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Abstract—Delineation of radiofrequency-ablation-induced coagulation (thermal lesion) boundaries is an impor-
tant clinical problem that is not well addressed by conventional imaging modalities. Elastography, which
produces images of the local strain after small, externally applied compressions, can be used for visualization of
thermal coagulations. This paper presents an automated segmentation approach for thermal coagulations on 3-D
elastographic data to obtain both area and volume information rapidly. The approach consists of a coarse-to-fine
method for active contour initialization and a gradient vector flow, active contour model for deformable contour
optimization with the help of prior knowledge of the geometry of general thermal coagulations. The performance
of the algorithm has been shown to be comparable to manual delineation of coagulations on elastograms by
medical physicists (r � 0.99 for volumes of 36 radiofrequency-induced coagulations). Furthermore, the automatic
algorithm applied to elastograms yielded results that agreed with manual delineation of coagulations on
pathology images (r � 0.96 for the same 36 lesions). This algorithm has also been successfully applied on in vivo
elastograms. (E-mail: wuliu@wisc.edu) © 2006 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Image-guided radiofrequency (RF) tumor ablation has
provided an effective and safe means to treat a large
variety of benign and malignant conditions and holds
promise as a treatment on an outpatient basis (De Sanctis
et al. 1998; Goldberg et al. 2000, 2003). RF ablation is an
interstitial focal ablative therapy in which an electrode is
placed into a tumor to cause heating and cauterization of
the tumor from ionic agitation. The rapid vibration of
ions creates friction, thereby heating the region-of-inter-
est (ROI). The goal of tumor ablation is complete de-
struction of tumor targets without excessive damage to
surrounding healthy tissue.

Imaging modalities that dynamically and precisely
monitor the cellular damage during and after treatment
are important to the success of RF ablation therapy
(Goldberg et al. 2000, 2003). Ultrasound (US) is a com-
monly used modality for guiding RF ablation procedures
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for hepatic tumors (Goldberg et al. 2000; Giorgio et al.
2003; Hansler et al. 2004). For lesions that are subopti-
mally visualized by US, ablation procedures may be
performed under computed tomography (CT) guidance
(Cha et al. 2000; Antoch et al. 2002) to optimize RF
electrode positioning and monitor the extent of coagula-
tion. However, CT generally is not used for real-time
monitoring.

Elastography, a new imaging modality that is based
on US, is sensitive to small changes in elastic modulus
(Kallel et al. 1998) and thus, it has the potential to image
and differentiate thermal coagulation necrosis from
healthy surrounding tissues. Figure 1 shows US B-mode,
elastographic and pathologic views of a typical thermal
coagulation. On the conventional B-mode image, the
RF-induced coagulation exhibits both hyperechoic and
hypoechoic regions at the apparent coagulation site.
However, it has poor contrast and it is extremely difficult
for the interventionist to judge the adequacy of the RF
treatment, because margin delineation is uncertain. In
contrast, the thermal lesion can be clearly seen as a low

strain (dark) region on the elastogram, as seen in Fig. 1.
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RF ablation is known to increase the stiffness of tissue at
the treated site and US elastography (Ophir et al. 1991;
Varghese et al. 2001) detects and images these changes.
We have shown that 2-D and 3-D elastography exhibit
high coagulation-to-liver contrast for RF-induced ther-
mal lesions, as well as good correlation with pathology
(Varghese et al. 2002; Liu et al. 2004; Varghese and Shi
2004).

The use of 3-D US is rapidly increasing, both in the
research environment and in clinical settings (Fenster et
al. 2001). 3-D usage also applies to elastography because
of advantages of volumetric data over conventional 2-D
data for quantitatively monitoring therapeutic procedures
and for follow-up studies. However, the immense quan-
tity of 3-D data can lead to new problems, particularly if
extracting surfaces and volumes from the 3-D data set is
required. For example, manually tracing RF-induced co-
agulation boundaries, which requires substantial exper-
tise and experience in image interpretation, is time-con-
suming and tedious. Therefore, accurate, reproducible
and fast segmentation techniques are desired.

