aibi : i ≥ 0

}
.

66 Z. Kincaid et al.

For the purpose of algebraic program analysis, this idea can be formalized by
introducing tensored regular expressions over an alphabet Σ, whose syntax
is defined as follows:4

a ∈ Σ

R ∈ RegExp(Σ) :: = a | 0 | 1 | R1 + R2 | R1 · R2 | R∗ | S�

S ∈ RegExpT (Σ) :: = R1 ⊗ R2 | 0 | 1 | S1 ⊕ S2 | S1 � S2 | S�

We can now follow the pattern of Sect. 2, and define algebras suitable for
interpreting tensored regular expressions.

Definition 3. A tensor-product algebra T = 〈A,T,⊗,�〉 consists of two
regular algebras A and T along with an operation ⊗ : A × A → T , called tensor
product, and an operation � : T → A, called detensor.

Example 9 (Standard interpretation). The standard interpretation from Exam-
ple 1 can be extended to tensored regular expressions by defining a universe of
languages over word pairs (“tensored words”) T = 2Σ∗×Σ∗

, whose operators are
given by:

X ⊗ Y � {〈x, y〉 : x ∈ X, y ∈ Y }
Z� � {zz : 〈z, z〉 ∈ Z}

Z1 � Z2 � {〈z2z1, z1z2〉 : 〈z1, z1〉 ∈ Z1, 〈z2, z2〉 ∈ Z2}
Z1 ⊕ Z2 � Z1 ∪ Z2

Z� �
⋃
i∈N

Zi

Note that this interpretation allows tensored regular expressions to be used to
capture linear context-free languages. For instance, the equation X = aXb + 1,
whose least solution is

{
aibi : i ≥ 0

}
can be written in closed form as X =

((a ⊗ b)�)�, and the equation X = aXa + bXb + 1, whose least solution is
the language of even-length palindromes over {a, b}, can be written as X =
(((a ⊗ a) ⊕ (b ⊗ b))�)�. ⌟

Example 10 (Relational interpretation). The relational interpretation can be
extended to tensored regular expressions by defining an algebra of binary state-
pair relations, as follows.5 The universe is the set of relations on State × State
(i.e., an element of the universe is a subset of State × State × State × State).
Comparing with the standard interpretation, (in which an element 〈p1, p2〉 con-
sists of a “backwards path” p and a “forwards continuation”) we may think of
4 A warning about notation: in our previous papers, we used ⊕ and ⊗ for the two

semiring operations, � for tensor product, and ⊕T and ⊗T for the two tensored-
semiring operations. In this paper, we use + and · for the semiring operations, with
circles around them for the tensored-semiring versions: ⊕ and �. We use ⊗ for tensor
product, which is consistent with usual mathematical notation.

5 That is, an element of the algebra is a pair of pairs of states.

Algebraic Program Analysis 67

an element
〈(

s′
1

s2

)
,

(
s1
s′
2

)〉
of a state-pair relation as consisting of two pre/post

state pairs: a “backwards” pair s′
1

∗← s1 and a “forwards” pair s2 →∗ s′
2. In the

algebra of state-pair relations, 0 is interpreted as the empty relation, 1 as the
identity relation, and + as union. The remaining operators are given by:

R1 ⊗ R2 =
{〈(

s′
1

s2

)
,

(
s1
s′
2

)〉
: 〈s1, s′

1〉 ∈ R1, 〈s2, s′
2〉 ∈ R2

}

T� =
{

〈s, s′〉 : ∃s′′, s′′.
〈(

s′′

s′′′

)
,

(
s
s′

)〉
∈ T ∧ s′′ = s′′′

}
(8)

T1 � T2 =
{〈(

s1
s2

)
,

(
s′
1

s′
2

)〉
:
〈(

s1
s2

)
,

(
s′′
1

s′′
2

)〉
∈ T1 ∧

〈(
s′′
1

s′′
2

)
,

(
s′
1

s′
2

)〉
∈ T2

}

T� =
∞⋃

i=0

T � . . . � T︸ ︷︷ ︸
i times

Note that the tensored sequencing operation is just a form of relational compo-
sition (over tuples of stacked elements); similarly, tensored iteration is a form of
reflexive transitive closure. ⌟

Example 11 (Transition-formula interpretation). Transition formulas can be
used to interpret tensored regular expression in a way analogous to the rela-
tional interpretation (as one should expect, because there must be a soundness
relation between them!). A tensored transition formula T is a formula over four
vocabularies, representing the value of the variables before and after a pair of
computations. The tensor and detensor operations are essentially the same as
those from the relational interpretation, translated into logic:

(F1 ⊗ F2)
((

X ′
1

X2

)
,

(
X1

X ′
2

))
� F1(X1,X

′
1) ∧ F2(X2,X

′
2) (9)

T�(X,X ′) � ∃
(

Y1

Y2

)
.T

((
Y1

Y2

)
,

(
X
X ′

))
∧ Y1 = Y2

In the Eq. (9), the vocabularies X1, X ′
1, X2, and X ′

2 track the original role
of the respective vocabulary in F1 or F2. The “stacked” notation is intended
to be suggestive of an interpretation of a tensored transition formula over a
doubled vocabulary, where the variables are X ′

1 ∪ X2 and their “primed copies”
are X1 ∪ X ′

2. To make the connection with Sect. 2.1 more apparent, we shall
define W1 = X ′

1, W2 = X2, W ′
1 = X1, W ′

2 = X ′
2. With this notation, the

product operation can be defined as:

(T1�T2)

((
W1

W2

)
,

(
W1

W2

)′)
� ∃

(
W1

W2

)′′
.T1

((
W1

W2

)
,

(
W1

W2

)′′)
∧T2

((
W1

W2

)′′
,

(
W1

W2

)′)

As with the relational interpretation, the product operation is just a form of
relational composition (over tuples of stacked elements).

