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Abstract. Program synthesis is now a reality, and we are approaching
the point where domain-specific synthesizers can now handle problems
of practical sizes. Moreover, some of these tools are finding adoption
in industry. However, for synthesis to become a mainstream technique
adopted at large by programmers as well as by end-users, we need to
design programmable synthesis frameworks that (i) are not tailored to
specific domains or languages, (ii) enable one to specify synthesis prob-
lems with a variety of qualitative and quantitative objectives in mind,
and (iii) come equipped with theoretical as well as practical guarantees.
We report on our work on designing such frameworks and on building
synthesis engines that can handle program-synthesis problems describ-
able in such frameworks, and describe open challenges and opportunities.

1 Introduction

1.1 A Synthesis Tale

Monica, a software engineer, is trying to write a program for transforming data
she has stored in an array of integer numbers. Monica needs to zero-out all the
negative entries from the array (they represent irrelevant data points) and add
10 to all the positive entries (this is a normalization step needed in Monica’s
API). Of course, Monica is a great engineer and she could write this program
herself, but since Monica knows that similar problems arise often in her company
(i.e., reformatting arrays to match certain APIs), Monica decides to try out this
new thing everyone is talking about: program synthesis.

Monica wants a tool that takes as input some examples of the desired
transformation and a set of operators the program can use, and magically
outputs the intended program. In fact, Monica already has an input, a
unit test, that she wants to process using her newly synthesized program:
[−1, 2, 3, 10, 31,−14,−11], for which the output should be [0, 12, 13, 20, 41, 0, 0].

Monica also knows that the final program will look like a loop that iterates
over the input array arr, which leads her to develop the grammar in Fig. 1.
Monica thinks this grammar is general enough that it will cover a reasonable
range of programs for similar tasks but limited enough that it will not result in
spurious programs that overfit too much to the examples.

Quickly, Monica discovers that using program synthesis is not so straight-
forward. There are so many different tools! And they all take different kinds of
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Fig. 1. The grammar Gex Monica has in mind for synthesizing programs that iterate
over an input array (Start is the starting nonterminal). Gex is general enough to cover
most programs that iteratively normalize entries in an array.

inputs. After a bit more research, Monica decides to go for one of the many
tools, UltraSynth™, and encodes her problem. UltraSynth is written in a C-like
language and Monica has mostly programmed in Python for her job. However,
Monica decides to give UltraSynth a try and after a few days of learning the
ins and outs of UltraSynth, she finally manages to encode her transformation-
synthesis problem in UltraSynth. To achieve her goal, Monica had to tweak a bit
what the grammar looks like to provide it to UltraSynth, which only accepted
grammars without unbounded recursion (i.e., without infinitely many terms)
and had to encode the examples in a way that was accepted by the tool.

The time has come and Monica manages to run UltraSynth on an instance
of the synthesis problem. UltraSynth outputs the program in Fig. 2b, which is
correct on the example. However, this program is needlessly large and contains
many unneeded operations.

Fig. 2. Two possible solutions for Monica’s synthesis problem.

Monica has already invested a lot of time in learning UltraSynth, so she
tries to figure out a way to avoid such problematic programs. Monica astutely
realizes that the needless computations in Line 3 of Fig. 2b are due to repeated
applications of the minus operator. Monica would like to ask UltraSynth to
synthesize the program that contains as few minus operators as possible, but
UltraSynth does not support a way to “prefer” one possible program over another.
To bypass this limitation, Monica decides to remove the production E → E - E
in order to suppress these programs.
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Monica reruns UltraSynth after removing E → E - E from the grammar,
and to her surprise, UltraSynth continues to run for hours and eventually times
out without providing a solution. After investigating the matter, Monica finds
out that she has made a mistake and disallowed too many programs—there is no
longer a valid solution to the synthesis problem because without subtraction, the
variable x cannot be decremented in line 5. UltraSynth was unable to report, or
even detect this simple mistake—Why is it so difficult to program a synthesizer
and why can’t synthesis tools detect the simplest of mistakes?

Monica has finally had enough of synthesis. She goes back to her daily rou-
tine and just writes the 7-line piece of code that applies the transformation she
intended (Fig. 2a).

1.2 Programmable Synthesis Frameworks

The story of Monica is a common one in program synthesis, where most of the
recent focus has been on solving problems rather than building general algo-
rithms, tools, and methodologies. Existing synthesis frameworks are not pro-
grammable as they lack at least one of the following properties:

Domain-Agnostic. Existing synthesis ideas and algorithms have been intro-
duced with specific domains in mind and are hard to apply to arbitrary
synthesis problems. The languages used to specify synthesis problems are
therefore domain-specific, and often fail to abstract the logical requirements
of the synthesis problem. In our example, Monica had to look for a specific
tool that accepted programs of the kind she was interested in. Moreover, she
was not permitted to refine the specification to add a quantitative objective
she had in mind (minimizing the number of minus operators).

Solver-Agnostic. Different synthesis tools are typically not interchangeable
because their underlying solvers solve different types of problems. Even when
two solvers can in principle solve the same types of problems, they typically
cannot be interchanged or combined because they typically use drastically
different formats written in different languages (e.g., Racket [28] vs. C [27]).
For example, when Monica found out that UltraSynth was not working as
expected, she could not easily try another tool to see if that tool was better.

This state of affairs is unfortunate because synthesis is very general; if synthe-
sis were easier to use, it would benefit many domains. The potential generality,
which is currently held back by the need for better support for usability, under-
scores the need to answer the following question:

Canwemake synthesismore programmable?

In this paper, we present the steps we have undertaken in the direction of making
synthesis more programmable, including some of the challenges that we faced,
and some of the opportunities that the work has opened.
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2 An Overview of Programmable Program Synthesis

The goal of enlarging the scope of synthesis has focused our attention on the
need to have a framework in which synthesis problems can be addressed. By a
framework, we mean the conceptual underpinnings that allow one to build tools
to automate the creation of solutions for problems in some domain, in this case,
program-synthesis problems. The canonical example is how the theory of parsing
underlies the yacc tool [13], which automates the construction of parsers. For
instance, consider the problem that yacc addresses:

– An instance of a parsing problem, Parse(L,s), has two parameters: L, a
context-free language; and s, a string to be parsed. String s changes more
frequently than language L.

– Context-free grammars are a formalism for specifying context-free lan-
guages.

– Create a tool that implements the following specification:
• Input: a context-free grammar that describes language L.
• Output: a parser, yyparse(), such that invoking yyparse() on s com-

putes Parse(L,s).

One consideration for building a framework is the existence of a well-defined
“engine” (or collection of engines) for performing the desired task—in this case,
parsing s with respect to L, once both L and s are at hand. Yacc supports
just a single engine, which parses a string with respect to a grammar that is
LALR(1). In principle, yacc could have been a more general tool by having it
perform various tests on L to determine what grammar family L belongs to (e.g.,
LALR(1), LR(1), LL(1), LL(*)), and then emitting a parser that makes use of
an appropriate parsing algorithm for that family, falling back on Generalized LR
parsing [19] in case L is not in one of the specialized families supported.

