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Abstract. Current MCMC algorithms are limited from achieving high
rendering efficiency due to possibly high failure rates in caustics pertur-
bations and stratified exploration of the image plane. In this paper we
improve the MCMC approach significantly by introducing new lens per-
turbation and new path-generation methods. The new lens perturbation
method simplifies the computation and control of caustics perturbation
and can increase the perturbation success rate. The new path-generation
methods aim to concentrate more computation on “high perceptual vari-
ance” regions and “hard-to-find-but-important” paths. We implement
these schemes in the Population Monte Carlo Energy Redistribution
framework to demonstrate the effectiveness of these improvements. In
addition., we discuss how to add these new schemes into the Energy Re-
distribution Path Tracing and Metropolis Light Transport algorithms.
Our results show that rendering efficiency is improved with these new
schemes.

1 Introduction

Generating a physically-correct image involves the estimation of a large number
of highly correlated integrals of path contributions falling on the image plane.
Markov Chain Monte Carlo (MCMC) algorithms such as Metropolis Light Trans-
port (MLT) [1], Energy Redistribution Path Tracing (ERPT) [2], and Popula-
tion Monte Carlo Energy Redistribution (PMC-ER) [3] exploit the correlation
among integrals. They all reduce the variance and improve the efficiency during
rendering images. However, MCMC algorithms are limited from achieving higher
rendering efficiency due to the possibly high failure rate in caustics perturbation
and the stratified exploration of the image plane.

The predicted range of the perturbation angle for caustics perturbation de-
pends on the path and scene properties. If the predicted range is too large, the
failure rate of the caustics perturbation will be high and cause extra high energy
to accumulate at some specific spots on the image plane. As a result, the large
predicted range decreases the rendering efficiency. Additionally, the MCMC algo-
rithms need to implement the lens and caustics perturbation separately because
it is impossible for the original lens perturbation to generate a new mutated
path for caustics paths with the form of EDS∗D+(D|L) which is a notation of
light tranport paths introduced by [4, 1]. MCMC algorithms have issues in the



extra cost needed for computing the perturbation angles for each path and the
burden in predicting the perturbation change on the image plane.

Stratified exploration of the image plane is another limitation because the
importance of regions in the image are not perceptually the same. To achieve
unbaisedness, the ERPT and PMC-ER algorithms carefully generate new paths
by evenly distributing the path samples on the image plane. This choice is subop-
timal because some areas on the image plane contain higher perceptual variance
than others. To contribute more computational effort in reducing the variance in
these high perceptual variance regions would increase the perceptual quality. In
addition, some types of paths such as caustics paths are visually important but
hard to find with a general path tracing algorithm. Concentrating more com-
putational effort on these paths can further improve the rendering efficiency.
However, evenly exploring the image plane prevents MCMCs from spending
more computation effort in exploring those “hard-to-find-but-important” paths
and limits the improvement in rendering efficiency.

To address these two limitations, we augment lens perturbation to include
caustics perturbation. This new perturbation allows us to control the mutation
by a single and simple lens perturbation radius and increases the success rate
of caustics perturbations to improve the rendering efficiency. We propose two
methods to generate paths in order to spend more computational effort on ex-
ploration of noisy regions and “hard-to-find” paths without introducing bias.
We present a variance-generation method that generates paths passing through
high perceptual variance regions on the image plane to enhance the perceptual
quality of the visually important regions in the rendered image. We also present
a caustics-generation method generates a set of caustics paths with the goal of
exploring the caustics path space more thoroughly. We weigh the energy de-
posited by each perturbation according to the type of the population path to
prevent new generation methods from introducing bias.

2 Related Work

Currently, most global illumination algorithms are based on ray tracing and
Monte Carlo integration. Two categories exist: unbiased methods such as [5–7];
and biased methods such as [8, 4, 9]. Interested readers can refer to Pharr and
Humphreys [10] for an overview of Monte Carlo rendering algorithms.

