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ABSTRACT

The information conveyed by optical flow is analytically
linked to the observer motion in this paper by decompos-
ing the optical flow field into its vector field components.
It is shown that the observer may recover his ego-motion
by interpreting the decomposed optical flow field, and he
may further utilize his mobility to actively control the shape
of the optical flow field, which directly reflects the surface
shape of the object. The information of surface geometry
discontinuity can be derived more directly from optical flow
field by segmenting the whole field. A new method for the
segmentation is proposed here, which combines both the
magnitude and phase parts of the optical flow. The inte-
gration of these two different kinds of information proves to
be effective in making various surface geometry boundary
explicit.

1. INTRODUCTION

Optical flow conveys information about a surface through
depth cues. This information may be used to identify object
boundaries (optical flow segmentation) [1, 2], to determine
the observer’s ego-motion [3, 4], or to recover surface ge-
ometry.

Optical flow itself provides depth cues of the scene [5],
as well as surface geometry [6, 7], and its segmentation gen-
erally corresponds to object boundaries (the apparent con-
tour). When the spatial and temporal derivatives can be
computed reliably, the surface geometry can be recovered
[8, 9]. However, the local measurement and computation of
optical flow are generally noisy and inaccurate, as opposed
to global behaviors of the field. This is especially useful for
tasks that do not require full scene recovery such as navi-
gation where the relationship between the observer and the
scene geometry is made explicit [10].

In this paper, we investigate two kinds of global behav-
iors of optical flow: the vector field decomposition and seg-
mentation. For the former, instead of computing the gra-
dient, divergence and curl fields of the optical flow as pro-
posed by Koenderink [7], we relate the eigenvalues of the
component fields to observer motions directly. We show

that an active observer can utilize its mobility to control the
shape of the optical flow field so that both the surface ge-
ometry and the observer motion can be recovered more ef-
fectively and accurately. For the segmentation, we expose
the discontinuities of both the surface shape and surface ori-
entation by combining the segmentation of magnitude and
orientation of the optical flow field. This segmentation pro-
cess is conducted by first computing the directional deriva-
tive of either the magnitude or the orientation of optical flow
in the direction of the field. This integration of information
proves to be effective in making various surface geometry
boundary explicit.

We start this paper with the framework of the decom-
position of a general vector field into divergence, curl and
deformation fields. Each provides different information of
the object surface relative to the observer. This informa-
tion can be used by the active observer to control his mo-
tion in order to complete relevant tasks (e.g., navigation or
shape recovery). Following this, it is shown next how the
eigenvalues of the decomposed fields can be related to the
observer-controlled motion and surface geometry. Finally,
the new method of optical flow segmentation is presented
for an observer-controlled translation motion, and various
examples are presented.

2. THEORETICAL FRAMEWORK: 2D VECTOR
FIELD DECOMPOSITION

On a 2D Euclidean manifold(ξ, η) the integral curvesof a
2D linear vector fieldu = (µ, ν) are the family of curves
q = (ξ(s), η(s)) defined by
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. Eq. (1) can

then be written in the formuT = PqT . For a general vector



field u, Eq. (1) provides the first-order approximation todu
(by Taylor series) in the formduT = PdqT .

The matrixP = (pi j ) can be decomposed into the sum
of a symmetric matrixPs = (ps

i j ) and an antisymmetric
matrix Pa = (pa

i j ) according tops
i j = (pi j + pj i )/2 and

pa
i j = (pi j − pj i )/2. Since a symmetric matrix can always

be diagonalized by a similar transform,Ps can be put into
the form

Ps = Q−1
(

ζ1 0
0 ζ2

)
Q

whereζ1 > ζ2 andQ is an orthogonal matrix with|Q| = 1.
It has the propertytr Ps = ∂µ/∂ξ + ∂ν/∂η = ζ1 + ζ2. Let
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)
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)
, K2 =
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)
, and, by

the above property, we have

2Ps = (
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)I2 + (ζ1 − ζ2)Q−1J2Q.

A more compact form can be reached by noting that if the
2D vector fieldu = (µ, ν) is treated as a 3D field(µ, ν, 0)

then∇ ·u = ∂µ/∂ξ +∂ν/∂η,∇ ×u = (∂ν/∂ξ −∂µ/∂η)êz.
If we denote the only component of the curl as(∇ ×u)z, the
matrixP has the decomposed form:

P = 1

2

[
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]
.
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Following [6] we will refer these three decomposed com-
ponents ofu as thedivergence, curlanddeformationfields,
respectively.