Another aspect illustrated by yacc is that the parameters to the problem
have different “binding times”. In this case, string s changes more frequently
than language L—i.e., L is bound early, and s is bound late. The framework
implementation can exploit the known value of the early-bound parameter to
create a more efficient implementation. In the case of yacc, it compiles L to
tables used by a table-driven LALR(1) parsing algorithm.

2.1 Why Isn’t Existing Work in Synthesis Programmable?

There do exist synthesis tools (mostly, solver-aided languages [27,28]) that allow
one to control some aspects of a synthesis problem in a programmable fashion.
However, the nature of existing synthesis tools also forces an association between
how a synthesis problem is written and how it is solved. For instance, in Sect. 1,
the fact that solvers are tightly coupled to some specification language prevented
Monica from trying out a different tool after UltraSynth produced an inadequate
answer. The current state of program-synthesis tools is depicted in Fig. 3.
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Fig. 3. Program synthesis today, where the lack of separation between specification
and solver causes a user to have to encode a problem multiple times to use different
tools.

This situation is in direct conflict with the principles articulated at the end
of Sect. 1, namely, that a user should be able to program the various aspects
of a synthesis problem using a formalism that is both (i) domain-agnostic and
(ii) solver-agnostic. The first property addresses generality: the formalism should
be powerful enough to capture a wide variety of synthesis problems (e.g., SQL,
regular expressions, and imperative programs). The second property opens the
door for synthesis-problem specifications to be fed—possibly after a compila-
tion/translation step—to different specialized solvers, or to multiple solvers with
different capabilities.

Another example that one may consider a programmable framework is
Syntax-Guided Synthesis (SyGuS) [1], which is a successful synthesis frame-
work targeted at expressions. The defining characteristic of SyGuS, compared
to other synthesis approaches such as solver-aided languages, is that it allows
one to write synthesis problems in a completely logical format.

Example 1. Consider the simple problem of synthesizing the maximum max
of two input variables, x and y. There are two parts to a SyGuS problem: a
syntactic part, written as a context free grammar such as the example GS below:

GS :: = Start → x | y | Start + Start | if x<y then Start else Start

and the specification part, which is written as a Boolean formula ψS :

ψS ≡ ∀x, y.max(x, y) ≥ x ∧ max(x, y) ≥ y ∧ (max(x, y) = x ∨ max(x, y) = y)

A SyGuS problem is simply the pair sy = (GS , ψS), where a solution to the
SyGuS problem sy is a term t ∈ L(G) such that ψS holds. For example, the fol-
lowing term is a solution for the function max in the problem we just described:

if x < y then y else x.
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The advantage of such a logic-based formalism is that it achieves a separa-
tion from solver and specification, which allows SyGuS to be solver-agnostic.
Several different SyGuS solvers have been developed (e.g., [4,7,21,26]), many of
which use drastically different internal algorithms that have different strengths
for solving different kinds of problems. Moreover, a user of SyGuS need not con-
sider the differing input languages or characteristics of these solvers, and instead
can encode their problem just once in the SyGuS format to have access to all
the different solvers.

While SyGuS achieves—and shows the benefits of—solver-agnosticity, it fails
to achieve domain-agnosticity because the framework is targeted specifically at
expressions. For example, consider the scenario from Sect. 1: Monica would be
unable to encode her problem in SyGuS, because the grammar Gex in Fig. 1
contains a production with a while loop, and loops, which require a custom
semantics, cannot be expressed in any decidable theory—a key restriction of
SyGuS. SyGuS also does not allow one to express intent outside of the behav-
ioral specification ψ, which would have prevented Monica from trying to optimize
the program obtained from UltraSynth in Fig. 2b.

All in all, the current state of program synthesis is an unsatisfactory mess,
as depicted in Fig. 3. There are multiple non-interoperable solvers with different
input languages, targeting different synthesis domains with varying degrees of
overlap. SyGuS, by virtue of solver-agnosticity, provides a unified approach to
synthesizing expressions, which forms the basis of multiple solvers. However,
while SyGuS is a bright spot, it fails to be general: it does not cope with (1) the
variety of domains used in synthesis, required to deal with arbitrary languages
(e.g., SQL, regular expressions, and imperative programs), and (2) the variety of
collateral considerations that arise for different domains (e.g., types, quantitative
objectives, and probabilities).

2.2 What Does a Programmable Synthesis Framework Look Like?

Our vision of programmable synthesis can be summed up as follows:

programmable synthesis
==

easily instantiable, domain-agnostic, solver-agnostic synthesis framework.

In contrast with Fig. 3, what we would like to have is depicted in Fig. 4, where
both user and solver work with a unified general format, regardless of domain
or solving technique. Such an approach would allow one to specify a synthesis
problem once and for all, without having to worry about the underlying solving
strategy. To achieve this goal, it is necessary to distill out the essence of
many program-synthesis problems into a specification formalism that is ground
in formal methods (e.g., automata and logic) and is agnostic to any specific
domain of application. This degree of abstraction also opens the opportunity
to lift certain synthesis algorithms and ideas to a higher level that makes these
algorithms reusable across different tools. Our framework can then interface to
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Fig. 4. Programmable program synthesis, where a synthesis problem with arbitrary
constraints can be written once and for all in a general format, which can then be
dispatched to compatible solvers.

different solving tools (backend solvers) in a way that allows one to easily swap
one solver for another, or to use multiple solvers in tandem. If our vision is
achieved, the capabilities that would be available to tool designers—discussed
in greater detail in Sect. 5—would allow synthesis tools to be created that have
the kind of flexibility that Monica expected and needed in Sect. 1.1.

Let us now be more concrete about the requirements for such a framework for
synthesis. Following the pattern for yacc given above, a framework for synthesis
could follow a similar scheme:

– An instance of a synthesis problem Synthesize(L, �·�L, ϕ) has three param-
eters: L, a formal language; �·�L, a semantics to ascribe to L; and ϕ, a
behavioral specification for some desired member of L. The behavioral spec-
ification ϕ changes more frequently than L and �·�L.

– Let Fsyntax and Fsemantics be appropriate formalisms for specifying L and
�·�L, respectively.

– Create a tool that implements the following specification:
• Input: an Fsyntax specification of a language’s syntax, and an Fsemantics

specification of the language’s semantics.
• Output: a function SynthL,�·�L(·) that takes ϕ as input and computes

Synthesize(L, �·�L, ϕ).