Sample reuse is an important technique to reduce the variance by exploit-
ing the correlation among integrals. Metropolis Light Transport (MLT) [1] and
Energy Redistribution Path Tracing (ERPT) [2] mutate existing light transport
paths into new ones to make use of the correlated information among paths.
However, finding a good mutation strategies is important but non-trivial for
rendering efficiency. PMC-ERs [3] adapt the Population Monte Carlo framework
into energy redistribution. Their algorithms can concentrate the computation on
the important light paths and automatically adapt the extent of energy redistri-
bution according to each path’s properties. This eases the problem of choosing
the non-trivial mutation strategies existing in MLT and ERPT algorithms. How-



Fig. 1. (a). This is a path of the form LDDSDE and used to demonstrate the replace-
ment of caustics perturbation with the new lens perturbation. We would like to replace
the caustics sub-path y5y4y3y2y1 of the form of EDSDD. We first perturb the pixel
position of the original path at y5 by uniformly choosing a point from the perturbing
disk and then cast a view ray to pass through the new pixel position as shown in
the bottom to get y′

4. We link y′

4 and y3 to form the link path. Then, we extend the
sub-path through the same specular bounce at y′

3 as the corresponding y3 to get y′

2.
Then, y′

2 and y1 are linked to form a new lens-perturbed path with the same form of
LDDSDE as the original one. (b). A caustics path is generated by tracing the ray from
a light source. Each vertex in the path is linked to the camera vertex. The algorithm
then checks whether the new linked path is a caustics path and if it is, it keeps it in
the candidate pool. After finishing the whole process, we then randomly choose a path
from the candidate pool and put it into the caustics path pool.

ever, there exist several limitations in MLT, ERPT, and PMC-ERs that prevent
them from achieving higher rendering efficiency. In this paper we propose several
new modifications to MCMC algorithms and implement them in PMC-ERs to
demonstrate their effectiveness in improving rendering efficiency.

3 New Schemes to MCMCs

In this section we present new lens mutation and path-generation methods in
PMC-ER-E. Interested readers can refer to [3] for the details of the original
PMC-ER-E algorithm. In this work, a path, Ỹ, is referred to as a light transport
path defined as [4, 11] and denoted as as L(S|D)∗E. Figure 1.(a) shows an
example of such paths.

3.1 New Lens Perturbation

Details related to the kernel function, the choice of mutation strategies, and the
computation of acceptance probability for the selected mutation are discussed
in [3]. Here we only focus on how to use the perturbation method to replace the
original caustics perturbation.



Figure 1(a) shows an example of our new lens perturbation method for a
caustics path. The lens perturbation replaces a sub-path yn−1 · · ·yk of the form
EDS∗(L|D). In the original implementation of lens perturbation, the lens fails
to replace this kind of path because it is impossible to find exactly the same
outgoing direction at the first specular bounce from the eye vertex when we
perturb the pixel position at the eye vertex. Thus, we need to use caustics per-
turbation. However, in our new lens mutation, we look to replace the sub-path
chain with E(D|S)+[S(D|S)]∗ sub-paths, which can directly replace the lens
and caustics perturbation. First, the perturbation takes the existing path and
moves the point on the image plane through which it passes. In our case, the
new pixel location is uniformly sampled within a disk of radius d, a param-
eter of the kernel component. The path is reconstructed to pass through the
new image point. If y′

n−2 is a specular vertex, we choose a specular bounce to
find the next vertex and then extend the sub-path through additional specular
bounces to be the same length as the original path. If y′

n−2 is a diffuse ver-
tex, we link y′

n−2 to y′
n−3 to form the link path and then extend the sub-path

through additional specular bounces to be the same length as the original path.
The transition probability for the new lens perturbation for a caustics path can

be computed as Td,lens(Ỹ
′|Ỹ) =

G(y′
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n−2)
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where G(y′
j ,y

′
j+1) is the geometric term between y′

j and y′
j+1, Ad is the area

of the perturbation, and θj′,in is the angle between the normal of the surface
and the direction of the incoming light ray at y′

j . This relieves us from the need
in the original caustics perturbation to estimate the perturbation angle, θ, for
each path. The computation for θ is difficult and hard to predict the movement
caused by the caustics perturbation on the image plane. When using our new
lens perturbation, we can use a single pixel perturbation radius to control the
movement of the radius on the image plane. The results show that control is
easier and movement on the image plane is more predictable.