The integrated vector field is determined by three canon-
ical subfields formulated in Eq. (2). Its properties can be
investigated by examining the eigenvalues ofP. The eigen-
values are themselves functions of the image coordinates
(ξ, η) defined at each point on the image plane, as is the
field itself. If we insert the orthogonal matrixQ and let
c = (∇ × u)z/2, d = (∇ · u)/2, e = (ζ1 − ζ2)/2, P can be
written in the form

P = d

2
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2
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2
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= 1

2

(
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c − esin 2γ d − ecos 2γ

)
,

whereγ is the rotation angle forQ. Hence the characteristic
equation forP is λ2 − 2dλ + (c2 + d2 − e2) = 0 and the
eigenvalues areλ = d±(e2−c2)1/2. From this we can make
the observation thate2−c2 (curl and deformation) acts as an
essential factor in deciding the field characteristics. One of
the interesting cases is when the curl and deformation fields
cancel each other so that only the divergence field shows up.
This is different from vanishing curl and deformation fields,
but it appears identical to the observer. The relationship
between eigenvalues and observer motion will be derived in
the next section.

3. OBSERVER MOTION FROM OPTICAL FLOW
DECOMPOSITION

For an active observer, optical flow can be very useful if it
can be used to infer the relative relationship between the
observer and the surface so that further observer motion
can be planned relative to the surface. In order to achieve
this, we have to relate optical flow to observer motion. This
was done in [7] by expressing the canonical fields (i.e., di-
vergence, curl and deformation) in terms of the rotation�

and translationv by the observer. In this section, a differ-
ent formulation is developed, which relates the eigenvalues
of these fields to translational observer motion. This alter-
native form makes the observer motion explicit in order to
control the optical flow.

Let’s consider an observer undergoing an instantaneous
translation in a static environment. Letx = (x, y, z) be the
coordinates in the observer frame andq = (ξ, η, 1) the pro-
jected image coordinates in the 3D Euclidean space. The
relative translation velocity is given byv = −∂x/∂ t =
(vx, vy, vz). The observer-centered coordinate system is set
up so that the image plane is located atz = 1. The ob-
ject surface can then be represented as(x, y, z(x, y)). Since
(zx, zy,−1) is the normal vector to the tangent plane of the
object surface atx, we will usen to denote(zx, zy,−1).
In this set-up, we have the relationship:q = x/z, and the
optical flow is given byu = ∂q/∂ t .

When a rotation� is involved in observer motion, the
transversing translation velocity perpendicular to the line of
sightx̂ = x/|x| is given byṽt = ṽ−(ṽ · x̂)x̂, whereṽ = v/z,
and the canonical fields can be expressed as (see [7]):

∇ · u = n · ṽt + 2ṽ · x̂

(∇ × u)z = (n × ṽt )z − 2� · x̂ (3)

ζ1 − ζ2 = |n + êz||ṽt |
By definition, v = −∂x/∂ t for a pointx on an object

surface, so we can deriveu = ∂q/∂ t = (−v + vzq)/z =
−ṽ + ṽzq. By the inverse function theorem it is straight-
forward to show that(∂z/∂ξ, ∂z/∂η) = −(zx, zy)z/(n · q),
wherezx andzy are differentials ofz with respect tox and
y. It follows that(
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whereI2 is the 2× 2 identity matrix.
We can derive the following formulas for the divergence

and curl ofu:

∇ · u = 2ṽz + n · u
n · q

= 3ṽz − n · ṽ
n · q

(∇ × u)z = (n × u)z

n · q
=
[
n × (ṽzq − ṽ)

]
z

n · q
. (5)



In addition, the symmetric part ofP matrix is given by

Ps = ṽzI2 + 1

2n · q

(
2µzx µzy + νzx

µzy + νzx 2νzy

)
.

This symmetric matrix can be diagonalized if we chooseṽ
to be such thatµzy + νzx = 0, i.e.,

ṽ · (−zy,−zx, ξzy + ηzx) = 0. (6)

Alternatively we can compute the rotation matrixQ such
that QPsQ−1 is diagonalized, if the surface shape (zx, zy)
is already known. The former corresponds to an observer-
controlled motion and the latter corresponds to an “off-line”
computation. If we diagonalizePs by observer motion using
Eq. (6), it can be shown that the deformation is

ζ1 − ζ2 = z2
x + z2

y

ξzy + ηzx

(q × ṽ)z

(n · q)
.

If we diagonalize explicitly by rotation defined byQ, the
deformation is

ζ1 − ζ2 = (z2
x + z2

y)
1/2

n · q
(µ2 + ν2)1/2 = (z2

x + z2
y)

1/2|u|
n · q

(7)

with the rotation angleγ given by(µzy+νzx)/(µzx −νzy).
From Eq. (5) we can express the optical flow fieldu in terms
of its curl (∇×u), divergence (∇·u) and surface tilt (zx, zy):

u = n · q
z2

x + z2
y

[
(∇ · u − 2ṽz)(zx, zy) + ∇ × u(zy, zx)

]
.