To be even more concrete, Fsyntax could be a regular-tree grammar [5],1
and Fsemantics would be defined over the grammar in a compositional man-
ner, production by production. What we have called collateral considerations
(types, quantitative objectives, probabilities, etc.) would be handled as part
of the Fsyntax or Fsemantics specifications, depending on the issue at hand. For
instance, constraints on program behavior, such as refinement types [24], mini-
mizing/bounding evaluation resources usage [11,15], and probabilistic behavior

1 The grammar would also be equipped with production-by-production pretty-printing
rules to specify how to convert a tree to its textual representation.
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[22], are semantic concerns that would be part of Fsemantics. Other considerations
would be part of Fsyntax, such as bounds on the use of syntactic constructs [12],
or the use of probabilistic generative models of syntactic structures [3,17]. For
instance, for these two issues, one could weight the productions of the grammar
with values from a semiring, and place a (possibly learned) distribution on the
productions, respectively.

The scheme in the box above would allow us to meet the goals of being
both domain-agnostic and solver-agnostic,2 as long as (i) the formalisms for
Fsyntax and Fsemantics are sufficiently powerful to qualify as “domain-agnostic,”
and (ii) specifications in these formalisms can be analyzed and broken down
into components that can be farmed out to existing solvers (or perhaps to new
implementations of the kinds of algorithms used in existing solvers).

Who benefits from such a framework? The existence of a domain- and solver-
agnostic framework benefits two parties: (i) users of synthesis tools such as
Monica, and (ii) designers of synthesis tools, such as the team behind Ultra-
Synth. Both scenarios can be illustrated by making an analogy with LLVM [20]—
which provides an intermediate representation for compilation that is similarly
both domain- and solver-agnostic. Users of LLVM, which are front-end language
designers, benefit from two facts: (i) that the LLVM IR is rich enough to support
the range of features their language might have, and (ii) that once their language
is compiled down into LLVM IR, the entire library of LLVM IR optimizations is
accessible to them. Similarly, a programmable synthesis framework benefits users
in two ways: (i) by supporting the full range of features that may be required
for a synthesis problem, and (ii) by putting multiple solvers within reach for
problems written in the framework. Additionally, a well-defined framework also
facilitates reuse of problem components: for example, Monica can reuse Gex for
synthesizing other array transformations.

On the other hand, backend optimization designers of LLVM benefit from
the fact that once their optimization is written in LLVM, all LLVM users may
easily access those optimizations if need be. Similarly, tool designers for a pro-
grammable synthesis framework rest easy knowing that once their tool sup-
ports the framework, those who need it will find it accessible and easy to use—
regardless of what internal techniques they decide to use. Note that while the
framework intends to be general, tools that interface with the framework can
choose to be selective in the problems they support—it is up to the users, or
perhaps the framework designers, to match a problem with an appropriate solver
(similar to how language designers mix and match backend optimizations for
their language in LLVM). In addition, advances at the framework-level—such as
2 We also acknowledge that even the scheme given above, which was modeled on the

one for yacc, is open to revision. In particular, the additional degree of parameter-
ization for synthesis (L, �·�L, and ϕ) opens the door for a variety of alternatives,
based on different “binding times” for L, �·�L, and ϕ. For instance, a solver that uses
different abstract domains as part of a refinement-based search strategy [29] would
have L and ϕ fixed, but vary �·�L. Similarly, when one has quantitative syntactic
objectives [12], the solver would carry out its search with ϕ fixed, L varying, and
�·�L induced as L changes.
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the development of meta-algorithms, as illustrated in Sect. 4.2—instantly benefit
all tools that support the framework.

This Paper. New technical challenges, as well as new opportunities, come along
with our broader goals. In this paper, we present some of the work that we have
done toward building the kind of framework sketched out above.

Specifying Programmable Synthesis Problems (Sect. 3). Semantics-
guided synthesis (SemGuS) is our proposed framework that allows a user
to provide both the syntax and semantics for the constructs in the language
over which programs are to be synthesized. We show how SemGuS can easily
be extended with quantitative objectives for specifying when a synthesized
program is “good” according to a certain metric—e.g., the program should be
of minimal size or should maximize a certain outcome.

Solving Programmable Synthesis Problems (Sect. 4). We present solvers
that can tackle problems specified in the SemGuS framework. We also present
a meta-solver that can be combined with other SemGuS solvers to sup-
port quantitative objectives. Because our framework does not impose solver-
specific restrictions on how synthesis problems are programmed, our solvers
can prove unrealizability—i.e., whether a synthesis problem has no solution—
of many complex synthesis problems with infinite search spaces.

These steps are just the beginning of what we expect to be a multi-year jour-
ney into designing a framework that achieves our goals, and solvers for such a
framework. We discuss some of the open challenges and opportunities in Sect. 5.

3 Programmable-Synthesis Specifications

Designing synthesis frameworks that are programmable requires one to formally
abstract the essence of how one specifies different program-synthesis problems.
While we do not claim to have developed a completely unified framework that
can capture all synthesis problems yet, in this section we present two ideas for
programming many practical synthesis problems: (i) SemGuS, a framework that
uses logic and formal methods to make the search space and specifications of all
synthesis problems easy to program in arbitrary domains (Sect. 3.1), and (ii) an
extension of SemGuS that allows one to specify quantitative objectives over the
syntactic structure of a synthesized program (Sect. 3.2).

3.1 Semantics-Guided Synthesis

Existing work on program synthesis [1] typically identifies two main components
to a synthesis problem: (i) a search space of candidate programs, which is in
essence a small programming language, and (ii) a behavioral specification, which
describes what the synthesized program should do. A programmable synthesis
framework must represent (at the very least) these two components in a domain-
and solver-agnostic way. Take the syntax-guided synthesis (SyGuS) framework,
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for example: SyGuS achieves solver-agnosticity by representing the search space
as a regular tree grammar, and the specification as a Boolean formula in a
decidable background theory.

Then why is SyGuS, and this particular combination of representations,
unable to achieve domain-agnosticity? The syntactic component of SyGuS—
the grammar—actually does achieve some degree of domain-agnosticity, in the
sense that one is free to define a language of one’s own. However, SyGuS requires
that the specified grammar be contained within a fixed background theory, which
are terms with a pre-defined fixed and standardized semantics. While this design
choice makes the solutions to SyGuS problems easy to verify (using an SMT
solver), it limits the programmability of the search space.

For example, let us reconsider the example in Sect. 1. If Monica attempted
to write her example as a SyGuS problem, she would have been unable to use
loops because loops are not part of the supported background theory. What if
Monica wanted a solution that operates over a DSL, or had some pre-defined
components that she wanted to use (like len(arr))? What if Monica wanted
to synthesize regular expressions, or some other programs with relatively non-
standard semantics?