68 Z. Kincaid et al.

Remarkably, the algebra of tensored transition formulas is the same as the
algebra of untensored transition formulas, just over an extended set of variables.
In particular, the iteration operators from Sect. 3 can be used to implement �.
For instance, consider the recursive procedure

foo(): if (*) then a := a + 1; foo(); b := b + 1

The path to the recursive call of foo and the path from the recursive call to exit
can be modeled by the transition formulas F and G, respectively:

F � a′ = a + 1 ∧ b′ = b

G � b′ = b + 1 ∧ a′ = a

A procedure summary for foo can be calculated by evaluating ((F ⊗G)�)�, using
recurrence analysis (Example 5) to implement the � operator:

F ⊗ G � a1 = a′
1 − 1 ∧ b1 = b′

1 ∧ b′
2 = b2 + 1 ∧ a′

2 = a2

(F ⊗ G)� � ∃k.k ≥ 0 ∧ a1 = a′
1 − k ∧ b1 = b′

1 ∧ b′
2 = b2 + k ∧ a′

2 = a2

((F ⊗ G)�)� � ∃k.k ≥ 0 ∧ a′ = a + k ∧ b′ = b + k
⌟

We now show how to compute closed forms for linear equations. First, we
perform a regularizing transformation, which takes a system of linear equations
ELin and converts it into a system of left-linear equations ELeftLin. The trans-
formation takes each right-hand-side term of the form a · Y · b and converts it
to Z � (a ⊗ b), where Y and Z are variables whose values are elements of the
regular algebras A and T of a tensor-product algebra 〈A,T,⊗,�〉.
Definition 4. Given a linear equation system ELin over the regular algebra A
of a tensor-product algebra T = 〈A,T,⊗,�〉, the regularizing transforma-
tion τReg creates a left-linear equation system ELeftLin = τReg(ELin) over T by
transforming each equation of ELin as follows:

Yj = cj +
∑
i,k

(ai,j,k ·Yi · bi,j,k)

Zj = (1 ⊗ cj) ⊕
⊕
i,k

(Zi � (ai,j,k ⊗ bi,j,k))
τReg

where Zi and Zj are variables that take on values from T.

For instance, if the regularizing transformation is applied to the linear system
of equations in Fig. 6a, the result is the system of equations Fig. 6b. Because
Fig. 6b is left-linear, we can now use the approach from Sect. 2 and Sect. 3—that
is, create a closed-form solution for each variable Zi by finding a path expression
for the variable in the graph Fig. 6c. Finally, one gives a closed-form solution
for each variable Yi for the linear equation system in Fig. 6a by applying (−)�

to each path expression—see Fig. 6d. This algorithm for computing closed-form
solutions to linear equations is justified in the tensored-relational interpretation,
and more generally, in any interpretation whose algebra forms what we dub a
Kronecker algebra, defined as follows:

Algebraic Program Analysis 69

Fig. 6. (a) A linear system of equations; (b) its regularization; (c) the graph corre-
sponding to (b); (d) a closed-form solution for (a).

Definition 5. A Kronecker algebra Kr = 〈〈A,+, ·, ∗, 0, 1〉, 〈T,⊕,�,�, 0, 1〉,
⊗,�〉 is a tensor-product algebra that consists of two Kleene algebras
〈A,+, ·, ∗, 0, 1〉 and 〈T,⊕,�,�, 0, 1〉 such that (i) the natural order forms a com-
plete lattice (i.e., both algebras have all infinite sums), and (ii) the following
properties hold:

1. 0 ⊗ 0 = 0
2. 1 ⊗ 1 = 1
3. (a ⊗ b)� = a · b, for all a, b ∈ A
4. (a1 ⊗ b1) � (a2 ⊗ b2) = (a2 · a1) ⊗ (b1 · b2), for all a1, a2, b1, b2 ∈ A

5. (t1 ⊕ t2)� = t�1 + t�2 , for all t1, t2 ∈ T

We assume that all distributivity properties of A and T , as well as item 5, hold
for infinite sums. In particular, for item 5, we have

(⊕
i∈I

ti

)�

=
∑
i∈I

t�i (10)

4.3 Discussion

The Instantiation of the Recipe. Returning to the recipe from Sect. 3.3, what we
have done for a system of linear equations ELin is to instantiate the recipe as
follows:

1. (Modeling). The concrete semantics is the least solution of ELin interpreted
in relational semantics.

2. (Closed forms). Each variable of ELin is expressed as the detensor ((−)�) of
a tensored regular expression. Closed forms are computed from the closed-
forms of the left-linear system of equations τReg(ELin) that results from the
regularizing transformation (e.g., see Fig. 6).

70 Z. Kincaid et al.

3. (Interpretation). Tensored regular expressions can be interpreted as tensored
transition formulas (Example 11), which are simply transition formulas over
a “doubled” vocabulary.

Two Lessons. We would like to mention two lessons that we learned while work-
ing on this material over the years.

1. For the problems that arise in NPA, we must solve an equation system that
is truly linear, not left-linear or right-linear. A reasonable sanity check might
go as follows:

– Algebraic program analysis à la Sect. 2 solves a left-linear (or right-linear)
system of equations using methods based on regular expressions.

