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ABSTRACT 44 
Driver distraction represents a major safety problem in the United States. Naturalistic driving 45 
data, such as SHRP2 Naturalistic Driving Study (NDS) data, provide a new window into driver 46 
behavior that promises a deeper understanding than was previously possible. Unfortunately, the 47 
current practice of manual coding is infeasible for large datasets like SHRP2 NDS, which 48 
contains millions of hours of video. Computer vision algorithms have the potential to 49 
automatically code SHRP2 NDS videos. However, existing algorithms are brittle in the presence 50 
of challenges like low video quality, under- and over-exposure, driver occlusion, non-frontal 51 
faces, and unpredictable and significant illumination changes, which are all substantially present 52 
in SHRP2 NDS videos.  53 

This paper presents and evaluates algorithms developed to quantify high-level features 54 
pertinent to driver distraction and engagement in challenging videos like those in SHRP2 NDS. 55 
Specifically, a novel two-stage video analysis pipeline is presented for tracking head position and 56 
estimating head pose, and eye and mouth states. Results on challenging SHRP2 NDS videos are 57 
promising. The accuracy of the new head pose estimation module is competitive with the state of 58 
the art, and produces good qualitative results on SHRP2 NDS videos.   59 
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INTRODUCTION 60 
Driver distraction represents a major safety problem in the U.S., contributing to 10 percent of 61 
fatal crashes, 18 percent of injury crashes, and 16 percent of all crashes in 2012 (1). The 62 
explosion of web-based applications and connected vehicle information makes the issue even 63 
more critical in the coming years. Naturalistic driving data, such as SHRP2 Naturalistic Driving 64 
Study (NDS) data (2), provide a new window into driver behavior that promises a deeper 65 
understanding than was ever possible with crash data, roadside observations, or driving simulator 66 
experiments. The millions of hours of SHRP2 NDS data presents an unprecedented opportunity 67 
to identify the factors contributing to distraction-related crashes. Although the SHRP2 NDS data 68 
include detailed vehicle state data, the video record of the driver and surrounding road situation 69 
often provide a more revealing account of driver behavior. Each frame of the NDS videos 70 
consists of four views (clockwise from upper-left): forward roadway view, driver view (rotated), 71 
rear roadway view, and downward steering wheel view as shown in FIGURE 1(a).  72 
 73 

 74 
(a) 75 

 76 

 77 
(b) 78 

FIGURE 1: SHRP2 NDS Video: (a) Sample frames of NDS video (2), and (b) commonly 79 
found challenges. 80 

 81 
The current practice of manual coding costs hundreds of dollars per minute of video, 82 

making coding of the millions of hours of video infeasible. Computer vision algorithms have the 83 
potential to automatically code SHRP2 NDS videos, extracting features from thousands of hours 84 
at a fraction of the cost of manual coding. However, using existing algorithms for SHRP2 NDS 85 
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videos is problematic because of low video quality (e.g., low resolution, low dynamic range, 86 
compression artifacts), under- and over-exposure, occlusion, non-frontal faces, and unpredictable 87 
and significant illumination changes as shown in FIGURE 1b. The eventual goal of this research 88 
is to automatically quantify driver behavior, specifically distraction and engagement, by applying 89 
video analytics to the SHRP2 NDS videos. Toward this goal, this paper presents and evaluates 90 
algorithms developed to quantify high-level features pertinent to driver distraction and 91 
engagement: head pose, eye state, and mouth state. 92 

  93 
APPROACH AND PREVIOUS WORK 94 
The first step of estimating head pose and eye and mouth state is to detect the driver’s head. 95 
There are many approaches to face detection in the computer vision literature, but the most 96 
popular is attributed to Viola and Jones (3), which uses a cascade of detectors operating on 97 
simple image features (the difference between the sums of adjacent pixel regions) to efficiently 98 
detect face regions of interest in an image. Many algorithms (4, 5, 6), and the one proposed in 99 
this paper, use the Viola-Jones face detector as a building block. However, by itself, Viola-Jones 100 
and others like it often fail on videos collected in challenging uncontrolled environments (e.g., 101 
SHRP2 NDS videos). Boosted exemplar-based face detectors have been proposed in (7) and (8) 102 
to overcome some of the challenges of uncontrolled environments. However, such algorithms 103 
have a large memory footprint and are relatively slow. Recently, Li et al. (9) proposed a faster 104 
algorithm based on convolutional neural networks that demonstrated more impressive results on 105 
challenging uncontrolled face images. The above methods focus on detecting faces within a 106 
single image and hence do not perform tracking. Tracking methods (10, 11, 12, 13) can improve 107 
the robustness and accuracy of the head location and size estimates in videos. However, these 108 
tracking methods require considerable computation and hence are impractical for processing 109 
large datasets such as SHRP2 NDS, which contains millions of hours of video.  110 