One can intuitively understand these scenarios as synthesis problems over dif-
ferent programming languages (search spaces)—a DSL, library functions, regular
expressions. To support different programming languages, a synthesis framework
needs more than the ability to accept a syntax, it needs the ability to accept
a semantics for a language as well. Therefore, developing a programmable syn-
thesis framework capable of supporting all these scenarios requires designing
a solver-agnostic way of specifying the semantics of such arbitrary program-
ming languages. SyGuS has shown that regular tree grammars are an effective
formalism for programming the syntax of a search space; we extend this with a
formalism to program the semantics of the search space as well, which, to achieve
true domain-agnosticity, need not be constrained to a fixed background theory.

Semantics as Constrained Horn Clauses. Our solution to this challenge is the
Semantics-Guided Synthesis (SemGuS) framework [14], which allows users to
customize the syntax and semantics of the search space. To see how Sem-
GuS supports programmable semantics, let us consider the production Start →
while x>=0 do S from Fig. 1 as an example. This production is a while loop, and
part of the semantics for a term produced by this production can be expressed
using the inference rule below3 (where Γ represents a state that maps variables
to integer values):

�x>=0�(Γ ) = True �s�(Γ ) = Γ1 �while x>=0 do s�(Γ1) = Γ2

�while x>=0 do s�(Γ ) = Γ2 (1)

Such semantics are supported in the SemGuS framework by expressing the
inference rule in Eq. (1) as a Constrained Horn Clause (CHC). CHCs are logical
formulas, and more precisely, they are implications where one is only allowed
3 A similar rule must be added for the case in which the guard evaluates to false.
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to have a single relation in the conclusion, and a conjunction of relations along
with one constraint in the premise:

Definition 1 (Constrained Horn Clauses.). A Constrained Horn Clause is
a first-order formula of the form

∀−→x ,−→x1, . . . ,
−→xn.(φ ∧ R1(−→x1) ∧ · · · ∧ Rn(−→xn) =⇒ H(−→x )),

where φ is a constraint over some background theory that may contain variables
from −→x ,−→x1, . . . ,

−→xn, and R1, . . . , Rn and H are uninterpreted relations.

In SemGuS, search spaces are represented as regular tree grammars, where
productions have associated semantics. In Eq. (1), the semantics of a term x>=0
is represented using the semantic function �·�. SemGuS, assumes that each non-
terminal N appearing in the grammar has a corresponding logical relation semN ,
which we refer to as the semantic relation, that represents the behavior of the
semantic function �·� in Eq. (1). For example, the expression �s�(Γ ) = Γ1 from
Eq. (1) can be translated into the relation semS(〈s, Γ 〉, Γ1).

Example 2 (Semantic Rules as CHCs). The following CHC captures how
one would express in SemGuS the semantics of the production Start →
while x>=0 do S shown in Eq. (1):

Γ [x] ≥ 0 semS(〈s, Γ 〉, Γ1) semStart(〈while x>=0 do s, Γ1〉, Γ2)
semStart(〈while x>=0 do s, Γ 〉, Γ2) (2)

One can read Eq. (2) as the following implication:

semS(〈s, Γ 〉, Γ1)∧semStart(〈while x>=0 do s, Γ1〉, Γ2) ∧ Γ [x] ≥ 0 =⇒
semStart(〈while x>=0 do s, Γ 〉, Γ2)

(3)

Equation (3) is a CHC where semStart and semS are relations, and Γ [x] ≥ 0
corresponds to the first-order constraint φ.

SemGuS allows one to specify multiple such CHCs4 for each production in the
grammar. CHCs are the logical formalism of choice for expressing these semantics
in a language-agnostic way, which are an intuitive and expressive format.
The SemGuS Framework. Once a user has understood how to define a seman-
tics for their grammar, a SemGuS problem then can be specified simply as a
synthesis problem over a grammar equipped with such a semantics.

Definition 2 (SemGuS). A SemGuS problem over a theory T is a tuple
sem = (G�·�, ψ(x, f(x))), where:

– G is a regular tree grammar equipped with the semantics �·�,
4 The ability to define multiple semantic rules for a production is useful for productions

such as while loops, which are commonly equipped with two rules that describe
looping and loop termination.
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– ψ(x, f(x)) is a Boolean formula over the theory T , that serves as the behav-
ioral specification,

– f is a free second-order variable that serves as the function to be synthesized.

A solution to the SemGuS problem sem is a term s ∈ L(G�·�) such that
ψ(x, �s�(x)) holds.

Example 3 (Monica’s Synthesis Problem in SemGuS). Consider the synthe-
sis problem Monica had in Sect. 1. Let Gex�·� be the grammar Gex from
Fig. 1, equipped with semantic rules such as the one defined in Eq. (2). Let
E = {[−1, 2, 3, 10, 31,−14,−11]}, the input array Monica considered for her task.
Let ψ(arr, f(arr)) be a formula over the theory of arrays and CLIA describing
what it means for the program f to be correct on an input arr:

ψ(arr, f(arr)) ≡
∧

0≤i<len(arr)

f(arr)[i] = ITE (arr[i] > 0, arr[i] + 10, 0).

Then semex = (Gex�·�,
∧

arr∈E ψ(arr, f(arr))) is a SemGuS problem defined
over a background theory of arrays and CLIA—the behavioral specification
requires that the final program satisfies all the examples in E.5 Moreover, semex

is written in a completely logical format, and is thus not tied to a specific tool
like UltraSynth and can be dispatched to multiple backend solvers (assuming
tooling) as Monica pleases.

The ability to customize the semantics for a language in a framework allows
that framework to support a plethora of different synthesis problems. One can
define synthesis problems over regular expressions, domain-specific languages,
imperative languages, or any other language that has a semantics definable as
CHCs within the framework, all of which can be tested using different solvers
utilizing different strategies.

Example 4 (Regular Expressions Synthesis in SemGuS). Synthesis problems
over regular expressions can be expressed succinctly in SemGuS. The gram-
mar of regular expressions can be captured with the following grammar, where
c is a character and φ the empty set:

R → c | ε | φ | R + R | R · R | R∗

Using CHCs, one can also naturally express the semantics of terms r ∈ L(R). For
example, the semantics of Kleene star can be given as the following two CHCs:

semR(r∗, ε)
semR(r, s1) semR(r∗, s2) s = s1s2

semR(r∗, s)
5 In this example, one could have used a formula simply describing the input/output

examples instead of a more complex logical formula. We chose the latter option to
illustrate how the behavioral specification can involve terms in interesting theories—
e.g., CLIA and arrays.
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The rules are based on the expansion r∗ → ε + r · r∗: the first rule lets r∗

accept ε, and the second rule accepts a string s by finding two substrings s1, s2,
such that s1 is accepted by r, s2 is accepted by r∗, and the concatenation s1 · s2
is equal to s. The specification of the problem can then use expressions of the
form semR(r, s) and ¬semR(r, s) to denote whether an example s is positive or
negative, respectively.