3.2 Resampling

The resampling process consists of three steps: elimination, which eliminates
well-explored and low-contribution samples and deposits the remaining energy
of the eliminated path into the image; regeneration, which maintains a con-
stant number of paths in the population and designs an exploration pattern in
the path space; and adaptation of α values, which adjusts the energy distri-
bution area. In this section, we only focus on the process of regeneration. For
details of elimination and adaptation refer to [3]. To generate a new replacement
path, we use three types of regeneration paths: paths passing through a set of
stratified pixel positions, paths passing through a set of pixel positions gener-
ated according to the perceptual variance, and a set of caustics paths tracing
from the light sources. To achieve this, we need to have two modifications in the
original algorithm. First, we split the resampling loop into two loops (s, t). At
the beginning of each s loop, we need to modify the step of the generation of a
pool of stratified pixel positions to a pool of pixel positions and a set of caustics



paths in the original energy redistribution algorithm. At the t loop, we apply the
resampling process to the entire population. Second, we need to modify the en-
ergy deposition from Ed = ed to Ed = R∗ed where R is related to the properties
of the path discussed later in this section. The following are the implementation
details.

Pixel Positions from Stratification Criterion It is important to evenly
distribute the starting pixel positions in order to reduce variance and guarantee
the unbiasedness of energy redistribution algorithms. Thus, in each s loop, we
assign the Nuniform samples as initial paths for each pixel.

Pixel Positions from Perceptual Variance Criterion In order to gener-
ate new sample paths in regions with possibly higher perceptual variance, we
have to keep track of the radiance of traced paths similar to a path tracing al-
gorithm by adding an extra image variable, I. In the process of estimating the
average path energy, we keep track of the radiance of energy-estimated paths
in I. In the following steps we also keep track of the radiance of the newly
generated initial and replacement population paths in I. Then we can compute

the value β
(s)
i,j =

σ2
i,j

tvi(Ii,j) where Ii,j is the average radiance that falls on pixel

(i, j); σi,j is the variance among all radiance samples falling in pixel (i, j), and
tvi(I) is threshold-versus-intensity function introduced by Ferweda et al. [12]

for perceptually weighting the variance. β
(s)
i,j is used to indicate the degree of

requirement for more samples at pixel (i, j). At the beginning of each s loop,

we first choose Nvariance for (i, j)′s pixels, according to the weight β
(s)
i,j . After

choosing pixels, we can compute the total number of samples falling on a pixel,
Nuniform + Nvariance(i, j), and then we evenly distribute the starting pixel po-
sitions inside the pixel. This forms a pool of pixel positions. During the regen-
eration process, we ask for a pixel sample from this pool or ask for a new path
from the pool of caustics paths. If we get a pixel sample, we then use the path
tracing algorithm to generate a path passing through the new pixel positions.
The unweighed energy of the path is calculated as described in [3]. Later, we
will describe how to weigh the deposited energy without introducing bias.

Caustics Paths A path tracing algorithm traces paths starting from the eye.
However some types of paths are easier to trace when starting from a light
source, e.g. caustics paths. The photonmapping algorithm uses caustics photons
to improve the rendering efficiency. The rendering results in Figure 2.(c) show
that caustics paths are hard to find by the path tracing algorithm but they are
very important to generate the smooth caustic regions on the floor near the
dragon. Thus, these two observations motivate us to have specific types of light
paths to enable the exploration of caustics path space. At the beginning of each
outer iteration i.e the s loop, we generate a pool of Ncaustics caustics paths in
the following way. First, we choose a light source and then choose a position on
that light source as the start vertex. From the light vertex, we trace a path in the



scene as described in [11, 7]. Then, we connect each vertex in the light path to
the camera vertex. If the complete path formed is a valid caustics path, we keep
the path in the candidate pool. Finally, we can construct one valid caustics path
by randomly choosing a valid one from the candidate pool. Figure 1(b) shows an
example. The criterion for a caustics path is: first, the length of the path must be
over 4 vertices; second, the path must contain at least one specular vertex; third,
the first connection vertex from the eye vertex must be a diffuse surface. Without
weighting the path energy, these extra “hard-to-find” paths will introduce bias.
Next, we describe how to weigh the deposited energy without introducing bias.