The goal of head pose recognition is to estimate the orientation of a subject’s head, 111 
usually with respect to the camera viewpoint. Head pose recognition is often performed in 112 
conjunction with, or immediately after, facial landmark localization (14, 15, 16). Given a 113 
detected face, the goal of facial landmark localization is to locate landmarks of interest on the 114 
face (e.g., nose tip, mouth corners, and eye centers). Recently, exemplar-based (17), and iterative 115 
shape regression-based (18, 19) approaches have demonstrated impressive landmark localization 116 
results on “in-the-wild” face images. The pipeline presented here uses an extended version of the 117 
exemplar-based approach described in (20, 21) for landmark localization and pose recognition. A 118 
full review of head pose recognition is outside the scope of this paper; see (22) for a review. In 119 
the algorithm proposed in this paper, a collection of 3D shape models is fit to the 2D facial 120 
landmarks. Yaw, pitch, and roll head rotation angles are then robustly computed by “consensus” 121 
of the individual 3D shape fits.  122 

Eye and mouth state (e.g., open/closed) recognition fits within a broader class of work 123 
concerned with facial expression and facial action unit recognition, which is typically performed 124 
by classification of geometric features (e.g., eye/mouth shape as represented by sets of eyelid/lip 125 
landmark locations), motion features (e.g., tracked regions in video), and/or global or local 126 
appearance features (e.g., image patches centered on landmarks) (23). Due to the limited 127 
resolution of the driver’s face and its constituent parts in SHRP2 videos (where a driver’s eye fits 128 
within a 10 x 8-pixel rectangle), the spatial accuracy of the eyelid and lip landmarks is often not 129 
exact enough to reliably estimate eye and mouth openness. Therefore, the algorithm presented 130 
here uses only local appearance for eye and mouth state estimation. 131 
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METHODOLOGY 132 
A two-stage video analysis pipeline was developed for this project. In Stage 1, the driver’s head 133 
is detected and tracked. Given the head region of interest, Stage 2 estimates head pose, and eye 134 
and mouth state. An overview of the pipeline is shown in TABLE 1. Details are presented in the 135 
following sections. 136 
 137 

TABLE 1  Overview of the Video Analysis Pipeline 138 
Step Stage Procedure Input Output 
1 

Head Detection 
and Tracking 

Face detection Video Frame Face detection(s) 

2 Spurious face elimination Face detection(s) Preserved 
detection(s) 

3 Adaptive template head 
tracking 

Preserved 
detection(s) 

Head bounding 
box 

4 

Head Pose, Eye 
State, and Mouth 
State Estimation 

Low-level feature extraction 
in region of interest 

Image, head 
bounding box 

Low-level 
features 

5 Local landmark hypothesis 
generation 

Low-level 
features 

Landmark 
response maps 

6 Global landmark shape 
regularization 

Landmark  
response maps 

Landmark 
estimates 

7 Head pose estimation Landmark 
response maps 

Yaw, pitch, roll 
angles 

8 Eye and mouth state 
estimation 

Landmark 
estimates 

Eye/mouth 
openness 

 139 
Stage 1: Head Detection and Tracking 140 
The objective of Stage 1 is to develop a computationally efficient algorithm for inference of the 141 
driver’s head position in each frame. In particular, the algorithm should reliably track the driver’s 142 
head even when the driver moves quickly and erratically. The head detection and tracking 143 
algorithm consists of three steps:  144 

1. Frontal and profile face detection,    145 
2. Spurious face elimination to reject false detections made in the first step, and  146 
3. Adaptive, template-based head tracking. 147 