Although there is little literature on automated seg-
mentation of treated sites during RF ablation, segmenta-
tion techniques for US images have been reported for
applications with echocardiographic (e.g., Corsi et al.
2002; Angelini et al. 2005), breast (e.g., Horsch et al.
2002; Chang et al. 2003a) and prostate data (e.g., Shen et
al. 2003; Gong et al. 2004). Because of characteristic US
artefacts, such as speckle and shadowing, intensity inho-
mogeneities, low contrast and ill-defined boundaries,
simple image feature-based thresholding or edge-detec-
tion methods are ineffective. Successful segmentation
algorithms reported for US images are based on morpho-
logic operations (Czerwinski et al. 1999; Gong et al.

Fig. 1. (left) US B-mode, (center) elastographic, and (r
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2004), neural networks (Binder et al. 1999), wavelet
analysis (Angelini et al. 2001) and Markov random fields
(Haas et al. 2000; Xiao et al. 2002; Brusseau et al. 2004;
Gong et al. 2004). These incorporate preprocessing for
speckle reduction (e.g., the “stick” method) (Czerwinski
et al. 1999), anisotropic diffusion (Perona and Malik
1990) and intensity corrections (Xiao et al. 2002).

Active contour models (Kass et al. 1987) are used as
the basis of many techniques in medical image segmen-
tation (McInerney and Terzopoulos 1996). An initial
contour is placed in an “energy field” defined by the
image data, and the contour is then iteratively deformed
to the desired shape and position by minimizing an
energy function. The energy function is defined in terms
of internal energy (i.e., contour shape, continuity,
smoothness) and external energy (i.e., image features
such as the intensity and the gradient of the intensity and
possibly other user-defined external constraints). Con-
tours may be represented explicitly (known as parametric
active contours also known as “snakes”) (Kass et al.
1987) or implicitly as level sets of a higher dimensional
scalar function, taking into account the intrinsic geome-
try of the contour (known as a geometric active contour
based on contour evolution methods) (Osher and Sethian
1988). Both parametric (e.g., Sebbahi et al. 1997; Chang
et al. 2003b) and geometric (e.g., Pathak et al. 1997;
Corsi et al. 2002) active contour models have been used
in segmentation of CT, magnetic resonance imaging
(MRI) and US images. Our work applies a parametric
active contour model to US-based elastography.

A variant of active contours called gradient vector
flow (GVF) snakes was introduced by Xu and Prince
(1998) to improve performance of contour segmentation.
The GVF active contour has a larger capture range (i.e.,
it is less sensitive to contour initialization) and exhibits
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tional snakes. This technique has recently been used in
US for segmenting breast tumors in B-mode images
(Chang et al. 2003b) and for tracking cardiac wall ex-
cursions in echocardiography (Sanchez et al. 2000). Be-
cause of the expected superior performance of this meth-
odology, the GVF snake was chosen for segmenting
thermal lesions in elastograms in this study. Our previous
work (Techavipoo et al. 2004) presented a semiauto-
mated segmentation method based on simple morpho-
logic operations. We did not find other papers reporting
segmentation of elastographic images.

The purpose of this paper was to describe a fully
automated method to segment stiff lesions from the
background in 2-D and 3-D elastographic data sets for
cross-sectional area and volumetric measurements. The
proposed algorithm is based on a coarse-to-fine transfor-
mation (Gaussian pyramid) (Burt and Adelson 1983) for
active contour initialization and a gradient vector flow
active contour model for deformable contour optimiza-
tion, with the help of prior knowledge of the geometry of
general thermal coagulations.

MATERIALS AND METHODS

Elastogram production
RF ablation in vitro was performed on specimens of

freshly excised canine liver tissue (refer to Varghese et
al. 2003 for details). A total of 44 RF coagulations were
created, scanned and measured to obtain the thermal
coagulation area and volume. An Aloka SSD 2000
(Aloka, Tokyo, Japan) real-time US scanner with a
42-mm 5-MHz linear-ray transducer with a 70% band
width was used. 3-D elastographic data were produced
by acquiring RF echo data before and after 0.5% com-
pressions from scan planes separated by 2-mm incre-
ments. In general, about 15 scan planes contained the
thermal coagulation. Time-domain cross-correlation
analysis of the echo signals from the pre- and postcom-
pression data sets for each image plane was performed. A
window length of 3 mm with a 75% overlap between
data segments was used to compute tissue displacements.
Axial strain was estimated using a least squares strain
estimator (Kallel and Ophir 1997) with a kernel size of
2.25 mm. After US scans, the liver specimens were fixed
in a formalin solution for at least 2 weeks and then sliced
in 2-mm intervals. The tissue slices were placed on a
transparent film and photographically scanned. These
fixed gross-pathology images were used to obtain vol-
ume estimations of the thermal coagulation.