3.2 Adding Quantitative Syntactic Objectives

In the example discussed in Sect. 1.1, the original synthesis problem Monica
posed to the solver was under-constrained and caused the underlying tool to
synthesize an undesirable solution that contained unnecessary operations. While
the logical-specification mechanism is powerful, it can only capture the func-
tional requirements of the synthesis problem—e.g., the program should perform
correctly on a given set of input/output examples. When multiple possible pro-
grams can satisfy the specification, a programmable synthesis framework should
provide a way to prefer one to the other—i.e., the user of the framework should
be able to describe a quantitative objective. In this section, we show how the
formal foundations of SemGuS (i.e., the use of grammars and logic) allow us to
easily extend the framework to incorporate quantitative objectives over the syn-
tax of the synthesized program. The ideas we present were originally described
in the context of SyGuS [12]; here we show how they can also be applied to
SemGuS.

Adding Quantitative Objectives Using Weighted Grammars. Recall that a Sem-
GuS problem is given along with a regular tree grammar specifying the search
space. In our running example, Monica would like to synthesize a program that
has few occurrences of the minus operator. A natural way to express this intent
is allowing Monica to tag productions involving such an operator with a cost,
let’s say 1. Our quantitative extension of SemGuS builds on this intuition and
allows users to add weights/costs to productions in the grammar. This extension
leads to a well-studied formalism, weighted tree grammars, keeping the SemGuS
framework general. Intuitively, a weighted tree grammar is a grammar in which
each production p has an associated weight/cost μ(p).

Intuitively, the weight of a derivation tree is the sum of the weights of all
productions.6 For simplicity, in this paper, we assume that the domain of weights
is the natural numbers, and that their sum is the usual application of the +-
operator. We use wG(t) to denote the weight of a term t with respect to the
weighted grammar G.

With the weights specified by the weighted grammars, users can specify quan-
titative objectives as constraint objectives and optimization objectives. A con-
straint objective is a predicate ω(v) over a numerical variable v; we say that
6 Weights have to come equipped with operators that tell us how to combine weights

of individual productions to obtain the weights of terms. Formally, the weights must
be from a semiring; we refer the reader to the original work on this topic [12] for
details.
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a term t satisfies the constraint objective if ω(wG(t)) holds. An optimization
objective is a flag opt ∈ {True, False} indicating whether we want to minimize
the weight of the solution.

Example 5. Recall that in the example introduced in Sect. 1, Monica wants to
avoid redundant occurrences of the minus ( - ) operator. To express this intent
in SemGuS, Monica can utilize the following weighted grammar.

Start → x = len(arr) - 1; while x>=0 do S
S → arr[E] = arr[E]+ E | arr[E] = E |

x = E | S; S | if arr[x]>0 then S else S
E → 0 | 1 | x | E + E | E - E/1

In the weighted grammar, only the rule E → E - E is assigned the weight 1. All
other rules are assigned the weight 0 (omitted for readability). The weight of a
term t with respect to this grammar is the number of occurrence of the minus
operator in t. If Monica wants to restrict the number of occurrences of the minus
operators to be less than 5, she can use the constraint objective ω(v) = v < 5.
Furthermore, if she want to minimize the occurrences of the minus operator, she
can set the flag opt to True.

To summarize, a SemGuS problem with quantitative syntactic objectives is a
tuple sem = (W�·�, ψ(x, f(x)), ω,opt) where W�·� is a weighted grammar with a
corresponding semantics, ψ is a Boolean formula like before, ω is the constraint
objective, and the flag opt is the optimization objective. The goal is to find
a solution that not only satisfies the specification ψ, but also the quantitative
objective ω, and is of minimal cost if opt is set to True.

Quantitative syntactic objectives are useful in applications such as program-
ming by examples [10] and program repair [6], where it is desirable to produce
small programs with fewer constants, because such programs are more likely to
generalize to examples and test cases outside of the set of examples given by the
user. When allowing real-valued weights, syntactic objectives can be also used
to find the most likely solution with respect to a given probability distribution.
We can assign productions weights that represent their probabilities; the weight
of a candidate solution is its likelihood.

4 Programmable-Synthesis Solvers

While a programmable synthesis framework as discussed in Sect. 3 is certainly
desirable, it is of little practical use if one is unable to solve the problems that are
written in such a framework. In this section, we show that SemGuS problems
can be solved practically. We first describe two general solving techniques for
SemGuS (Sect. 4.1) and then present new algorithmic solving techniques enabled
by the SemGuS framework (Sect. 4.2).
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4.1 General Solving Procedures for SemGuS Problems

We start off by presenting two solving procedures for general SemGuS prob-
lems we implemented as a tool, rooted in strategies commonly used in existing
program synthesizers: enumeration (used in the tool MESSY-Enum) and con-
straint solving (used in the tool MESSY). Specifically, we will be considering
SemGuS-with-examples problems: SemGuS problems where the specification is
given in terms of a finite set of examples E. An algorithm for solving SemGuS-
with-examples problems can be combined with counterexample-guided inductive
synthesis (CEGIS) [27], which generates counterexamples in case a synthesized
answer does not meet the general specification, to iteratively increase the exam-
ple set E and eventually obtain a correct program.

MESSY-Enum: A Basic Enumerator for SemGuS Problems. Because
SemGuS also relies on a grammar to specify the syntax of valid terms, like
SyGuS, one can employ a simple enumerator that generates terms of increasing
size from the grammar and test the enumerated terms against the behavioral
specification. With SemGuS, a term (representing a program) cannot be exe-
cuted directly, because the semantics to ascribe to it has been specified in the
semantic specification. However, because the semantics is specified with CHCs,
the term can be executed with a level of interpretation supplied by an off-the-
shelf CHC solver. Therefore, MESSY-Enum employs an off-the-shelf CHC solver
such as [18] to check if the CHCs are consistent with the specification.7

Concretely, given a term te to test, one can use the following CHC to check
whether te meets the specification:

∧
ei∈E semStart(〈ei, te〉, oi)

Realizable
Query

(4)

The Query rule in Eq. (4) exactly encodes the specification as a CHC: it asks
whether the semantics of te computed by semStart is consistent with the set of
input-output examples E. If so, the conclusion Realizable is provable using the
existing set of CHCs—i.e., te is a solution to the synthesis problem.

Because we cannot directly execute candidate terms and instead rely on CHC
solvers (which may be treated as a blackbox), it is difficult to employ common
enumeration optimizations, such as behavioral equivalence caching, or equality
saturation. Developing an enumeration-based solver capable of utilizing these
ideas would require generating an explicit and efficiently executable interpreter
from the given semantics, which is an interesting research challenge and future
direction that we discuss in Sect. 5.

7 One can treat CHC solving as akin to a proof search, where the objective is to prove
that a specific query holds (in this case, Realizable from Eq. (4)) using the provided
CHCs.