With this 3-step approach, the driver’s head can be tracked even when it is completely turned 148 
around, without the need for multiple-view head detection algorithms. Each of the three steps are 149 
elaborated below. 150 
 151 
Step 1.1: Face Detection 152 
During the first step, the OpenCV Viola-Jones (VJ) face detector (3) is applied to each frame 153 
independently.  In many frames, the VJ detector fails to detect any faces, while in others, 154 
spurious faces are also detected, as shown in FIGURE 2(a). The output from this step serves as 155 
the input for spurious face elimination. 156 
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 157 
 (a) (b) 158 

 159 
(c) 160 

 161 
(d) 162 

FIGURE 2  Face detection output: (a) Frontal face detection with spurious faces, (b) 163 
positions of all detected faces, (c) distance between pairwise detected faces, and (d) 2D 164 

displacements of head positions between successive frames. 165 
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Step 1.2: Spurious Face Elimination 166 
The VJ detector may detect one or more spurious faces in each frame. Depicted in FIGURE 2 (b) 167 
are the true face positions (red) and spurious face positions (blue and green) of all faces detected 168 
by the VJ algorithm in one video clip. Note that the cluster of red and green points has an 169 
irregular shape due to the movement of the driver’s head. Conventional clustering algorithms 170 
such as k-means (24) implicitly assume each cluster has an elliptical shape. Hence it may not be 171 
suitable for this kind of application. Instead, we employ a clustering method called density-based 172 
spatial clustering of applications with noise (DBSCAN) (25) that makes no assumption regarding 173 
the shape of the head location distribution.  174 
 With DBSCAN, for a given threshold ε, all data within the same cluster shall have at 175 
least one nearest neighbor in the same cluster within distance ε. In FIGURE 2 (c), the histogram 176 
of pairwise closest L2 distance between true detection positions of the driver’s face, and the 177 
closest distance between positions of a spurious face and a true face are plotted. FIGURE 2(c) 178 
indicates that the choice of ε should be smaller than 20 and greater than 2. However, DBSCAN 179 
by itself clusters some spurious detections (green) as true detections (red) because of their 180 
proximity, as shown in FIGURE 2(b). Because of this, we need another parameter dM 181 
(Mahalanobis distance threshold) to determine whether a position is too far from the mean 182 
position of faces in the cluster and hence is more likely to be a spurious face. Letting µ and S be 183 
the sample mean and covariance of the cluster obtained using DBSCAN, dM of a point p is given 184 
by 185 

𝑑𝑑𝑀𝑀(𝑝𝑝) = �(𝑝𝑝 − 𝜇𝜇)𝑇𝑇𝑆𝑆−1(𝑝𝑝 − 𝜇𝜇) 186 
 187 

Another parameter, nM (minimum number of points), determines how small a cluster can be. It is 188 
of less importance here. The values of these parameters were chosen empirically from testing 189 
video clips using three-fold cross validation: ε = 15,  = 3 and nM  ≤ 20 produced the best 190 
results with precision = 100% and recall = 31.50% on the test data (described in the results 191 
section). About 99% of spurious faces were eliminated. However, no faces were detected in 192 
about 70% of frames, which is addressed by the head tracking step described next.  193 
 194 
Step 1.3: Adaptive Template Head Tracking 195 
After Step 2, the driver’s head was detected with high confidence in only about 30% of the video 196 
frames. To improve this, Step 3 capitalizes on two observations: between successive frames (a) 197 
the driver’s head position displacement is limited and (b) the changes in the appearance of the 198 
driver’s head are relatively small. These observations motivate the use of head tracking to fill in 199 
missing detections from Step 2.  200 
 FIGURE 2(d) shows a scatter plot of displacements of head positions between successive 201 
frames in blue, mean displacement in red, and the covariance of displacement in green for 24 202 
video clips. This provides an empirical estimate of the state transition probability P(xt|xt-1) of 203 
head position x from time t-1 to t. It shows P(xt−xt-1) can be modeled by a Gaussian distribution.    204 
Therefore, given the position of the driver’s head in the current frame (xt-1), the position of the 205 
driver’s head in the next frame (xt) may be limited to a search region, S = {xτ | P(xt|xt-1) > 0}. In 206 
practical implementation, S is approximated by a rectangular region and P(xt|xt-1) is 207 
approximated by a uniform distribution over S.  208 

We measure the similarity between a head template yt and a candidate head region at xt 209 
using cross correlation. The similarity scores are likely to vary with time: larger when the 210 