Automated segmentation
The gradient vector flow snake algorithm (Kass et

al. 1987; Cootes et al. 1994) was used for automatic

segmentation of thermal lesions. A snake is defined as an
energy-minimizing spline, where the snake energy de-
pends on the contour shape and location in the image. To
construct the contour of a thermal lesion, we first placed
a circular spline on the central image of a 3-D data set. Its
energy was then minimized through spline deformation.
Local minima of this energy correspond to desired image
properties.

The contour is defined parametrically as X(s) �
[x(s),y(s)], where s� [0,1] is the normalized arc length
along the contour. The energy functional to be mini-
mized is (Kass et al. 1987):

Etotal � �
0

1 ��(s)�dX(s) ⁄ ds�2 � �(s)�d2X(s) ⁄ ds2�2�ds

� �
0

1 Eext(X(s))ds, (1)

which is a sum of the internal energy of the snake (first
term) caused by bending, and the external energy (sec-
ond term) based on image properties. �(s) and �(s)
govern the relative influence of terms that specify the
“continuity” and “smoothness” of the snake, respec-
tively. Minimizing Etotal can be done by solving Euler’s
equation (Kass et al. 1987) because, in our application,
we used �(s) � � and �(s) � � (constants):

�X � (s) � �X �� (s) � � Eedge � 0, (2)

where the primes mean derivatives. The lesion boundary
we are looking for is a closed, circular-like contour.
Therefore, the external energy used for thermal coagu-
lation segmentation was based only on the edge features
in the image:

Eext � Eedge � ���[G	(x, y)∗I(x, y)]�2, (3)

where I(x,y) is the grey level of the elastogram image and
G	(x,y) is a blur function perpendicular to the contour’s
orientation at (x,y). Euler’s equation can also be viewed
as a force balance equation:

Fint � Fext � 0 (4)

The internal force, Fint, discourages stretching and bend-
ing while the external potential force, Fext, pulls the
snake toward the desired image edges of thermal lesions.
In homogeneous regions of the image, Fext is nearly zero.
Therefore, no force drives the snake to the desired
boundary. To overcome this, the gradient vector flow
(GVF) snake method (Xu and Prince 1998) defines a new
external force field, V(x,y) � [u(x,y)
(x,y)], which is the
vector field that minimizes the energy functional:

E � ���(ux
2 � uy

2 � 
x
2 � 
y

2)���Eedge�2�V

� � Eedge�2dxdy, (5)
where � is a regularization parameter controlling the
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trade-off between the first term and the second term in
the integrand and whose value depends on the noise in
the image, and ux, �x, uy, and �y are partial derivatives
with respect to x and y. In a homogeneous region, the first
term dominates and provides a slowly varying field. In
the region close to the object boundary, the second term
dominates and is minimized by setting V � ��Eedge.
V(x,y) cannot be written as a potential force like the
traditional snake. It starts from the force equalization
function and replaces the term �Eedge in eqn (2) with
V(x,y). Note that eqn (3) is used in eqn (5) to calculate
V(x,y).

V(x,y) was calculated by treating u and 
 as a
function of time and solving the diffusion equations
iteratively as discussed in (Xu and Prince 1998). After
computing V(x,y), the snake X(x,y) was solved by per-
turbation and iteration methods discussed in Kass et al.
(1987).