– NPA repeatedly creates a system of linear equations that needs to be
solved. Such linear equations are related to linear context-free languages,
such as the language {aibi}, which is not regular.

– Ergo, it is a non-starter to attempt to apply algebraic program analysis
to the equations that arise on each round of NPA.

However, as shown in this section, it was possible to side-step this fundamen-
tal mismatch, by extending algebraic program analysis to systems of linear
equations using Kronecker algebras, which have additional operations, such
as tensor product and detensor.
Thus, beyond the technical details, perhaps a more important takeaway is “be
careful how you apply sanity checks.” There is a risk that a plausible-sounding
sanity check could cause you to discard an idea that is worth pursuing.

2. In some sense, the solution using Kronecker algebras goes against the grain of
what computer scientists typically preach, namely, create appropriate abstrac-
tions (in the sense of abstract data-types) for a problem at hand, and then
program your solution, thinking of the chosen abstractions as the operations
of an abstract machine. This style of thinking is considered central to man-
aging complexity in computer science, and it is generally considered heresy
to break an abstraction.
For algebraic program analysis, the abstraction is regular algebra, used with
interpretations that are abstractions (in the sense of abstract interpretation
[22]) of a program’s concrete transition relations. However, the introduction
of tensor product and detensor breaks that abstraction! To understand what
we mean, consider the definition of F · G for transition relations in Boolean
programs, i.e.,

(F · G)(W,Z) � ∃X,Y.F (W,X) ∧ G(Y,Z) ∧ (X = Y),

and the definitions of F ⊗ G and T�,6 namely,

(F ⊗ G)(W,X, Y, Z) � F (W,X) ∧ G(Y,Z)
T (W,X, Y, Z)� � ∃X,Y.T (W,X, Y, Z) ∧ (X = Y)

6 Because we are trying to relate these operations to the untensored product operation
·, we do not make use of the stacked notation from Sect. 4.2.

Algebraic Program Analysis 71

The product operation F ·G has three distinct steps: (i) conjoin F (W,X) and
G(Y,Z); (ii) conjoin the equality X = Y ; and (iii) project out vocabularies X
and Y . In essence, tensor product and detensor break the abstraction of · as
an indivisible operation: · is decomposed into two more-granular operations,
⊗ and �. By performing F ⊗ G, we perform just the first step of ·, and only
later, when � is performed, do we “finish up” by applying the second and
third steps of ·. The advantage is that we can operate on tensored values for
some number of steps before “finishing” some earlier ·.
Again, beyond the technical details, the takeaway may be the process that we
went through, which may be of value as a conceptual tool in other contexts:

– The insight on how to break the abstraction—both as presented here
and as occurred during our research seven or eight years ago—came from
thinking about one specific interpretation of Kleene algebra: transition
relations for Boolean programs.

– The algebraic properties of the new, finer-granularity operations allowed
us to abstract out a new algebra, dubbed in this paper Kronecker algebra.

– The ideas could now be applied in other contexts by finding other inter-
pretations of Kronecker algebra (or, because we are interested in program
analysis, by finding interpretations that over-approximate Kronecker alge-
bra).

5 Termination Analysis

This section describes how algebraic program analysis can be applied to termi-
nation analysis, based on the approach of [63]. The goal of termination analysis
is to prove that a program has no infinite executions. Our high-level strategy is
to exploit compositionality: we prove that a loop terminates by first computing a
summary (e.g., a transition formula) for its body, and then finding a termination
argument for the summary.

Following Sect. 3, we first formalize a concrete semantics as the (greatest)
solution of a system of semantic equations. An appropriate notion of concrete
semantics for termination analysis is the set of non-terminating states of the
program (from which there exists an infinite execution)—the program terminates
exactly when none of the program’s initial states belong to this set. As in Sect. 3,
this system of equations can be derived syntactically from a program’s control
flow graph—see Fig. 7 for an example. The non-terminating states of the program
are the greatest solution to this system of equations over the algebra where the
universe is the set of states, � is interpreted as union (a state is non-terminating
if it has at least one infinite execution) and � is interpreted as preimage (a state
is non-terminating iff it can reach a non-terminating state).7

7 Despite the fact that this system of equations is right-linear, the method of Sect. 2
does not apply because the system of equations has two sorts instead of one; in
particular, � has type � : 2State×State×2State → 2State, and so is not a binary operation
on a set.

72 Z. Kincaid et al.

Fig. 7. A program represented by a control flow graph (a), abstract syntax tree (b),
and system of equations (c).

A suitable language of “closed-form solutions” for the system of equations
that arise in termination analysis is ω-regular expressions. The syntax of ω-
regular expressions over an alphabet Σ is as follows:

a ∈ Σ

R ∈ RegExp(Σ) :: = a | 0 | 1 | R1 + R2 | R1 · R2 | R∗

S ∈ ω-RegExp(Σ) :: = Rω | S1 � S2 | R � S

The semantics of a (ω)-regular expressions is given by an interpretation over an
ω-algebra and a regular algebra.

Definition 6. An ω-algebra over a regular algebra A is 4-tuple B =〈
B,�B ,�B ,ω

B
〉

consisting of a universe B, an operation �B : A × B → B, an

operation �B : B × B → B, and an operation (−)ωB

: A → B.