Md
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driver’s head is stationary and smaller when the head is turning or the body is moving. By 211 
tracking the trend of the similarity score, one may determine a similarity score threshold at the 212 
current frame to determine the similarity of the templates. The computed similarity score is an 213 
empirical estimate of the likelihood of the head template is observed at the position of the 214 
candidate head region xt, i.e. P(yt|xt). The posterior probability P(xt|yt) then can be evaluated as 215 

 216 

𝑃𝑃(𝐱𝐱𝑡𝑡|𝐲𝐲𝑡𝑡) = � 𝑃𝑃(𝐲𝐲𝑡𝑡|𝐱𝐱𝑡𝑡)𝑃𝑃(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1)𝑑𝑑𝐱𝐱𝑡𝑡−1
𝑆𝑆

 217 

 218 
where the integration is over the search region S. The maximum posterior probability (MAP) 219 
estimation of the position of the driver’s head at the current frame t is then found by 220 
 221 

𝐱𝐱𝑡𝑡∗ = argmax
𝐱𝐱𝑡𝑡

𝑃𝑃(𝐱𝐱𝑡𝑡|𝐲𝐲𝑡𝑡) 222 

 223 
Results for Head Detection and Tracking 224 
Twenty four short (10-30 seconds) sample clips from SHRP2 NDS Insight videos (26) were 225 
selected for evaluation. Each clip exhibits challenging characteristics as demonstrated in 226 
FIGURE 1(b).  227 
Evaluation was performed using two metrics: 228 

• Precision = TP/(TP + FP) (a.k.a. positive predicted value)  229 
• Recall = TP/(TP + FN) (a.k.a. sensitivity), 230 

where TP is the number of true positive detections, FP is the number of false positive detections, 231 
TN is the number of true negative detections, and FN is the number of false negative detections. 232 
For each frame in these videos, the true head location was manually marked to define ground 233 
truth for each step. The confusion matrices of the three steps are given in FIGURE 3. Precision is 234 
high (about 99%) in Step 1, and does not decrease through Step 3. Recall is low (about 28%) in 235 
Step 1, but increases significantly to about 88% after Step 3. 236 
 237 
 238 

 Step 1   Step 2   Step 3 
 H NH   H NH   H NH 
H 3133 8022  H 3513 7642  H 9843 1312 

NH 23 91  NH 0 114  NH 0 114 
 Precision: 99.27%   Precision: 100%   Precision: 100% 
 Recall: 28.03 %   Recall: 31.50%   Recall: 88.24% 

FIGURE 3  Confusion matrix for each step on 24 clips. H=head, NH=no head. 239 
 240 
Stage 2: Head Pose, Eye, and Mouth State Estimation 241 
Similar to the approach in Stage 1, Stage 2 also uses a pipeline to take the head information for 242 
each frame from Stage 1 and extracts head pose, eye and mouth states. It is important to note 243 
that, given the gamut of challenges in SHRP2 NDS videos, the automated pipeline is not perfect. 244 
Therefore, in each step of Stage 2, the pipeline produces a confidence value that can be used, for 245 
example, to highlight potentially problematic videos and frames for manual evaluation or coding. 246 
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An overview of the face analysis pipeline for Stage 2 is shown in TABLE 1; additional details 247 
are given below. 248 
 249 
Step 2.1: Low-Level Feature Extraction 250 
Dense SIFT (Scale Invariant Feature Transform) feature descriptors (27) are extracted in the 251 
region of interest (ROI) at regular three-pixel intervals. SIFT descriptors encode local image 252 
structure (e.g., points and edges) into 128-element histograms of image gradient intensity and 253 
orientation. 254 
 255 
Step 2.2: Local Landmark Hypothesis Generation 256 
A weighted, generalized Hough voting strategy (28) is used to map low-level features to 257 
landmark location hypotheses. Offline, a database of {low-level image feature, facial landmark} 258 
pairs from a large collection of training images was constructed using approximately 18,000 face 259 
images from the CMU Multi-PIE Face Database (29). Each {feature, landmark} pair has a 260 
spatial offset associated with it that maps the low-level feature to a landmark location. For 261 
example, a feature near the tip of the nose and a landmark at the center of the top lip might have 262 
an offset of x = 0, y = 10 that indicates the lip landmark is 10 pixels below the nose tip feature. 263 
At test time, each low-level feature descriptor is matched to similar features in the database. 264 
According to the example, a feature near the nose would “vote” for a lip landmark 10 pixels 265 
below it. Due to noise and inherent ambiguities in the image, these local votes may be noisy. 266 
However, because there are many {feature, landmark} pairs, votes will tend to pile up at the 267 
correct landmark locations. After spatial smoothing, the votes generate a landmark probability 268 
map for each landmark type.  269 