Contour initialization is the first critical step for the
snake algorithm. The initial contour generally has to be
close to the desired contour to avoid being trapped in a
local minimum of the energy function that does not
correspond to the true object boundary. Interactive algo-
rithms generally need image-specific initialization
(Yezzi et al. 1997; Corsi et al. 2002; Horsch et al. 2002;
Wolf et al. 2002; Fenster and Downey 2003; Lin et al.
2003) and/or allow interactive correction of results (Kon-
ing et al. 2002; Wolf et al. 2002). Some procedures start
by placing initial points of the contour close to the
desired feature, using operators (Corsi et al. 2002; Fen-
ster and Downey 2003; Lin et al. 2003) or an initial seed
(Yezzi et al. 1997; Horsch et al. 2002; Wolf et al. 2002).
For images that contain two distinct regions, manual
initialization may be substituted by an initial curve-
detection scheme to make the segmentation fully auto-
mated. For example, a tumor boundary in a breast image
may be detected by automatic thresholding followed by
morphologic operations, and the boundary between
blood and an arterial wall may be computed by separat-
ing regions with different statistical properties of the US
image texture (Chang et al. 2003a, 2003b; Shen et al.
2003).

Although GVF snakes have a larger capture range
than traditional snakes, initialization of the contour is
still critical to successful segmentation. To relax the
initialization constraint, we used a coarse-to-fine seg-
mentation approach. The use of a single choice of reso-
lution generally does not produce good segmentation.
This is because, at a coarse level, a coagulation boundary
is not accurately delineated because of smoothing that
reduces shape detail. On the other hand, fine resolution
representations contain many edges and very jagged and
spurious boundaries. However, a multiresolution ap-

proach, in which boundaries are detected at a range of
scales, tracing the boundary detected from coarse reso-
lution down through the highest resolution yields accu-
rate spatial localization.

A flowchart for the segmentation process is pre-
sented in Fig. 2a. To accomplish the multiresolution
approach, a Gaussian pyramid (Burt and Adelson 1983)
was constructed by hierarchically convolving the origi-
nal image with a spatial Gaussian kernel, smoothing with
Gaussians (low pass filters) and resampling at each level.
The pixel value in a level was the weighted average of
pixel values in the next lower level. Each level in the
pyramid represents the image at 1.5 times lower resolu-
tion than the image in the level below it. Neighboring
pixels in an upper-level image are more independent
because subsampling reduces their correlation. The
snake algorithm was applied level by level, starting with
the lowest resolution image in the pyramid and interpo-
lating the result of one level as the initial contour for the
next higher resolution level. We took steps to ensure that
the initial contour was inside the coagulation using the
mechanism described below. If it is initialized, even
partially, outside the coagulation area, it will be attracted
as much by other edges of the image as by the coagula-
tion boundary, and most of the spurious edges are outside
the coagulation area, especially at the distal side of the
coagulation because the signal-to-noise ratio is low in the
elastogram because of US shadowing effect. The final
contour for a given image plane was the output of the
snake after applying the interpolated result to the highest
resolution image of the pyramid.

To achieve fully automatic segmentation, as shown
in Fig. 2a, template matching at a coarse level of the
Gaussian pyramid was performed first to determine an
initial contour for the snake. Template matching on the
low-resolution image is fast and relatively immune to
noise. Thermal coagulations are stiffer than surrounding
tissue and show as dark regions on an elastogram with a
light background. Because we had prior knowledge that
the thermal coagulation is spherical or ellipsoidal in
shape because of the RF ablation technique used and the
tissue response to heating, circular disks of variable sizes
(r � 0.3 cm to 1.5 cm), with an outer ring having an area
the same as the central disk, were used as trial templates.
The goals were to find the location and size of template
that matched the elastogram image. The best matching
position was defined where the normalized cross-corre-
lation of the template and image was maximum. If a
simple disk were used as the template, any homogeneous
region in the elastogram image could yield high correla-
tion with the template. However, the disk-annulus tem-
plate avoids this complication.

We chose a circular template instead of an ellipsoi-
dal template based on prior knowledge of lesion shapes,

as stated above. Because the number of degrees of free-
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dom is less, computation time for template matching was
saved without losing performance. A fast algorithm
based on the fast Fourier transform was used to compute
the cross-correlation. Figure 2b is an example of the
matching templates used.

Fig. 2. (a) Flowchart for the segmentation process and (b) an
example of the matching templates used. The area of the outer

ring equals the area of the inner circular disk.
In the 3-D data sets in this study, there was a 2-mm
elevational separation between elastograms. This was a
compromise dictated by the need to acquire both pre- and
postcompression data sets, the use of a manual transla-
tion system and the desire to do the experiment on a
statistically significant number of thermal lesions. Thus,
plane-to-plane image features were not sufficiently con-
sistent in terms of the edges of the lesions to warrant the
use of a full 3-D active surface. Furthermore, simple
interpolation in the elevational direction may introduce
artifacts.