Example 12 (Standard interpretation). In the standard interpretation of ω-
regular expressions, the universe consists of sets of infinite sequences over the
alphabet Σ, and the operations are

W1 � W2 � W1 ∪ W2 Union

X � W � {xw : x ∈ X,w ∈ W} Concatenation

Xω � {x1x2 · · · : x1, x2, · · · ∈ X} Infinite repetition

Algebraic Program Analysis 73

For example, an ω-regular expression that recognizes all infinite paths in Fig. 7a
starting at r is:

Outer loop︷ ︸︸ ︷
(〈r, a〉 〈a, b〉 〈b, c〉 (〈c, d〉 〈d, e〉 〈e, c〉)∗ 〈c, r〉)ω

�
(
(〈r, a〉 〈a, b〉 〈b, c〉 (〈c, d〉 〈d, e〉 〈e, c〉)∗ 〈c, r〉)∗ 〈r, a〉 〈a, b〉 〈b, c〉) � (〈c, d〉 〈d, e〉 〈e, c〉)ω︸ ︷︷ ︸

Inner loop

⌟

Example 13 (Nonterminating state interpretation). The non-terminating state
algebra is an ω-algebra over the algebra of state relations. Its universe consists
of sets of states. The operators are

R � S � {x : ∃y. 〈x, y〉 ∈ R ∧ y ∈ S} Preimage

S1 � S2 � S1 ∪ S2 Union

Rω �
{

x0 ∈ State :
∃x1, x2, . . .
∀i. 〈xi, xi+1〉 ∈ R

}
Non-terminating states of R

⌟

Tarjan’s path expression algorithm can be adapted to compute an ω-regular
expression that recognizes the set of infinite paths in a graph beginning at a
particular node [63]. The equational view of this algorithm is that it computes
closed-form solutions to right-linear equations over Büchi algebras (e.g., the alge-
bra of non-terminating states).

Definition 7 (Büchi algebra). A Büchi algebra is an ω-algebra over a Kleene
algebra satisfying the following:

S1 � (S2 � S3) = (S1 � S2) � S3 Associativity
S1 � S2 = S2 � S1 Commutativity

S � S = S Idempotence
((R1 · R2) � S) = R1 � (R2 � S) Compatibility

((R1 + R2) � S) = (R1 � S) � (R2 � S) Right-distributivity
R � (S1 � S2) = (R � S1) � (R � S2) Left-distributivity

Rω = R � Rω Unfold
S1 � (R � S1) � S2 ⇒S1 � Rω � (R∗ � S2) Coinduction

where � is the order defined by a � b iff a � b = b.

Exercise 2. Show that in any Büchi algebra, the greatest solution to the equation
X = (a � X) � z exists and is equal to X = aω � (a∗ � z).

Summarizing: we have modeled a program’s non-terminating states as the
greatest solution to a system of semantic equations, devised a language of “closed
form solutions”, and identified an algorithm for computing closed form solutions
to the equations. It remains only to develop abstract interpretations of the lan-
guage of closed forms which implements termination analysis.

74 Z. Kincaid et al.

5.1 Non-terminating State-Formula Interpretations

Just as transition formulas (over variables X and X ′) can be used to represent
state relations, state formulas (over the variables X) can be used to represent
sets of (non-terminating) states. We can extend an algebra of transition formulas
to an algebra of non-terminating state formulas by defining

F � P � ∃X ′.F (X,X ′) ∧ P (X ′) Preimage

P1 � P2 � P1 ∨ P2 Union

Intuitively, the ω operator should compute the set of non-terminating states
of a transition formula. Analogously to the ∗ operator in Sect. 2, this set is
uncomputable, and we must be satisfied with an over-approximation (i.e., we
aim to compute a state formula that contains all non-terminating states—the
soundness relation of interest is the one defined by N � S ⇐⇒ ∀s ∈ N.s |= S).
There are many ways of doing this, so we speak of the family of non-terminating
state formula interpretations. In the remainder of this section, we give examples
of ω-operators.

Example 14 (Linear-lexicographic ranking functions [32]). Let F (X,X ′) be a
transition formula. A linear lexicographic ranking function (LLRF) for F is a
sequence of linear terms t1, . . . , tn over X such that for any states s and s′

such that s →F s′, each ti evaluates to a non-negative integer in s, and the
integer n-tuple decreases in lexicographic order going from s to s′. Since there
are no infinite strictly descending chains of non-negative n-tuples of integers
with respect to the lexicographic order, if F has an LLRF, then F has no non-
terminating states. For example, the inner loop of Fig. 7 has a 1-dimensional
LLRF 〈k〉, and the outer loop has a 2-dimensional LLRF 〈n − i, j〉.

The problem of determining whether a linear integer arithmetic formula has
an LLRF is decidable [32]. If a formula does not have an LLRF, then we can use
a coarse over-approximation of the non-terminating states of a formula (e.g., the
set of states that have at least one outgoing transition). This yields the following
interpretation of the ω operator:

Fω �
{

false if there is an LLRF for F

∃X ′.F (X,X ′) otherwise

For Fig. 7, using recurrence analysis to implement the ∗ operator (Example 5), we
get that every non-terminating state must satisfy false—the program terminates
from any initial state. ⌟

Example 15 (Unbounded trajectories [63]). Let F (X,X ′) be a transition formula.
A necessary (but not sufficient) condition for a state s to be a non-terminating
for a transition formula F is that there is a computation of F starting from s for
every possible length. This condition is undecidable, but it can be approximated
using an approximate transitive-closure operator such as the ones in Sect. 2.1.
Suppose that (−)∗ is an over-approximate transitive-closure operator. Letting k

Algebraic Program Analysis 75

and k′ be symbols that do not appear in F , we can create a transition formula
exp(F) in one parameter k′ such that for any k′, if there exists a sequence
s1 →F s2 →F · · · →F sk′ , then s1 →exp(F) sk′ :

exp(F) � (F ∧ k′ = k + 1)∗[k �→ 0]

The states s for which there exists a computation s →exp(F) s′ → s′′ for all
choices of the parameter k′ over-approximates the set of non-terminating states
of F :

Fω � ∀k′ ≥ 0.∃X ′,X ′′. exp(F) ∧ F (X ′,X ′′)

For example, if ∗ is instantiated to recurrence analysis (Example 5), then on
the transition formula

F � i �= n ∧ i′ = i + 2 ∧ n′ = n

(corresponding to the program while (i �= n) do i := i + 2), we have

Fω = i > n ∨ (n − i) mod 2 = 1 ⌟

Additional examples of termination analyses in the algebraic framework
appear in [63] and [62].