Programmable Program Synthesis 99

MESSY: SemGuS Problem Solving as CHC-Solving. MESSY-Enum uses
a CHC solver to check whether an enumerated term te is consistent with the spec-
ification or not—however, CHC solvers are also capable of automatically search-
ing for terms that satisfy the specification, as well. Our next solver, MESSY,
takes advantage of this fact by expressing both the syntax of the search space
and the semantics using CHCs. Once the entire search space is modeled this way,
one can then slightly modify the Query rule to accommodate this change and
directly use a CHC solver to solve the entire SemGuS problem. In essence, Messy
reduces solving the SemGuS problem into finding a configuration of variables
for which the set of CHC rules (containing syntax, semantics, and specification)
is valid—similar to how constraint-based methods in existing synthesizers reduce
the synthesis problem to one of solving a set of constraints.

Example 6 (MESSY Encoding). We show how the syntax and semantics used
in the production Start → while x>=0 do S from Fig. 1 can be captured using
CHCs. This production states that one can obtain a syntactically valid term
while x>=0 do s ∈ L(Start) for the nonterminal Start, given a valid term s ∈
L(S). Equation (5) encodes this idea as a CHC using the syntax relations synS ,
and synStart, which capture whether the supplied arguments are valid terms that
may be derived from the corresponding nonterminals S , and Start .

synS(s)

synStart(while x>=0 do s) (5)

Because the syntax relations provide a way to guarantee that a term t is a
valid term in the syntax of a SemGuS problem, one can rewrite the Query rule
from Eq. (4) to use this relation instead of an explicitly enumerated term te.

synStart(t)
∧

ei∈E semStart(〈ei, t〉, oi)

Realizable
Query

(6)

The new Query rule in Eq. (6) has the term t as a free variable—i.e., proving
Realizable amounts to finding a term t ∈ L(Start) that is consistent on the
input-output examples. A CHC solver presented with this rule, in tandem with
the syntax and semantic rules, will then attempt to find a configuration of t such
that Realizable holds. If the solver can prove that the premises of Equation Eq.
(4) hold, then the term t is a solution to the SemGuS problem.

One of the advantages of using such a CHC-based method is when dealing
with cases where there is no answer to the synthesis problem, i.e., when there
exists no t such that Realizable holds. In this case, the SemGuS problem con-
tains no answer satisfying the specification within its search space; we say that
such a problem is unrealizable. Proving unrealizability is something that many
existing solvers fail to consider, but is important: for example, Monica would
not have had to wait for several hours after modifying the grammar in Sect. 1 if
her solver had been able to show that the problem was unrealizable.
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4.2 Meta Algorithms for Solving SemGuS Problems

Now that we have shown how to build solvers for general SemGuS problems
(that do not involve quantitative objectives), we turn to ‘meta’-algorithms for
solving SemGuS problems, which are ‘meta’ in the sense that they (i) may be
used atop any general SemGuS solver, (ii) generate modified SemGuS problems
(rather than solutions) that can be easier to solve than the original SemGuS
problem or can be used to solve SemGuS problems with quantitative objectives.
The key component behind these meta-algorithms is the customizability of the
search-space description in SemGuS.

A Meta Solver for Quantitative Objectives. We first present an algorithm
for solving SemGuS problems with quantitative objectives [12]—i.e., where pro-
ductions in the grammar have weights. We assume, for simplicity, that the only
quantitative objective is to find the program of least cost that satisfies the speci-
fication. The idea of the algorithm is to iteratively reduce the SemGuS problem
with a quantitative objective to a sequence of SemGuS problems without quan-
titative objectives, which are used to iteratively find a solution that has least
cost—i.e., at each step of the sequence the cost of the solution is improved.

The algorithm operates as follows. Initially, we are given a SemGuS prob-
lem sem with a weighted grammar W (we omit the semantic information for
brevity) and with the minimization objective opt set to true.8 The first step of
the algorithm is to construct an unweighted grammar GW by merely erasing all
the weights in W . We can now use any SemGuS solver to solve the resulting
SemGuS problem and obtain a term t0. This term will have a weight c accord-
ing to the weighted grammar W , but it might not be the term of least cost that
satisfies the specification. Our algorithm therefore tries to find out whether a
solution with a lower weight exists, and accordingly constructs an (unweighted)
grammar GW

<c such that a term t is accepted by the grammar GW
<c if and only if

the weight of t according to W is less than c. When the weights are natural num-
bers, this construction is always possible [12]. We now have again an unweighted
grammar, and we can use a SemGuS solver to solve the resulting problem. This
procedure can be repeated until no better solution exists.

Example 7. Consider the weighted grammar W we presented in Example 5. In
particular, let us focus our attention on the following subset of productions that
involve non-zero weights:

E → 0 | 1 | x | E + E | E - E/1

The grammar GW
<3, which accepts all terms of weight less than 3 is as follows:

E → E2 | E1 | E0

E2 → E1 - E0 | E0 - E1

E1 → E0 - E0

E0 → 0 | 1 | x | E0 + E0

8 For simplicity, we assume no further quantitative objectives are present, but the
general case can be handled using similar ideas [12].
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Intuitively, each non-terminal Ei produces all and only terms with exactly i
minus operators.

The meta solver for quantitative objectives shows how using a solver-agnostic
specification formalism—i.e., grammars—enables algorithms that operate at the
specification level and can be reused across multiple solvers.

Underapproximating Semantics with SemGuS. The previous section
showed how the programmability of the search-space syntax (i.e., the gram-
mar) allows us to design meta-algorithms to solve SemGuS problems involving
quantitative objectives. In this section, we show how the programmability of
the search-space semantics can be used to build meta-algorithms that can make
synthesis faster. The key idea is to generate “simpler” variants of the original
SemGuS problem that use an underapproximating semantics, where an under-
approximating semantics is defined as a subset of the original semantics that
must be precise on the subset on which it is defined.

Definition 3. For a grammar G equipped with a semantics �·�, we say �·��

underapproximates �·� on G, or that �·�� is an underapproximating semantics
for G with respect to �·�, if for every term t ∈ L(G), every state Γ , and every
value v on which �·�� is defined, �t��(Γ, v) = �t�(Γ, v).

One easy way to underapproximate a semantics is to simply “eliminate” cer-
tain operators from a grammar by not defining semantic rules for them. How-
ever, the concept of underapproximation need not be bounded to eliminating
operators from a grammar—it may have a fully semantic meaning instead, for
example, a bound on the number of possible loop iterations. The key intuition is
that underapproximation is sound for use in synthesis—if a term t is the answer
to a synthesis problem sy, sy actually does not need to contain any syntax or
semantics outside of what is used to define and compute t. (In contrast, overap-
proximation is sound for proving unrealizability.)

Example 8. Recall, once again, the synthesis problem Monica has in Sect. 1. The
grammar Gex of Fig. 1 contains a while loop, which has a complex semantics
that can be expensive to compute and, most importantly, allows nonterminating
behavior. Most existing synthesizers [27,28] explicitly prohibit nontermination
by only considering finitely many unrollings for loops (because most answers to
a synthesis problem will indeed terminate).