Weighting the Energy of Newly Regenerated Paths In the original energy
redistribution algorithm, we evenly distribute the pixel positions. The energy
distribution ratio R should be 1. However, if we apply extra samples on each
pixel and extra caustics paths without weighting the energy of each path, the
extra samples and paths introduce biased energy into the image. In this section,
we describe how to weigh the energy to ensure that the result is still unbiased.
For the perceptual-variance-type regeneration, each pixel originally has Nuniform

samples dropped in the effective area and this guarantees that the expected
energy deposited from paths initialized from each pixel is the same. To keep the
energy deposit in the region statistically equal, we should weigh the deposited
energy of the path by Rvariance =

Nuniform

Nvariance(i,j)+Nuniform
where Nuniform is the

assigned uniform samples per pixel and Nvariance(i, j) is the sample assigned to
pixel (i, j) according to perceptual variance. By weighing the energy by a ratio of
Rvariance we make sure that the total energy expected to be distributed starting
from that pixel is the same.

The caustics paths are global because they are light paths that can pass
through any pixel position on the image plane. Thus, we need to handle them
a little differently. In a scene we should expect the ratio of caustics paths and
general paths generated from path tracing algorithm to be fixed. We can use
this ratio to weigh the energy of all caustics paths in order to avoid bias. The
ratio can be calculated as Rcaustics =

Nexpect

Nadd+Nexpect
where Nexpect is the expected

total number of caustics paths generated by the stratified regeneration method.
In the initial process, when we estimate the average energy of a path, we also
estimate RG2C which is the ratio of the total number of caustics paths to the total
number of general paths. Then, during the regeneration process, we compute the
Nexpect = RG2C ∗ Npixels ∗ Nuniform and Rcaustics. By weighing the energy of
each caustics path by a ratio of Rcaustics, we can guarantee the unbiasedness of
the final result.

However, the real ratio, R, of the path deposit energy is separated into the
following three situations: first, if a path is from the pool of pixel positions and
is a caustics path, the ratio should be Rvariance(i, j)×Rcaustics; second, if a path
is from the pool of pixel position but is not a caustics path, the ratio should be
Rvariance(i, j); third, if a path is from the pool of caustics paths, the ratio should
be Rcaustics. By using the appropriate ratio, we guarantee the unbiasedness.



Image Method Total Iter(S, T) Nvariance Ncaustics Time (s) Err Eff

Box1 E* 1, 1225 0 0 4769.1 0.0267 7.85e-3
E+Lens** 1, 1225 0 0 4683.1 0.0207 1.03e-2
E+Reg*** 1, 1225 199200 108000 5366.3 0.0135 1.38e-2

E+Lens+Reg 1, 1225 199200 108000 5266.4 0.0113 1.68e-2

Dragon E 1, 2430 0 0 13081.3 3.09 2.47e-5
E+Lens 1, 2430 0 0 12640.4 1 7.91e-5
E+Reg 1, 2430 779700 30300 14296.7 0.985 7.10e-5

E+Lens+Reg 1, 2430 779700 30300 14097.7 0.164 4.33e-4

Room E 8, 2350 0 0 96575.1 0.0274 3.78e-4
E+Lens 8, 2350 0 0 95812.1 0.0208 6.91e-4
E+Reg 8, 2350 170400 121200 98158.9 0.0105 9.70e-4

E+Lens+Reg 8, 2350 170400 121200 98032.5 0.00569 1.52e-3

Table 1. Measurements comparing the PMC-ER with original lens and caustics mu-
tation and the stratified regeneration with PMC-ER with the new lens mutation and
the stratified regeneration, PMC-ER with original lens and caustics perturbation with
all regeneration methods, and PMC-ER-E using all the new schemes.
* E represents the original PMC-ER-E algorithm using the lens and caustics mutation
with stratified regeneration.
** +Lens represents that we implement the new lens mutation into PMC-ERs.
*** +Reg represents implementations of the new regeneration methods in PMC-ERs.