5.2 The Instantiation of the Recipe

The recipe from Sect. 3.3 is instantiated for termination analysis as follows:

1. (Modeling). The concrete semantics is the set of non-terminating states, which
is the greatest solution to a system of right-linear equations.

2. (Closed forms). The language of closed-forms is given by ω-regular expres-
sions; they can be computed by a variation of Tarjan’s algorithm [63].

3. (Interpretation). An ω-regular expression can be interpreted as a state formula
representing a set of possibly non-terminating states, while regular expressions
are interpreted as transition formulas (Sect. 2). The soundness relation is
over-approximate: we can prove that a program terminates by finding an
unsatisfiable pre-condition, but the analysis cannot prove non-termination.

6 Recap

This section contains a few remarks about commonalities among the three kinds
of problems and the techniques we have presented for applying algebraic program
analysis to them. The paper has been structured around the three-part recipe
for algebraic program analysis given in Sect. 3.3. Table 1 recaps how the recipe
has been instantiated for the three kinds of problems considered.

Within this paper, all methods for computing closed-form solutions can be
understood as some variation of Gaussian elimination, Algorithm 1 (in prac-
tice, they are variations of Tarjan’s path-expression algorithm). The essential

76 Z. Kincaid et al.

Table 1. Instantiations of the recipe for algebraic program analysis from Sect. 3.3.

Section 3.3 Section 4.3 Section 5.2

Analysis type Intraprocedural Linear interprocedural Termination

Modeling LFP of left-linear

equations

LFP of linear

equations

GFP of right-linear

equations

Closed-form solution A regular expression

(path expression over the

CFG)

Detensor of a tensored

path expression

An omega-regular

expression

Interpretation (concrete) A Kleene algebra

(Definition 1), e.g.,

transition relations

(Sect. 3.1)

A Kronecker algebra

(Definition 5), e.g.,

tensored transition

relations

(Example 10)

A Büchi algebra

(Definition 7), e.g.,

non-terminating

states (Example 13)

Interpretation (abstract) A regular algebra

(Sect. 2), e.g., a

transition-formula

interpretation (Sect. 2.1)

A tensor-product

algebra (Definition 3),

e.g., a tensored

transition-formula

interpretation

(Example 11)

An ω algebra

(Definition 6), e.g., a

non-terminating

state-formula

interpretation

(Sect. 5.1)

Table 2. “Loop-solving” steps.

Equation type Form of “loop” Closed form for X

Left-linear X = a + Xb � ab∗

Linear X = a +
∑m

i=1 biXci � ((1 ⊗ a) � (
⊕m

i=1 bi ⊗ ci)
�)�

Right-linear X = (b � X) � z � aω � (b∗
� z)

difference between Sect. 2, Sect. 4, and Sect. 5 is the “loop-solving” step. Each
requires the right-hand-side expression R to be in a particular form (left-linear,
linear, right-linear), and each requires a different language of expressions in which
to express closed forms (regular, tensored regular, ω-regular). Table 2 shows
the respective “loop-solving” steps for computing a closed form. Note that in
Table 2, the letters a, bi, ci, z range over expressions (which may involve vari-
ables other than X). For example, to apply the left-linear rule to the equation
X = Xp + Xq + Y r + Z, we first re-arrange terms on the right-hand side as
X(p + q) + (Y r + Z) and then compute the “closed-form” (Y r + Z)(p + q)∗.

7 Related Work

Abstracting States Versus State Changes. Classically, invariant generation is con-
ceived as the problem of over-approximating the reachable states of a program.
Computing invariants involves solving a system of equations of the form

X[r] = vr r ∈ Nodes, the root node
X[n] =

∑
em,n∈Edges

I �em,n�(X[m]) n ∈ Nodes − {r} (11)

for the unknowns X[n], n ∈ Nodes, where vr represents the set of initial states
and I �−� provides an interpretation of each CFG edge as a state transformer.

Algebraic Program Analysis 77

In a solution, X[n] holds a descriptor that represents a superset of the set of
program states that can arise at program point n. Note that in Eq. (11), the
function I �em,n� on edge em,n is applied to the value X[m] on node m.

Algebraic program analyses, in contrast, concern dynamics—state changes—
rather than states. The reason is that algebraic analyses are compositional: states
do not compose, but state changes do.

A first step towards abstracting state changes was taken by Graham & Weg-
man [33], who gave a method to solve dataflow equations via composition of the
state transformers on CFG edges. That is, their basic primitives were (i) com-
position of functions, and (ii) union of functions. If we adopt this outlook and
define r1 · r2 to be r2 ◦ r1, r1 + r2 to be the union of r1 and r2, and 1 to be the
identity function, instead of Eq. (11), the goal would be to solve the following
equation system:

X[r] = 1 r ∈ Nodes, the root node
X[n] =

∑
em,n∈Edges

X[m] · I �em,n� n ∈ Nodes − {r} (12)

where the unknowns X[n] are now function-valued. Note that the function
I �em,n� on edge em,n is composed with the value X[m] on node m. From here—
because one is working over function-valued quantities—it is now natural to for-
mulate interprocedural program-analysis problems by means of equations over
unknowns that denote procedure summaries, as was done by Cousot and Cousot
[23] and Sharir and Pnueli [56].