Fortunately, Monica knows that on her example [−1, 2, 3, 10, 31,−14,−11],
the loop should iterate no more than 7 times to process every element of the array.
Monica may then choose to supply the synthesizer with an underapproximating
semantics that limits the number of loop iterations to 7, which could greatly
reduce the amount of computation the synthesizer must perform—for example,
a naive enumerator might get stuck on a nonterminating loop when using the
precise semantics, while terminating quickly when using the underapproximating
semantics. Such a semantics can be expressed easily by adding a loop counter c
to the semantics of loops given in Eq. (2), yielding the following CHC:
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c ≥ 0 Γ [x] ≥ 0 semS(〈s, Γ, c − 1〉, Γ1) semStart(〈while x>=0 do s, Γ1, c − 1〉, Γ2)

semStart(〈while x>=0 do s, Γ, c〉, Γ2)
(7)

Setting c = 7 in the Query rule now ensures that loops run at most 7 iterations.

Abstract Semantics with SemGuS. Similar to how we used underapproxi-
mating semantics to find solutions to a SemGuS problem, abstract (overappoxi-
mating) semantics can be used to prove that a SemGuS problem is unrealizable.

Definition 4. For a grammar G equipped with a semantics �·�, we say �·�# is an
abstract semantics for G with respect to �·� if there exists an abstraction function
α and a concretization function γ, such that for all t ∈ L(G), if �t�(Γ, v) holds,
then �t�#(α(Γ ), α(v)) holds, and Γ ∈ γ(α(Γ )), v ∈ γ(α(v)), i.e., α and γ form
a Galois connection.

In contrast to underapproximating semantics, abstract semantics are sound
when used to prove unrealizability—i.e., that a synthesis problem has no solution
that satisfies its specification within its search space. Consider the use of abstract
interpretation in program analysis: abstract interpretation is most often used to
prove that a program cannot reach a certain set of bad states, while often being
unable to guarantee that a program will produce a specific value, due to lack of
precision. Similarly, an abstract semantics will often be unable to guarantee that
a synthesized program satisfies the specification, due to lack of precision—but it
can guarantee that all programs in the search space will never be able to produce
a certain set of values, which can be used to prove unrealizability.

Example 9. Consider the scenario from Sect. 1, in which Monica removed sub-
traction from her grammar in an attempt to simplify the synthesized program.
The removal of subtraction made the problem unrealizable—and UltraSynth ran
for hours on end because it could not prove that this was the case. While prov-
ing unrealizability can be very difficult in general, a solver capable of reasoning
about abstract domains and semantics could have utilized an (abstract) semantic
rule such as Eq. (8) below:

semE(〈e1, Γ 〉, {pos}) semE(〈e2, Γ 〉, {pos})
semE(〈e1 + e2, Γ 〉, {pos}) (8)

Equation (8) is defined on the abstract domain {pos, zero, neg}—corresponding
to positive, zero, and negative values—and captures the fact that the sum of two
positive numbers will always be positive. This rule will be able to prove that Gex

without subtraction will never be able to modify x to a negative value, and thus
that no program in the search space will terminate (leading to unrealizability).

Unrealizability is a property that is ignored by many current synthesizers,
but it is a very important property nonetheless. One practical way to think about
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unrealizability is as a sanity check, like a type system: the fact that a synthe-
sis problem provided by an end user is unrealizable means that the synthesis
problem is malformed in the sense that the user has got some of their specifi-
cations wrong. Similar scenarios happen daily with ordinary programming, and
we expect them to happen with synthesis as well—thus, it is desirable that syn-
thesizers be able to detect these problems, and report them early on if possible,
without running indefinitely, as in Sect. 1. Unrealizability also has applications
in computing optimal solutions, as in Sect. 4.2: unrealizability given a grammar
with a lower weight bound ensures that the current solution is optimal.

5 The Future of Programmable Synthesis and SemGuS

We hope we have convinced the reader that synthesis could use more programma-
bility, and that SemGuS addresses many of the programmability issues of exist-
ing synthesis work. But what lies ahead? How can we make programmable syn-
thesis truly practical? In this section, we first outline some of the steps we are
undertaking to answer this question (Sect. 5.1).

More importantly, we would also like to emphasize that the vision of pro-
grammable program synthesis can only be realized through a community effort.
We will conclude this section with ideas to involve the synthesis community to
help us realize our vision (Sect. 5.2).

5.1 What Are We Working on Next?

In this section, we present some of the directions our group is pursuing in extend-
ing SemGuS to richer objectives and building better solvers for it. We also
describe some open problems related to SemGuS.

Interfacing Existing Program Synthesizers with SemGuS. The bulk of our dis-
cussion in Sect. 3 was about achieving domain-agnosticity by building upon the
ideas that SyGuS used in achieving solver-agnosticity. However, there also exist
synthesis tools that are already domain-agnostic; most notably, solver-aided lan-
guages such as Sketch [27], Rosette [28], MiniKanren [8], and Prose [25]. While
these tools are not solver-agnostic, they can in principle be used as SemGuS
solvers by virtue of their domain-agnosticity.

To use such existing tools as SemGuS solvers, one must develop a compiler
of sorts to translate a SemGuS problem (written in the logical format from
Sect. 3) to the specific front-end language of the tool. This task is not trivial
for a number of reasons. First, each of these tools implement restrictions on the
types of synthesis problems they accept; these restrictions are what enables their
fast algorithms. For example, Rosette, Sketch, and MiniKanren only support
finite search spaces (i.e., finite grammars), and this fact is encoded in different
ways for different tools (e.g., by imposing bounds on the search depth or by
imposing syntactic bounds on the search space). Second, some of these solvers
implicitly use limited semantics—e.g., Sketch limits how many times a loop can
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be executed. Third, some of these solvers require special inputs that are useful to
guide the synthesis engine—e.g., Prose requires the user to provide a semantics
for each operator in the input language as well as an inverse semantics that
can be executed backwards; the inverse semantics is used to perform efficient
enumeration.

Soundly compiling SemGuS problems to these tools requires one to modify
the original problems to fit these restrictions. Thankfully, the flexibility of Sem-
GuS comes to our aid! In Sect. 4.2, we have described ideas for transforming
SemGuS problems using restricted grammars or underapproximating semantics.
These transformations are sound for synthesis—i.e., a solution to the transformed
synthesis problem, which satisfies the restrictions of a particular external tool, is
still a solution to the original problem—and thus can be used to interface with
external tools. We are currently working on automating such translations.

The case of Prose is particularly interesting in that it requires inverse seman-
tics, which are not immediately available from a SemGuS problem. However,
because SemGuS semantics are expressed logically as CHCs, one can automati-
cally invert these semantics starting from the CHCs—we are currently developing
a tool that performs this inversion automatically and uses the inverse semantics
to interface with Prose.