4 Results

To evaluate the performance of our improvements, we compared our methods
against the original PMC-ER equal deposition algorithm on a Cornell Box (CB)
scene, a bunny scene, and a complex room scene using the criterion of starting
with a similar number of initial PT paths and the same perturbation, and the
same regeneration algorithm. In all three cases, we used a population size of 5000
and three perturbation radii: 5, 10, and 50 pixels. In each step in the inner loop,
each member generates 20 mutations, and 40% of the population is eliminated
based on its remaining energy and regenerated. We used 16 samples per pixel
(SPPs) for estimating Ẽ and RG2C .

When applying the new schemes to the PMC-ER algorithms, we used NSPP ,
the number of SPPs, to compute Ntotal, the number of initial paths, and Niteration,
the number of total iterations, for the PMC-ER algorithms. We then chose (S, T )
so that Niteration = S × T to indicate the total iterations used in PMC-ERs.
If we implement new regenerations into PMC-ERs, we chose the pool size of
the variance regeneration, Nvariance and the pool size of caustics regeneration,
Ncaustics for each S. Thus, (S, T ), (Nvariance, and Ncaustics) are the main param-
eters used. Table 1 presents the improvement statistics when applying each new
scheme separately and together with PMC-ER-E. We used the perceptually-
based mean squared efficiency (P-Eff) metric defined in [13] for comparing
algorithms.



Fig. 2. (a). The top image is a Cornell Box image computed using PMC-ER-E with
all new schemes with (S = 1, T = 1225, Nvariance = 199200, Ncaustics = 108000); the
left in the bottom is the cropped image of the caustics region for the Cornell Box
scene computed using PMC-ER-E with (S = 1, T = 1225), the middle the cropped
image computed by the PMC-ER-E algorithm with (S = 1, T = 1225), and the right
is the cropped image computed by the PMC-ER-E algorithm with (S = 2, T = 1225).
(b). The top image is a room scene computed using PMC-ER-E with all new schemes
with (S = 8, T = 2350); the bottom is computed using PMC-ER-E in (S = 8, T =
2350, Nvariance = 170400, Ncaustics = 121200). (c). The top is the rendering result of
a dragon scene computed using PMC-ER-E with all new schemes with (S = 1, T =
2430, Nvariance = 779700, Ncaustics = 30300); the left in the middle row is the cropped
image of the caustics region below the dragon head computed using PMC-ER-E, the
right in the middle row is the cropped image computed by PMC-ER-E with (S = 1, T =
2430), the left in the bottom row is the cropped image computed by PMC-ER-E with
(S = 3, T = 2430), and the right in the bottom row is the cropped image computed by
PMC-ER-E in (S = 8, T = 1620) iterations.



The comparison between PMC-ER-E with the original perturbations and
PMC-ER-E with the new lens perturbation in rendering the three scenes shows
that we gain improvement in rendering efficiency by a factor of 1.31 for the CB
scene, 3.2 for the dragon scene, and 1.82 for the room scene. The comparison be-
tween the original PMC-ER-E algorithm with stratified regeneration and PMC-
ER-E with the new regeneration methods in rendering the three scenes shows an
improvement of a factor of 1.76 for the CB scene, 2.87 for the dragon scene, and
2.56 for the room scene. The comparison between the original PMC-ER-E algo-
rithm with stratified regeneration and PMC-ER-E with all new schemes shows
an improvement of a factor of 2.14 for the CB scene, 17.53 for the dragon scene,
and 4.02 for the room scene.

When viewing an image, the attention of the viewer is drawn towards the
caustic regions in the image because caustic regions are usually brighter than
the regions next to them. Thus, improving the quality of the rendered caustic
regions has a large impact on the perception of a rendered image. The caustics
regeneration concentrates more computation in the caustics path space. In ad-
dition, the new lens mutation increases the perturbation success rate to increase
the exploration of the caustics path for each population path. As a result, our
algorithm can generate smoother caustics regions for the dragon and CB scene.