“Interpret, Then Solve” Versus “Solve, Then Interpret.” The systems in
Eqs. (11) and (12) are interpreted, in the sense that they are understood as
semantic equations valued over a particular abstract domain, say D. Such a
system E = {Xi = Ri}i∈I can be solved by an iterative method: compute a
sequence σ0, σ1, · · · ∈ {Xi}i∈I → D of assignments abstract domain values to
variables

σ0(Xi) � 0 for all i ∈ I

σn+1(Xi) � Iσn
�Ri� for all n ≥ 0 and all i ∈ I

Eventually this process converges—typically with the aid of widening to
extrapolate to the limit—upon an assignment that over-approximates the least
solution to E.

In algebraic program analysis, we think of a system of equations as an unin-
terpreted (syntactic) object. Equations are solved symbolically and then the
solutions are interpreted in an algebraic structure to obtain an analysis result.
The key step in this direction was made by Tarjan [59], who observed that
once a solution to the path-expression problem was in hand, multiple dataflow-
analysis problems could be solved merely by reinterpreting the alphabet symbols
and operators of regular expressions in different algebras—i.e., “solve and then
interpret.”

Whereas the iterative framework for program analysis has a “built-in” algo-
rithm for analyzing loops and recursive behavior (by computing the limit of a

78 Z. Kincaid et al.

sequence), the algebraic framework does not prescribe any particular method,
and it is up to the analysis designer to devise one. This obligation places an addi-
tional burden on the analysis designer, but also provides flexibility: the analysis
designer may analyze loops in ways that may (Example 6) or may not (Exam-
ples 5 and 4) resemble iterative fixpoint computation.

Iteration Operators and Loop Summarization. In the computer-aided-verification
community, there is a body of literature on loop summarization (or “loop leap-
ing”) and acceleration. Summarization aims to compute or approximate the
behavior of (certain) loops, while acceleration aims to approximate the postim-
age of a set of states under a loop. These techniques have been incorporated
into iterative abstract interpretation [28,31], abstraction-refinement-based soft-
ware model checking [19,37], termination analysis [7,20,60], and resource bound
analysis [10,64]. The most closely related techniques to algebraic program anal-
ysis are those that build summaries for whole programs in “bottom-up” fashion.
Such analyses have been formalized in various ways, including: recursion on the
abstract syntax tree (AST) of a program [51], AST rewriting [8], and graph
rewriting [47,60]. Algebraic program analysis provides a unifying foundation for
such analyses, in the same way that dataflow analysis [39] and (iterative) abstract
interpretation [22] provide a unifying foundation for iterative program analyses.

There are several methods for loop summarization, based on finite-monoid
affine transformations [11,12,29], difference-bound relations [15,21], octagonal
relations [13,14,45], integer vector addition systems [35], fragments of the theory
of arrays [2]. For the most part, these summarization methods are non-uniform
in the sense that their input language differs from their output language (e.g.,
[13] takes as input an octagonal relation and produces as output a Presburger
formula). This non-uniformity is the essential barrier that must be overcome to
use such techniques to implement the iteration operator of an algebraic program
analysis (e.g., we can define an iteration operator by using optimization modulo
theories [55] to extract the octagonal hull of a Presburger formula, then use [13]
to compute a Presburger formula representing its transitive closure).

Elimination-Based Dataflow Analysis. Elimination-based dataflow analysis is a
family of dataflow analyses that computes analysis results using methods that
resemble Gaussian elimination [3,33,36] (see [54] for a survey). Early methods
were specialized to reducible control flow graphs, but operated faster than general
Gaussian elimination. Tarjan’s algorithm [58] is an elimination method with
fast operation on reducible (and “nearly reducible”) control flow graphs, but is
applicable to arbitrary graphs.

Weighted Graphs. There is a vast literature on solving path problems on
weighted graphs where the weights are drawn from a semiring [1,30,50]. Path
problems can also be solved on semiring-weighted pushdown systems, which has
applications to interprocedural dataflow analysis [52]. This work focuses on iter-
ative techniques for solving path problems.

Algebraic Program Analysis 79

(Non-iterative) algorithms for path problems over algebraic structures with
an explicit iteration operator were considered by Aho et al. [1], Backhouse &
Carré [5], and Lehmann [48], and was implicit in previous work by Kleene [44],
and McNaughton & Yamada [49]. Tarjan connected this line of work with pro-
gram analysis [58,59].

8 Open Problems

We conclude with a list of challenges suggested by algebraic program analysis.

Scaling SMT-Based Algebraic Program Analysis. The bottom-up interpretation
step of a closed-form expression is efficient, in that it operates in linear time and
space in the size of the expression DAG in a model where each algebraic operation
has unit cost. For logic-based interpretations, however, algebraic operations do
not have unit cost: operators manipulate formulas, and the size of those formulas
may grow as operators are applied. For example, the regular expression a2n

can
be represented by an expression DAG with n+1 nodes, with the following shape:

. . . a

If the letter a is interpreted as the transition formula x′ = x + 1 and · as
relational composition, then the transition-formula interpretation of a2n

has size
O(2n). Scaling SMT-based algebraic program analysis to large programs requires
techniques for generating succinct summaries, and/or efficient reasoning about
compact formula representations involving λ-expressions.