Because 3-D data are essentially reconstructed from
2-D slices, the 2-D algorithm described above was ap-
plied repeatedly on the sequence of 2-D images, starting
with the central plane of the 3-D data set and then
moving to adjacent planes. The number of levels used in
the Gaussian pyramid for the central slice was deter-
mined by an initial estimate of the lesion size in pixels
from the template-matching result. The number depends
on the resolution of the image and the size of the coag-
ulations. We wanted the lesion radius to be represented
by at least 10 pixels at the top level (lowest resolution) of
the pyramid to ensure that edge information had suffi-
cient detail to be detected by the active contour. For each
plane after the central one, an initial lesion location,
geometry and number of levels was estimated from the
processed, adjacent plane. The Gaussian blurring kernel
size 	 used was 0.7 to 2 pixels, and was larger at higher
resolution levels of the pyramid.

RESULTS

Figure 3 shows the performance of the active con-
tour method at different resolution levels for three 2-D
cases from our elastographic data. The rightmost images
are the original elastograms (level 0 in the Gaussian
pyramid containing the highest resolution). The leftmost
images are level 3 images, and level 2 and level 1 images
are in between. Higher level images are rescaled to the
size of the original images for display only. On each
image, the dashed line represents the initial contour and
the solid line shows the computed contour. On the lowest
resolution level, the snake was initialized by template
matching, as mentioned in the previous section. Note that
the initial contours here are circles. Instead of using the
best matching circle for this initialization, we used a
circle with a center the same as the center of the best
matching circle, and a radius that was 90% of the radius
of the best matching circle. This approach ensured that
the initial contour would be inside the coagulation. The
deformed snake computed for the lowest level was in-
terpolated to the next level and shrunk 10% to serve as
the initial guess for that level. This continued recursively
until level 0 was reached. Notice, in Fig. 3, that the snake

is gradually refined at the finer scales. Nevertheless, the
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boundary shape for each level generally remained similar
to that of other levels.

To give an example of the performance using different
initial contours, eight data sets were randomly selected (two
each from 70°, 80°, 90° and 100° ablation temperatures,
respectively, yielding coagulations of different sizes). Ther-
mal lesions in elastographic images for these data sets were
segmented using different sized initial contours. We com-

Fig. 3. Performance of the active contour method at diffe
panel (b) and bottom panel (c)) from our elastographi
pyramid, or the highest resolution). (left) Level 3 image
rescaled to the size of the original images for display pu

the solid line �
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segmented automatically, f
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Volume overlap (%) Average

SD 5.5
pared the results using 1.0*r, 0.9*r, 0.7*r and 0.5*r as the
radius of the initial contour, where r is the template size that
yields the maximum correlation with the image slices. The
results of this comparison are listed in Table 1, where the
extent of overlap of areas and volumes of thermal lesions
segmented manually and segmented automatically are
shown for different sized initial contours. The overlap was
computed using overlap � (Manual � Automated)/(Man-

solution levels for three 2-D cases (top panel (a), middle
(right) Original elastograms (level 0 in the Gaussian
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ual � Automated), where � and � represent intersection
and union, respectively.

Table 1 shows that, when the radius of the initial
contour was reduced to 0.5*r, the performance started
getting worse. For initial contours greater than this size,
but less than r, however, results appear to be similar
regardless of the value. Although there is no difference
between 1.0*r and 0.9*r in these eight random test cases,
we used 0.9*r for all our data sets because of the reason
discussed above.

With these steps, a reliable detection of the coagu-
lation boundary was obtained. Fig. 3a is an ideal case for
automated segmentation, which traced the stiffer region
on the elastogram accurately. Figure 3b shows that, even

Fig. 4. A typical automated segmentation result for (a) a 3
images. Only the level 0 images are shown, and only eve

automated se
if there are “difficult” regions to segment, caused, for
example, by the area below the coagulation, the method
is sufficiently robust to find a desired contour (i.e., one
that agrees with manual segmentation). Most of our
experimental images are similar to those in Fig. 3a and b.
However, a small percentage of images, as in Fig. 3c,
yielded results obviously different from manual segmen-
tation. In this example, the snake did not stop at the weak
edge below the coagulation, but proceeded farther down;
although, in finer resolution images, the result improved,
as expected. Depending on the image quality, there may
be zero, one or sometimes a few unsatisfactory slices in
each 3-D set of elastograms. However, in every data set,
there was sufficient information to estimate the lesion
volume.