(8)

The eigenvalues of the linear vector field is then given by

2λ1,2 = ∇ · u ±
[
(ζ1 − ζ2)

2 − (∇ × u)2
z

]1/2
.

From Eq. (5) and Eq. (7) it can be shown that(e2−c2)1/2 =
d − ṽz. Hence the two eigenvalues are given by

λ1,2 = ṽz, ṽz + n · u
n · q

. (9)

From this form, we can see that the eigenvalues are always
real, which is consistent with the elimination of the curl field
in the first place, since it is not useful in solving for scene
geometry [7]. Without a curl field, the matrixP is symmet-
ric and the deformation is given by

|λ1 − λ2| =
∣∣∣∣n · u
n · q

∣∣∣∣ . (10)

If we assume that the canonical fields can be observed and
computed by the observer, Eq. (10) allows us to determine
the surface normal without having to compute the diver-
gence field. In essence, the deformation field tells us the
surface orientation.

4. SEGMENTATION OF THE OPTICAL FLOW
FIELD

One of the purposes of optical flow segmentation is to iden-
tify discontinuity of surface geometry. The occurrence of
discontinuity is due to either the presence of discontinuous
contours on an object surface or to discontinuity in depth.
Though there is no unique interpretation of the results from
segmentation, the result does strongly constrain the problem
of identifying object boundaries.

For translational motionv = (vx, vy, vz) controlled by
an observer, the optical flow fieldu is given byu = −ṽ +
ṽzq. To measure the smooth characteristics of the opti-
cal flow, two factors have to be considered: the orienta-
tion and the magnitude of the optical flow. Consequently,
the “smoothness” ofu can be measured by the directional
derivative of the magnitude ofu in the direction ofu:

ε(u)
4= ∇(|u|) · u

|u| . (11)

Since|u| = A1/2/z, whereA = (−vx + ξvz)
2 + (−vy +

ηvz)
2, it follows that

∇(|u|) · u
|u| = −u · ∇z

z
+ zvz

A
u · (µ∇ξ + ν∇η)

Simplify the expression and it can be shown that

ε(u) = 1

z

[
−(n · u) + ṽz

(
1 − (q · u)(n · u)

|u|2
)]

(12)

If we treatε(u(ξ, η)) = ε(ξ, η) as a function defined on im-
age plane, changes (i.e., discontinuities) in the structure of
ε will correspond to image contours. The boundary where
these changes occur is a consequence of changes in scene
geometry, which involves surface normaln and depthz as
reflected in Eq. (12). Alternatively, we can derive the mag-
nitude and orientation of the optical flow individually and
combine them in a separate phase. This may provide more
flexibility in terms of how the information is used.

5. EXAMPLES

The first test sequence is a sequence of 20 images with both
curl and divergence fields. The integral curves of the flow
field with respect to time are made apparent by smoothing
the local image structure.

For optical flow, a window of 5 frames was used to com-
pute the integral curve for the flow field. These curves were
computed at four scales: 1.5, 2, 3, and 4 pixels. The opti-
cal flow at each point was computed using the method in a
previously published paper, and the result for 10th frame is
shown in Figure 1. The components of the curl and diver-
gence fields are clear in the spiral shape of the optical flow.



Fig. 1. The integral curve of
the optical flow field.

Fig. 2. The optical flow
field.

The scale which was used to identify the magnitude of the
optical flow is not shown in the results, but it is an indication
of the nature of local texture.

Fig. 3. The magnitude of
the optical flow for frame 8.

Fig. 4. The orientation of
the optical flow for frame 8.

The second test sequence is the synthetic sequence of
15 frames that shows a fly-through of Yosemite valley. The
segmentation method formulated in Eq. (11) was applied
to the optical flow centered at the eighth frame of the se-
quence. The magnitude (|u|) and the orientation (u/|u|)
parts are represented by gray-level images in Figures 3 and
4, respectively. The measure of directional derivative,ε(u),
is shown in Figure 5, encoded and equalized for gray-level
representation. By combining the measure of segmentation
and the cues provided by the magnitude and orientation of
the optical flow, the boundaries of objects are shown in Fig-
ure 6.

6. SUMMARY

We present results that exploit the fact that global behavior
of optical flow is a more accurate information source to use
than the local measurement of the field. The major results
presented in this paper are : (1) the component vector fields
of optical flow can be related directly to observer motion,
and this relation may be used to to recover either observer

Fig. 5. The gray-level seg-
mentation of optical flow.

Fig. 6. The binary segmen-
tation of optical flow.

motion or scene geometry, and (2) the segmentation of op-
tical flow can be derived by combining the global changes
of magnitude and orientation of the field. This provides the
observer with strong hypotheses regarding the type and lo-
cation of object boundaries, The information can be effec-
tively derived when the observer is active and can control
his motion.
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