In the room scene, we observe that the variance-regeneration puts more sam-
ples around the regions of the light in the right of the image. There is no obvious
caustics region in the scene but the bright spots generated during the rendering
process mostly come from the caustics paths. Thus, concentrating more compu-
tation in exploration of caustics path space reduces the variance of the result
image. In addition, the failure rate of the caustics perturbation is high for this
scene. With the new lens mutation method, the success rate can increase signif-
icantly. As a result, the rendered image is much smoother.

5 Discussion and Conclusion

In this section we present a short discussion of how to apply these schemes in
the MLT and ERPT frameworks. The original lens and caustics pertubation
methods in MLT can be directly replaced by our new lens perturbation method.
To apply the new generation methods to MLT, we can first use these methods
to generate a pool of paths passing through high-variance regions and caustics
paths. Then, during the mutation process, we can replace the current seed path
with one of the paths from the pool. We can compute the acceptability probabil-
ity accordingly and decide whether the seed path transfers to the new generated
path. This should achieve a similar result as presented in our demonstration.
Since ERPTs contain a preprocessing phase to estimate the average energy of
paths, we can implement a similar algorithm as stated in Section 3.2 to estimate
the perceptual variance in each pixel and RG2C in the preprocessing phase. Af-
ter deciding on the number of caustics paths and variance-generated samples,
we distribute the variance-generated samples according to the perceptual vari-



ance and generate caustics paths. The energy-deposited ratio, R, is computed
as described in Section 3.2.

Except for the factors listed in the original PMC-ER algorithm [3], there is
another important factor which is the ratio between the total number of the
stratified regeneration paths and the special regeneration paths. If the ratio is
high, the image space exploration rate will be too low. As a result, this reduces
the variance of those highly explored regions but we will have a higher variance in
other regions. If the ratio is too low, our algorithm reverts to the original PMC-
ER algorithm. In the current implementation a proper value is set by trial and
error. In the future, we would like to implement some automatic mechanisms.

In this paper we proposed two new path regeneration mechanisms by tracing
paths through high perceptual variance regions and generating “hard-to-find”
paths with a proper weighting scheme for concentration sampling without in-
troducing bias. In addition, the new mutation method eases the control and
computation of the caustics perturbation. Both schemes improve rendering effi-
ciency.

References

1. Veach, E., Guibas, L.J.: Metropolis light transport. In: SIGGRAPH ’97. (1997)
65–76

2. Cline, D., Talbot, J., Egbert, P.: Energy redistribution path tracing. In: SIG-
GRAPH ’05. (2005) 1186–1195

3. Lai, Y., Fan, S., Chenney, S., Dyer, C.: Photorealistic image rendering with popula-
tion monte carlo energy redistribution. In: Eurographics Symposium on Rendering.
(2007) 287–296

4. Heckbert, P.S.: Adaptive radiosity textures for bidirectional ray tracing. In: SIG-
GRAPH ’90. (1990) 145–154

5. Kajiya, J.T.: The rendering equation. In: SIGGRAPH ’86. (1986) 143–150
6. Veach, E., Guibas, L.J.: Bidirectional estimators for light transport. In: Proc. of

the 5th Eurographics Workshop on Rendering, Eurographics Association (1994)
147–162

7. Lafortune, E.P., Willems, Y.D.: Bi-directional path tracing. In: Proceedings of
Compugraphics. (1993) 145–153

8. Ward, G.J., Rubinstein, F.M., Clear, R.D.: A ray tracing solution for diffuse
interreflection. In: SIGGRAPH ’88. (1988) 85–92

9. Jensen, H.W.: Realistic image synthesis using photon mapping, AK Peters (2001)
10. Pharr, M., Humphreys, G.: Physically Based Rendering from Theory to Imple-

mentation. Morgan Kaufmann (2004)
11. Veach, E.: Robust Monte Carlo Methods for Light Transport Simulation. PhD

thesis, Stanford University (1997)
12. Ferwerda, J.A., Pattanaik, S.N., Shirley, P., Greenberg, D.P.: A model of visual

adaptation for realistic image synthesis. In: SIGGRAPH ’96. (1996) 249–258
13. Fan, S.: Sequential Monte Carlo Methods for Physically Based Rendering. PhD

thesis, University of Wisconsin-Madison (2006)