stography data set and (b) its corresponding US B-mode
er slice from the 3-D volume is shown. Contours are the
ation results.
-D ela
ry oth
Figure 4a is a typical automated segmentation result
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for a 3-D data set, and Fig. 4b presents the corresponding
US B-mode images. Only the level 0 images are shown
in Fig. 4a, and only every other slice from the 3-D
volume is shown. Contours are segmentation results.
This result shows how, after selecting the initial contour
in the central slice, the algorithm successfully segmented
the coagulation in each remaining slice. Figure 5 is
another example, showing that the method gives desir-
able results for a more difficult case.

For further tests, parameters used for the algorithm
were chosen by applying the algorithm on the training set
(first eight thermal coagulations we acquired) and visu-
ally judging the desirability of final contours. This set of
parameters was then used for the remaining 36 coagula-
tions, for example, � � 0.6 and � � 0.3 in eqn (2); � �
0.1 in eqn (5). However, we observed that, for most of
our data, the final contours did not appear to be sensitive
to the selection of parameter values, as long as they were
within the neighborhood of values just mentioned.

Figure 6 is one of the 3-D surface reconstruction
results for these thermal coagulations. The problem with
3-D surface reconstruction from a series of 2-D image
slices is the lack of information between adjacent planes.
An effective interpolation method or more data are de-
sired for a better reconstruction.

Although automatic segmentation is the ultimate
goal, manual tracing is still commonly used in clinics and
is considered to be the most accurate and reproducible
segmentation method for many problems. Based on 36
thermal coagulations, the average area overlap of the
central slice elastograms was 89.5%. Using results for
every image plane, the average volume overlap of the
segmented coagulations was 84.3%. Figure 7 shows a

Fig. 5. Another example of an automated se
scatterplot of coagulation volume measurements, com-
paring manually delineated volumes with automatically
segmented volumes. They are highly correlated (corre-
lation coefficient, r � 0.994), indicating that the auto-
matically segmented results are very good if we assume
manual depiction is the standard. Figure 8 displays scat-
terplots of coagulation volume measurements comparing
manual or automated elastography volumes with fixed
tissue pathology (manually depicted by a medical phys-
icist). The correlation coefficient between manually de-
lineated elastography volumes and pathology volumes is
0.972, and that between automated elastography volumes
and pathology volumes is 0.967. Elastography tends to
slightly underestimate the actual coagulation size found
on gross pathology (Liu et al. 2004). However, the high
correlation demonstrates that elastograms are valuable

ation result for a 3-D elastography data set.

Fig. 6. An example of a 3-D reconstructed thermal coagulation

surface.
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for coagulation observation, and the results of Fig. 8
support the contention that the proposed segmentation
algorithm can be used successfully for this application.

DISCUSSION

Our segmentation algorithm has the option of al-
lowing users to examine the automated segmentation
results and edit unsatisfactory parts interactively. This
provides physicians with an automated segmentation tool
to obtain diagnostically useful information quickly and
accurately for most cases, and allowing full control over
the results. Our goal is to segment not only rapidly but,
also, accurately, instead of seeking the least possible user
interaction, although we did not do any interactive cor-
rection when doing the automated-manual correlation
analysis above.

The algorithm was implemented in Matlab version
7 (MathWorks Inc, Natick, MA, USA) and takes tens of
seconds to process a 3-D image (about 15 slices) on a P4
2.8-GHz 1-GB RAM computer running Windows XP.
The computationally intensive parts were written in
C�� and incorporated into Matlab. In our data sets, the
mean computation time for 3-D data set segmentation
was 44.3 s, and the minimum and maximum execution
times were 15.1 s and 110.5 s, respectively. Combined
with the close correspondence between the manual and
automated segmentation results, this demonstrates that
the automated algorithm is able to provide quantitative
thermal coagulation segmentations comparable to those
obtained by manual delineation.