For efficiency, all feature descriptors are quantized into visual words before they are used 270 
for landmark voting. Each visual word is identified by a unique integer ID and represents a 271 
cluster of similar feature descriptors in the training database. A fast, approximate nearest 272 
neighbor algorithm (30) is used to map each feature descriptor to a visual word ID. For efficient 273 
retrieval from the exemplar database, each {feature, landmark} pair is stored in an inverted index 274 
by visual word ID number. 275 

Each landmark vote is weighted. This is key to the success of the algorithm. Intuitively, 276 
some features in the image are better at predicting landmarks than others. For example, features 277 
on the cheek are locally ambiguous and should therefore be down-weighted; features on the 278 
upper nose are more unique and can better predict eye landmarks and should therefore be up-279 
weighted. In previous work (20), weights were computed in a highly data-intensive way. In the 280 
current implementation, an online feature weighting method replaces the offline one. The weight 281 
of each vote is inversely proportional to (a) the vote offset distance and (b) the variance among 282 
the offsets generated by features that map to the same visual word ID. Intuitively, this gives more 283 
weight to low-level image features that are both near landmarks and consistently vote for the 284 
same landmark location. Technical details are presented in Smith and Zhang (20). Computing 285 
weights online incurs a modest computational cost and a small decrease in accuracy, but reduces 286 
the memory footprint of the database by a factor of 10. 287 
 288 
Step 2.3: Global Landmark Regularization 289 
Local landmark estimates can be noisy and ambiguous (e.g., sunglasses occlude eye landmarks). 290 
Shape regularization addresses this problem by imposing global structure over the spatial 291 
arrangement of landmarks. Informally, the regularization algorithm attempts to find a set of 292 
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landmark hypotheses that agree well with a consensus of exemplar face shapes. Belhumeur et al. 293 
(17) introduced this general idea, but used 2D exemplar shapes. Instead, 3D exemplars are used 294 
in this work. The regularization procedure consists of the following 6 steps:  295 

1. Select four landmark types at random, and one candidate at random for each type.  296 
2. Select a 3D exemplar shape at random. 297 
3. Compute a weak perspective projection Pj that projects the 3D exemplar shape onto the 298 

2D image using the four landmark correspondences as constraints. This generates one 299 
face shape candidate, Sj.  300 

4. Compute a score for Sj. Each landmark i = 1,2,… N in Sj has a probability, vji, equal to the 301 
value in the probability map (generated by the weighted Hough voting step) at the 302 
landmark location. The score for Sj is log(vj1) + log(vj2) +…+ log(vjN).  303 

5. Repeat Steps 1-4 many times. Save the top-scoring T = 100 face shape candidates. 304 
6. Compute the final landmark locations. For each landmark type, compute the median 305 

location among the top-scoring T face shape candidates. 306 
A confidence value is computed for the final landmark estimate by measuring vi (the value in 307 
landmark i's probability map at each landmark location), and then averaging. Note that four 308 
landmark candidates are selected in Step 1 because computing a weak perspective projection 309 
requires a minimum of eight constraints (an x and a y from each landmark): scale, x-translation, 310 
y-translation, absolute yaw angle, yaw sign, absolute pitch angle, pitch sign, and roll angle. The 311 
yaw and pitch angles are ambiguous up to a sign change, but the roll angle is not. FIGURE 4 (a) 312 
shows the three types of pose rotation angles.  313 

Approximately 800 3D exemplar shapes were generated from sets of 2D landmarks. Each 314 
3D shape was computed by a structure-from-motion (SfM) algorithm (31) applied to a set of 315 
manually annotated 2D landmarks from the Multi-PIE Face Database; each set of 2D landmarks 316 
depicted the same face from different viewpoints. Expectation maximization (EM) (32) and 317 
principal component analysis (PCA) (33) are used to fill in missing points and reduce spatial 318 
noise in the computed 3D exemplar shapes, as shown in FIGURE 4(b). The noisy raw points 319 
from the SfM algorithm are shown in green. The EM+PCA results are shown in red.  320 
 321 