Recursive Procedures. Section 4.2 shows how the algebraic approach can be
applied to summarize linearly recursive procedures. But to compute sum-
maries for generally recursive procedures, current-generation algebraic-program-
analysis tools fall back on another non-algebraic scheme (such as hybrid itera-
tive/algebraic, like Kleene or Newton iteration [40,53], or the template-based
approach of [16]). This raises the question: is there a practical algebraic method
for analyzing general recursion? The essential challenge is in devising a language
of “closed forms” that (1) can represent arbitrary context-free languages, and
(2) is amenable to an effective interpretation in logic.

Beyond Numerical Domains. To date, all algebraic program analyses have been
numerical in nature—they abstract away aspects of program behavior that can-
not be captured by integer variables. It remains to be seen whether the algebraic
approach can yield practical analyses for reasoning about features like strings,
arrays, and the heap. Reasoning about memory manipulation is particularly
challenging in a compositional setting, since we cannot rely on the context of
a program fragment to resolve aliasing relationships. One possible avenue is to
incorporate abductive reasoning to make educated guesses about the shape of
memory, as in [18].

80 Z. Kincaid et al.

Property Refutation. Algebraic program analysis is typically conceived as
a method for generating over-approximate summaries. The nature of over-
approximation is that the summaries can be used to verify that a program
does satisfy a property of interest, but not prove that it doesn’t. An interest-
ing direction for future work is to devise methods by which algebraic program
analyses can refute properties, perhaps based on bounded model checking [9],
under-approximate loop summarization [46], or symbolic execution [43].

Acknowledgments. Supported, in part, by a gift from Rajiv and Ritu Batra; by a
Facebook Research Award; by NSF under grant number 1942537, and by ONR under
grants N00014-17-1-2889 and N00014-19-1-2318. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of the authors, and
do not necessarily reflect the views of the sponsoring entities.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1974)

2. Alberti, F., Ghilardi, S., Sharygina, N.: Definability of accelerated relations in
a theory of arrays and its applications. In: Fontaine, P., Ringeissen, C., Schmidt,
R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 23–39. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40885-4 3

3. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Commun. ACM
19(3), 137 (1976)

4. Ancourt, C., Coelho, F., Irigoin, F.: A modular static analysis approach to affine
loop invariants detection. Electr. Notes Theor. Comp. Sci. 267(1), 3–16 (2010)

5. Backhouse, R., Carré, B.: Regular algebra applied to path-finding problems. J.
Inst. Math. Appl. 15, 161–186 (1975)

6. Backhouse, R.C., Carré, B.A.: Regular algebra applied to path-finding problems.
IMA J. Appl. Math. 15(2), 161–186 (1975)

7. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance anal-
yses from invariance analyses. In: POPL, pp. 211–224 (2007)

8. Biallas, S., Brauer, J., King, A., Kowalewski, S.: Loop leaping with closures. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 214–230. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 16

9. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

10. Blanc, R., Henzinger, T.A., Hottelier, T., Kovács, L.: ABC: algebraic bound com-
putation for loops. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS
(LNAI), vol. 6355, pp. 103–118. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17511-4 7

11. Boigelot, B.: On iterating linear transformations over recognizable sets of integers.
Theor. Comput. Sci. 309(1), 413–468 (2003)

12. Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58179-0 43

https://doi.org/10.1007/978-3-642-40885-4_3
https://doi.org/10.1007/978-3-642-33125-1_16
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-17511-4_7
https://doi.org/10.1007/978-3-642-17511-4_7
https://doi.org/10.1007/3-540-58179-0_43
https://doi.org/10.1007/3-540-58179-0_43

Algebraic Program Analysis 81

13. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00768-2 29

14. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 23

15. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
577–588. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006 49

16. Breck, J., Cyphert, J., Kincaid, Z., Reps, T.: Templates and recurrences: better
together. In: PLDI, pp. 688–702 (2020)

17. Brzozowski, J.A.: Regular-like expressions for some irregular languages. In: SWAT
(FOCS), pp. 278–286 (1968)

18. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 1–66 (2011)

19. Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating interpolation-based
model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 428–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78800-3 32

20. Chen, H., David, C., Kroening, D., Schrammel, P., Wachter, B.: Bit-precise
procedure-modular termination analysis. TOPLAS 40(1), 1:1-1:38 (2018)

21. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–
279. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028751

22. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

23. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: Neuhold, E. (ed.) Formal Descriptions of Programming Concepts,
(IFIP WG 2.2, St. Andrews, Canada, August 1977), pp. 237–277. North-Holland
(1978)

24. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

25. Cyphert, J., Breck, J., Kincaid, Z., Reps, T.W.: Refinement of path expressions
for static analysis. Proc. ACM Program. Lang. 3(POPL), 45:1–45:29 (2019)

26. Esparza, J., Kiefer, S., Luttenberger, M.: Newtonian program analysis. J. ACM
57, 6 (2010)

27. Farzan, A., Kincaid, Z.: Compositional recurrence analysis. In: FMCAD, pp. 57–64
(2015)

28. Feautrier, P., Gonnord, L.: Accelerated invariant generation for C programs with
aspic and c2fsm. Electr. Notes Theor. Comput. Sci. 267(2), 3–13 (2010)

29. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: applications to
broadcast protocols. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol.
2556, pp. 145–156. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36206-1 14

30. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algo-
rithms. ORCS, vol. 41, 1st edn. Springer, Boston (2008). https://doi.org/10.1007/
978-0-387-75450-5

31. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear rela-
tion analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006). https://doi.org/10.1007/11823230 10

https://doi.org/10.1007/978-3-642-00768-2_29
https://doi.org/10.1007/978-3-642-14295-6_23
https://doi.org/10.1007/11787006_49
https://doi.org/10.1007/978-3-540-78800-3_32
https://doi.org/10.1007/978-3-540-78800-3_32
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/978-0-387-75450-5
https://doi.org/10.1007/978-0-387-75450-5
https://doi.org/10.1007/11823230_10

82 Z. Kincaid et al.

32. Gonnord, L., Monniaux, D., Radanne, G.: Synthesis of ranking functions using
extremal counterexamples. SIGPLAN Not. 50(6), 608–618 (2015)

33. Graham, S.L., Wegman, M.N.: A fast and usually linear algorithm for global flow
analysis. J. ACM 23(1), 172–202 (1976)

34. Gruska, J.: Some classifications of context-free languages. Inf. Control 14(2), 152–
179 (1969)

35. Haase, C., Halfon, S.: Integer vector addition systems with states. In: Ouaknine,
J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 112–124. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11439-2 9

36. Hecht, M.S., Ullman, J.D.: Analysis of a simple algorithm for global data flow
problems. In: POPL, pp. 207–217 (1973)

37. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating inter-
polants. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 187–202.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6 16

38. Karr, M.: Affine relationship among variables of a program. Acta Inf. 6, 133–151
(1976)

39. Kildall, G.: A unified approach to global program optimization. In: POPL (1973)
40. Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.W.: Compositional recurrence

analysis revisited. In: PLDI, pp. 248–262 (2017)
41. Kincaid, Z., Breck, J., Cyphert, J., Reps, T.W.: Closed forms for numerical loops.

Proc. ACM Program. Lang. 3(POPL), 55:1–55:29 (2019)
42. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for invariant

synthesis. Proc. ACM Program. Lang. 2(POPL), 54:1–54:33 (2018)
43. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–

394 (1976)
44. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shannon,

C., McCarthy, J. (eds.) Automata Stud., pp. 3–40. Princeton University Press,
Princeton (1956)

45. Konečný, F.: PTIME computation of transitive closures of octagonal relations. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 645–661.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 42

46. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 381–396. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 26

47. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.:
Loop summarization using abstract transformers. In: Cha, S.S., Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 111–125.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88387-6 10

48. Lehmann, D.J.: Algebraic structures for transitive closure. Theoret. Comput. Sci.
4(1), 59–76 (1977)

49. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Trans. Electron. Comput. 9(1), 39–47 (1960)

50. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J.
Autom. Lang. Comb. 7(3), 321–350 (2002)

51. Monniaux, D.: Automatic modular abstractions for linear constraints. In: POPL,
pp. 140–151 (2009)

52. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. SCP 58(1–2), 206–263 (2005)

53. Reps, T., Turetsky, E., Prabhu, P.: Newtonian program analysis via tensor product.
TOPLAS 39(2), 9:1–9:72 (2017)

https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-642-33386-6_16
https://doi.org/10.1007/978-3-662-49674-9_42
https://doi.org/10.1007/978-3-642-39799-8_26
https://doi.org/10.1007/978-3-642-39799-8_26
https://doi.org/10.1007/978-3-540-88387-6_10

Algebraic Program Analysis 83

54. Ryder, B.G., Paull, M.C.: Elimination algorithms for data flow analysis. ACM
Comput. Surv. (CSUR) 18(3), 277–316 (1986)

55. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol.
7364, pp. 484–498. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31365-3 38

56. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications. Prentice-Hall (1981)

57. Szabó, Z.: Compositionality (2020). https://plato.stanford.edu/entries/
compositionality/

58. Tarjan, R.E.: Fast algorithms for solving path problems. J. ACM 28(3), 594–614
(1981)

59. Tarjan, R.E.: A unified approach to path problems. J. ACM 28(3), 577–593 (1981)
60. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop summariza-

tion and termination analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19835-9 9

61. Yntema, M.: Inclusion relations among families of context-free languages. Inf. Con-
trol 10, 572–597 (1967)

62. Zhu, S., Kincaid, Z.: Reflections on termination of linear loops. In: CAV (2021)
63. Zhu, S., Kincaid, Z.: Termination analysis without the tears. In: PLDI (2021)
64. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-

grams with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23702-7 22

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-31365-3_38
https://doi.org/10.1007/978-3-642-31365-3_38
https://plato.stanford.edu/entries/compositionality/
https://plato.stanford.edu/entries/compositionality/
https://doi.org/10.1007/978-3-642-19835-9_9
https://doi.org/10.1007/978-3-642-19835-9_9
https://doi.org/10.1007/978-3-642-23702-7_22
https://doi.org/10.1007/978-3-642-23702-7_22
http://creativecommons.org/licenses/by/4.0/

	Algebraic Program Analysis
	1 Introduction
	2 Regular Algebraic Program Analysis
	2.1 Transition-Formula Interpretations
	2.2 Weak Interpretations

	3 Semantic Foundations
	3.1 Semantic Equations
	3.2 Abstract Interpretation
	3.3 Discussion

	4 Interprocedural Analysis
	4.1 Motivation: Newtonian Program Analysis
	4.2 Algebraic Program Analysis for Linear Equations
	4.3 Discussion

	5 Termination Analysis
	5.1 Non-terminating State-Formula Interpretations
	5.2 The Instantiation of the Recipe

	6 Recap
	7 Related Work
	8 Open Problems
	References