Although the results presented are for automated

Fig. 7. Coagulation volumes obtained by manual depiction vs.
volumes computed after automated segmentation. (—) From

the least squares fit; (—-) the line of equal size.
segmentation of in vitro ablation specimens, similar re-
Fig. 8.
Coagulation volume measurements comparing (a) manual and
(b) automated elastography volumes with volumes obtained
Fig. 9. Three examples of automated segmentation of thermal

coagulations created in a pig liver in vivo.
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sults are expected under in vivo conditions. To illustrate
this, in vivo elastograms for thermal coagulations in pig
liver were used to further test the algorithm (Varghese et
al. 2002). Only 2-D images were acquired and tested at
this time. However, the results are promising, as shown
in Fig. 9. The elastogram image quality here is lower
than the image quality for in vitro studies presented
above, caused in part by use of the RF probe itself as the
compressor, rather than use of an external plate compres-
sor as was done in this study. Nevertheless, boundary
depiction seems to agree with that that would be traced
manually.

Another potentially significant application of this
segmentation algorithm is for use in real-time breast
elastography. A real-time elasticity imaging system has
been developed (Zhu and Hall 2002; Hall et al. 2003)
that provides side-by-side, synchronous B-mode US and
elasticity images. The frame rate is high enough to con-
trol the boundary conditions of freehand deformation to
consistently obtain high-quality elasticity images. Pre-
liminary clinical trials with this system have demon-
strated that elasticity imaging provides new information
that is useful for diagnosing solid breast tumors (Regner
et al. 2004). After a diagnosis of breast cancer has been
made, the extent of disease must be assessed for treat-
ment planning, prognosis and the evaluation of the effi-
cacy of preoperative chemotherapy (Kepple et al. 2004).
Several studies have demonstrated that B-mode ultra-
sonic imaging tends to underestimate the preoperative
size of a tumor compared to pathology measurement
(Pritt et al. 2004). More recent work (Hall et al. 2003;
Regner et al. 2004) has shown that the size of a breast
tumor is larger in elasticity images than shown in B-
mode US images, and it is a reasonable hypothesis that

Fig. 10. An example of side-by-side, (left) synchronous
vivo with (right) the automated lesion
the tumor size in elasticity images is a more accurate
representation of that measured at pathology. Automated
detection of tumor margin in breast elastography is de-
sired for diagnostic uses. A preliminary segmentation
result using the proposed algorithm is shown in Fig. 10.
The computer-generated contour successfully delineated
the breast lesion, suggesting that this may be a feasible
approach.

The coarse-to-fine active contour method described
here is effective for segmenting regions on images that
have relatively regular, well-circumscribed single mar-
gins. Some clinical cases, however, might not exhibit this
degree of regularity. Examples include speculated breast
masses (Hall et al. 2003), thermal coagulations created
using multiple RF probes (Lee et al. 2003) and coagula-
tions formed near large blood vessels. Here, it may be
worthwhile to investigate alternative segmentation meth-
ods, such as the watershed transformation and level sets.
The watershed transformation (Beucher and Lantuejoul
1979) is a region-segmentation method using topo-
graphic and hydrology concepts. All points that drain
into a common catchment basin are part of the water-
shed. However, morphologic or multiresolution methods
may have to be applied to reduce oversegmentation, a
characteristic of the algorithm. Level sets (Osher and
Sethian 1988) refer to a contour evolution method that
defines the problem in one higher dimension. It can
handle features that the active contour method has diffi-
culties with, including self-intersecting contours and
changes in topology. Both the watershed transformation
and levels sets have been applied for segmenting struc-
tures on B-mode images (Krivanek and Sonka 1998;
Huang and Chen 2004; Angelini et al. 2005; Moon et al.
2005). Their role for elastographic image segmentation

e B-mode US and elasticity images in human breast in
ntation result for the elasticity image.
real-tim
will be the topic of our future work.
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SUMMARY

Automated segmentation of thermal coagulations
viewed on 3-D elastograms can be achieved using active
contours. A scheme involving a coarse-to-fine method
for active contour initialization and a gradient vector
flow active contour model for deformable contour opti-
mization, with the help of prior knowledge of the geom-
etry of general thermal coagulations, yields contour re-
sults that are comparable to those of manual delineation.
This algorithm is suitable for evaluating its performance
in in vivo applications of elastography.
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