Step 2.4: Head Pose Estimation 322 
Each of the T = 100 top face shape hypotheses in the shape regularization step has an associated 323 
weak perspective projection, which includes yaw, pitch, and roll angles. Head pose is expressed 324 
using these three angles. The final yaw angle is computed by taking the median of the yaw 325 
angles from the T=100 top weak perspective projections. The consensus of yaw angles among 326 
the T = 100 top weak perspective projections is used to compute a confidence value. Specifically, 327 
confidence = 1 – std((angle1, angle2, …, angle100))/M, where std is standard deviation and M is 328 
set empirically. Pitch and roll angles are computed similarly. Experimentally, yaw angle 329 
estimates were found to be consistently too small in magnitude. Therefore, the final yaw angle is 330 
multiplied by 1.3, set by minimizing the error between estimated and ground truth yaw angles. 331 
 332 
  333 
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 334 

 335 
(a) 336 

 337 

 338 
(b) 339 

 340 
(c) 341 

FIGURE 4: (a) Head pose described by pitch, yaw, and roll angles, (b) different views of a 342 
3D shape exemplar computed from 2D landmarks, and (c) closed eye (left) and open eye 343 

(right) from a SHRP2 NDS sample video.  344 
 345 
Step 2.5: Eye and Mouth State Estimation 346 
The eye and mouth state estimation module is executed after landmark localization is complete. 347 
FIGURE 4(c) shows an example from one of the InSight SHRP2 NDS sample videos illustrating 348 
the challenge with eye state detection. The two frames shown in FIGURE 4(c) are qualitatively 349 
very similar to frames typically found in the much larger SHRP2 NDS dataset. Eye state 350 
estimation is particularly challenging in the SHRP2 videos because they have low resolution and 351 
low dynamic range. The eye fits within a small 10 x 8 pixel window, and the differences between 352 
a closed eye (left) and an open eye (right) are subtle, which makes eye state estimation 353 
particularly challenging. For concreteness, eye state estimation is described here, and mouth state 354 
estimation is performed in the same way.  355 

A straightforward approach to eye state estimation would be to compute eye openness as 356 
the distance between the upper and lower eyelid landmarks. However, this would require 357 
consistent subpixel landmark accuracy, which is often unrealistic in SHRP2 videos. Therefore, 358 
all of the pixel intensity information around each eye is used directly to estimate the state.  359 
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Specifically, the system extracts a patch of pixel intensity values centered on the centroid 360 
of the eye landmarks. The intensity values are normalized to reduce the impact of global 361 
illumination variation. The system then performs k-nearest neighbors classification to compute 362 
the state of the eye, which is given as a relative distance (between eyelids) and a confidence 363 
value. The system computes the cross correlation between the test patch and a collection of 364 
exemplar patches, which each have a known eyelid gap. A weighted cross correlation similarity 365 
measure is used, where the weight of each pixel is determined by an isotropic Gaussian function 366 
centered on the patch; this emphasizes pixels near the center of the eye and de-emphasizes 367 
others.  368 

The final eye state estimate is the median eyelid gap among the top k closest exemplar 369 
patches (k was set at 10 based on cross-validation experiments). If desired, a threshold can be 370 
applied to the estimated eyelid gap to produce a binary “open” or “closed” state estimate. The 371 
confidence value is a function of the level of consensus (quantified by standard deviation) among 372 
the top k eyelid gaps. The assumption was that poorly matched patches would be more randomly 373 
distributed than well matched patches. To improve robustness to landmark errors, several 374 
different patch offsets (e.g., x = -5 to x = 5 pixels) are tried and the offset with the best match is 375 
chosen. The algorithm computes a confidence value for the estimate by measuring the consensus 376 
among the k closest exemplar patches: confidence = 1 – std((gap1, gap2, …, gap10))/N, where std 377 
is standard deviation and N is set empirically. 378 
 379 
Results for Head Pose, Eye, and Mouth State Estimation  380 
For initial testing, the Annotated Faces in the Wild (AFW) dataset (15) was used, which includes 381 
468 faces in a wide variety of real-world conditions. FIGURE 5(a) shows qualitative results from 382 
the proposed algorithm on AFW faces. Although some mistakes are inevitable (bottom row), our 383 
approach is robust to a wide variety of "in-the-wild" conditions. AFW faces include accurate 384 
ground truth annotations: 68 landmarks and yaw, pitch, and roll head rotation angles for each 385 
face. To minimize the differences between AFW images and SHRP2 video frames, all AFW 386 
images were converted to grayscale and resized all faces to the typical size of SHRP2 faces (30-387 
pixel inter-ocular distance (IOD)) using the face detection result. Note that the results in 388 
FIGURE 5(a) were computed on these more difficult, smaller grayscale faces; however, the 389 
algorithm outputs landmark estimates that are rescaled to the original image resolution, and so 390 
they are simply shown overlaid on the original images. In previous work (20), quantitative 391 
results showed that the proposed landmark localization algorithm produces results favorable in 392 
accuracy to several state-of-the-art approaches on AFW faces.  393 