Other more specialized solvers, such as those for synthesizing regular expres-
sions [23], could also be interfaced with our framework, with the limitation that
they will only be able to handle specific problems. The more general question
here is: how can we determine whether a specific SemGuS problem is com-
patible with a specialized solver? We are working on designing “theories” that
describe specific semantics for which specialized solvers exist. For example, if one
were to use SemGuS to work with regular expressions, they could import the
regular-expression theory, which by design would enable compatibility with cer-
tain solvers. Note that this approach is still solver-agnostic because any general
SemGuS solver would still be able to use this problem definition.

Lifting Existing Synthesis Algorithms to Work with SemGuS. While interfac-
ing existing synthesizers with SemGuS is one straightforward way of creating
SemGuS solvers, we envision that higher efficiency can be achieved by designing
solvers that take advantage of the structure of SemGuS problems. Is it possible
to lift algorithms (not tools) that have previously been successful with SyGuS
or other synthesizers up into SemGuS?

For example, consider the problem of building an efficient enumeration algo-
rithm for SemGuS, an algorithmic technique that is now successfully employed
in most SyGuS solvers [2,4,21]. The success of enumeration has been driven by
a number of clever ideas for efficiently pruning the search space of relevant pro-
grams. An example was mentioned in Sect. 4.1, where we discussed the challenges
with employing strategies such as behavioral equivalence caching or equality sat-
uration on SemGuS due to the lack of an executable semantics—i.e., in Sem-
GuS, evaluating a term on an input requires a costly call to a CHC solver. We
are currently building an enumeration algorithm for SemGuS that addresses
this limitation. Our algorithm first synthesizes an executable interpreter from
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the SemGuS problem semantics, and then uses this executable interpreter to
guide the search. To scale, our approach must handle other challenges, which we
are also working on—e.g., discovering which operators have a semantics that is
associative or commutative can help us avoid enumerating equivalent terms.

While the generality of SemGuS is an obstacle to adapting some well-known
algorithms, the same generality also helps SemGuS provide a natural inter-
face to express other algorithms, such as program synthesis using abstraction
refinement [29]. The approach taken here is to synthesize programs that work
on an abstract domain, and repeatedly refine the abstract domain until a pro-
gram is found that is correct under the concrete semantics. This approach, in
a sense, uses a meta-algorithm that can be expressed naturally in SemGuS,
as discussed in Sect. 4.2. We believe that SemGuS will naturally be able to
express many such meta-algorithms, and further accelerate the development of
new meta-algorithms.

Supporting Richer Specifications. Beyond the basic specification mechanisms,
SemGuS already supports syntactic quantitative objectives through weighted
grammars (Sect. 3.2). To capture the breadth of specifications appearing in
modern synthesis applications, the SemGuS framework will have to evolve over
time. While we are investigating a number of complex objectives that will require
extensions to the framework (e.g., probabilistic specifications), in the following
paragraph we describe a specification mechanism the current SemGuS frame-
work can already capture for free: types.

Consider the problem of synthesizing a program that meets a given time
complexity (or asymptotic resource usage in general) [11,16]. In existing work,
such bounds are specified (and proven correct) using a dependent type system.
The solver uses the type system to guide the search, by enumerating only terms
that satisfy a certain type. We observe that the SemGuS framework is already
able to capture such type-based specifications! In particular, types are a form
of static semantics that can be associated with terms and, in most cases, typing
rules can be encoded as CHCs, similarly to how one encodes semantic rules. For
example, the following dependent type rule can be captured using a CHC where
each typing judgment t : type is described using a relation r(t, type).

a : {Int | ϕa(v)} b : {Int | ϕb(v)} + : x : Int → y : Int → {Int | v = x + y}
a + b : {Int | v = x + y ∧ ϕa(x) ∧ ϕb(y)} (9)

5.2 What Can the Synthesis Community Do?

As we mentioned at the beginning of this section:

The vision of programmable program synthesis can only be realized through a
community effort.

We discuss problems the community can help with in this concluding section.
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A Broader Scope for Synthesis. The scope and potential of synthesis is very
broad, in fact even broader than what has been discussed in this paper. An
invited paper by Gulwani began [9]

Program Synthesis is the task of discovering an executable program from
user intent expressed in the form of some constraints.

However, we feel that this viewpoint is actually somewhat narrow. We believe
that insight on many problems can be obtained via the “lens” of synthesis: for
many computing tasks, the goal is to produce some artifact to which some seman-
tics is attached, and the process of producing that artifact can be thought of as
a synthesis problem. For instance, in an AI planning problem, the artifact is a
plan—i.e., Monica from Sect. 1 is a robot, and the sought-for program must navi-
gate her from point A to point B (e.g., minimizing power consumption and time,
while avoiding collisions and satisfying other safety guarantees). Closer to home
for the CAV community, inside many tools for statically checking assertions in
programs (such as SLAM or BLAST), the key component is one that creates
an abstracted model of the program that is sufficiently precise to show that an
assertion violation is not possible. Among the artifacts that may need to be syn-
thesized are inductive invariants, abstract transformers, function summaries, and
interface specifications. Thus, we conclude by offering the following wider defini-
tion of synthesis, which connects this broader outlook with the semantics-based
perspective that we have presented in this paper:

Synthesis is the task of discovering a syntactic object—selected from
some formalism in which each syntactic object has a rigorously defined
semantics—from an “intent” expressed in the form of some kind of con-
straint.

We believe that the issues discussed in this paper will be increasingly important
if synthesis is to be applied successfully to the creation of artifacts that have
semantics, but are not programs per se.

The generality of our framework can bridge the gap between the many appli-
cations of synthesis, and we hope that the community will engage in our work
by modeling their synthesis problems in SemGuS, and by adapting their solvers
to work with SemGuS. Such contributions will result in new benchmarks and
solvers, contributing to the programmability and effectiveness of SemGuS.

Standardization and Competitions. We believe that the idea of a programmable
synthesis framework, and SemGuS, the start of such a framework, represents
a step forward in program synthesis. Similarly to what happened with SyGuS,
SemGuS must be standardized, other researchers should build solvers for it, and
these solvers should compete annually in SemGuS competitions.

We hope that this paper will encourage readers to experiment with and
advance the ideas presented here, in three ways: First, we hope that the generality
of the framework will make it easy for people to use it on various problems, which
in turn will make it easy to collect large and diverse sets of benchmarks that
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will make the design of new solvers focused and effective. Second, we hope that
researchers will build new algorithms and techniques that are general and can
solve problems built in this framework. Third, we hope to soon create a yearly
competition that will foster further interest in building general synthesizers for
our framework. More than anything, this paper is a call-to-arms—an invitation
to help broaden the scope and abilities of program synthesis, toward an era where
Monica uses synthesizers just as much as Python during her daily work.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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