FIGURE 5(b) shows quantitative results for pose estimation on challenging clips (2,600 394 
frames total) from several SHRP2 NDS videos. Accuracy is computed relative to manually-395 
annotated “ground truth” yaw angles. For approximately 70% of the test frames our algorithm 396 
estimates the yaw angle of the driver’s head to within 15 degrees. The yaw angle estimation 397 
accuracy of our algorithm compares favorably to two commercial software libraries applied to 398 
the same clips: Verilook (34) and Dlib (35). 399 

FIGURE 5(c) and (d) show quantitative results for eyelid and mouth gap estimation, 400 
respectively (large eyelid gap implies an open eye state, and small eyelid gap implies a closed 401 
eye state). Due to lack of eye or mouth state ground truth with SHRP2 data, results are shown for 402 
AFW faces, which include detailed eyelid and lip landmarks from which ground truth eyelid and  403 
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 404 
(a) 405 

(b) 406 

 407 
 (c)   (d) 408 

FIGURE 5: (a) Qualitative results on AFW faces. Cumulative error distributions of: (b) 409 
yaw head pose on SHRP2 NDS sample video frames, (c) vertical eyelid gap on AFW faces, 410 

and (d) vertical mouth gap on AFW faces. 411 
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mouth gaps can be computed. We see that, due to the low resolution of the test faces (similar to 412 
SHRP2 resolution), k-nearest neighbors classification of eye and mouth patches outperforms gap 413 
estimates using only the eyelid and mouth landmarks. For 85% of AFW faces, our algorithm 414 
estimates eyelid openness to within 1.5 pixels from ground truth, and to within 4.5 pixels for 415 
mouth openness. In all cases, faces were resized to 30 pixels inter-ocular distance (IOD), which 416 
is similar to the size of SHRP2 driver faces. 417 
 418 
CONCLUSIONS & RECOMMENDATIONS 419 
The challenging nature of SHRP2 NDS videos requires the development of innovative 420 
approaches for ultimately achieving the goal of automatic feature extraction for quantifying 421 
driver distraction and engagement. Experience shows that clips most relevant to distraction and 422 
disengagement are likely to be those that are most difficult to code automatically. Therefore, all 423 
the algorithms presented in this paper produce a confidence value associated with each estimate 424 
to identify where manual involvement might be necessary. 425 

A flexible, two-stage video analysis pipeline for tracking head position and estimating 426 
head pose, and eye and mouth states was developed. A novel template matching approach was 427 
designed to address the challenge of driver movement, off-center head position, and head 428 
rotation. Results on challenging SHRP2 NDS videos are very promising; specifically, no false 429 
positives and false negatives below 1%. Previous landmark localization work by the authors was 430 
adapted and extended to better handle the challenges of SHRP2 videos. The accuracy of the new 431 
head pose estimation module is competitive with the state of the art, and produces good 432 
qualitative results on SHRP2 NDS videos. Eye state estimation is particularly challenging in the 433 
SHRP2 videos because they have low resolution and low dynamic range. Therefore, an exemplar 434 
approach was developed for eye and mouth state estimation. Based on the initial quantitative 435 
evaluation on challenging low-resolution “in-the-wild” faces and the qualitative evaluation on 436 
SHRP2 video frames, this approach to eye and mouth state estimation shows promise. Work to 437 
date has focused on implementing proof-of-concept solutions. Future work will continue to 438 
improve the robustness, accuracy and runtime of the video analysis pipeline.  439 
 440 
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