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Abstract. Statistical models such as linear regression drive numerous
applications in computer vision and machine learning. The landscape
of practical deployments of these formulations is dominated by forward
regression models that estimate the parameters of a function mapping
a set of p covariates, x, to a response variable, y. The less known al-
ternative, Inverse Regression, offers various benefits that are much less
explored in vision problems. The goal of this paper is to show how In-
verse Regression in the “abundant” feature setting (i.e., many subsets
of features are associated with the target label or response, as is the
case for images), together with a statistical construction called Sufficient
Reduction, yields highly flexible models that are a natural fit for model
estimation tasks in vision. Specifically, we obtain formulations that pro-
vide relevance of individual covariates used in prediction, at the level of
specific examples/samples — in a sense, explaining why a particular pre-
diction was made. With no compromise in performance relative to other
methods, an ability to interpret why a learning algorithm is behaving
in a specific way for each prediction, adds significant value in numerous
applications. We illustrate these properties and the benefits of Abundant
Inverse Regression (AIR) on three distinct applications.

Keywords: Inverse regression, kernel regression, abundant regression,
temperature prediction, Alzheimer’s disease, age estimation

1 Introduction

Regression models are ubiquitous in computer vision applications (e.g., medi-
cal imaging [1] and face alignment by shape regression [2]). In scientific data
analysis, regression models are the default tool of choice for identifying the as-
sociation between a set of input feature vectors (covariates) x ∈ X and an
output (dependent) variable y ∈ Y. In most applications, the regressor is ob-
tained by minimizing (or maximizing) the loss (or fidelity) function assuming
the dependent variable y is corrupted with noise ε: y = f(x) + ε. Consequently,
solving for the regressor is, in fact, equivalent to estimating the expectation
E[y|x]; in statistics and machine learning, this construction is typically referred
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Actual 25.0o C Actual −7.2o C Actual 20 Actual 74
Est. 23.6o C Est. −3.7o C Est. 16 Est. 69

Fig. 1. Dynamic feature weights for two tasks: ambient temperature prediction (left)
and age estimation (right). Our formulation provides a way to determine, at test time,
which features are most important to the prediction. Our results are competitive, which
demonstrates that we achieve this capability without sacrificing accuracy.

to as forward (or standard) regression [3]. The above formulation does not at-
tempt to model noise in x directly. Even for linear forms of f(·), if the noise
characteristics are not strictly additive and normally distributed (i.e., so that
y = f(x + ε)⇔ y = f(x) + ε′), parameter estimates and consistency properties
will not hold in general [4,5].

The above issues have long been identified in the statistics literature and a
rich body of work has emerged. One form of these models (among several) is
typically referred to as inverse regression [6]. Here, the main idea is to estimate
E[x|y] instead of E[y|x], which offers asymptotic and practical benefits and is
particularly suitable in high-dimensional settings. To see this, consider the simple
setting in which we estimate a regressor for n samples of x ∈ Rp, p � n. The
problem is ill-posed and regularization (e.g., with `0 or `1 penalty) is required.
Interestingly, for linear models in the inverse regression setting, the problem is
still well specified since it is equivalent to a set of p univariate regression models
going from y to a particular covariate xj where j ∈ {1, · · · , p}.

As an illustrative example, let us compare the forward and inverse regres-
sion models for p > n. For forward regression, we have y = bTx + ε and so
b∗ = (XTX)−1XTy, where X = [x1 · · · xn]T and y = [y1 · · · yn]T. This is
problematic due to a rank deficient XTX. But in the inverse regression case,
we have x = by + ε and so b∗ = (yTy)−1yTX, which can be computed easily.
In statistics, a widely used algorithm based on this observation is Sliced Inverse
Regression (SIR) [3]. At a high level, SIR is a dimensionality reduction procedure
that calculates E[x|y] for each ‘slice’ (i.e., bin) in the response variable y and
finds subspaces where the projection of the set of covariates is dense. The main
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idea is that, instead of using the full covariance of the covariates x’s or [xT y]T,
we use the E[x|y] for each bin within y as a new feature with a weight propor-
tional to the number of samples (or examples) within that specific bin. Then,
a principal components-derived subspace for such a covariance matrix yields a
lower-dimensional embedding that incorporates the proximity between the y’s
for subsets of x.

This idea has seen renewed interest in the machine learning and computer
vision communities [7,8]. For example, consider the following simple example
demonstrated in a relatively recent paper [9]: Their goal was to utilize an in-
trinsic low-dimensional (e.g., 2D or 3D) representation of the input image (or a
silhouette) to predict body pose, which was parameterized as 3D joint angles at
articulation points. Identifying the structure in the gram matrix of the output
space enables identification of the conditional dependencies between the input
covariates and the output multivariate responses. This is not otherwise possible.
For example, we do not typically know which low-dimensional representation of
the input images best predicts specific values of the output label.

The above discussion suggests that SIR models can effectively find a single
global subspace for the input samples x considering the conditional distribution
of (x|y). However, there are a number of practical considerations that the SIR
model is ill-equipped to handle. For example, in computer vision applications op-
erating in the wild, such as the temperature prediction task shown in Fig. 1, we
can rarely find a global embedding that fully explains the relationship between
the covariates and the response. In fact, subsets of samples may be differently
associated with slices of the output space. Further, many ‘relevant’ features may
be systematically corrupted or unavailable in a non-trivial fraction of images.
In practice, one finds that these issues strongly propagate as errors in the cal-
culated embedding, making the downstream analysis unsatisfactory. Of course,
in the forward regression setting, this problem is tackled by performing feature
selection via sparsity-type penalties, which emphasize the reliable features in the
estimation. The direct application of this idea in the inverse regression model is
awkward since the ‘predictor’ y (which is the response in forward regression) for
x is just one dimensional.

It turns out that the desirable properties we seek to incorporate within inverse
regression actually fall out of an inherent characteristic in many vision datasets,
namely an abundance of features. In other words, in associating a large set of
features derived from an image to an output label (or response) y, it is often the
case that different subsets of features/covariates predict the label equally well.
In the inverse regression context, this property enables adapting associations
between density windows of the output space with different subsets of covariates
dynamically on a sample-by-sample basis. If a covariate is generally relevant but
missing for a small subset of examples (e.g., due to occlusion, noise, or corrup-
tion), the formulation allows switching the hypothesis to a distinct ‘support’ of
covariates for these samples alone.

In summary, exploiting abundance in inverse regression yields robust and
highly flexible models. But perhaps more importantly, we obtain highly inter-
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pretable models (in an individual, sample-specific way), which is crucial in many
applications. In a mammogram exam, for example, an explanation of why a pa-
tient was assigned a high probability of malignancy is critical for interpretability.
With no compromise in performance, such functionality is valuable in applica-
tions but natively available in very few. Beyond Decision Trees and Inductive
Logic Programming, regression models seldom yield such flexibility. Next, we
give a few motivating examples and then list the main contributions of this
paper.

1.1 Motivating Examples

Consider the two tasks in Fig. 1 where the relevance of features/covariates
varies depending on the context and the specific samples under consideration.
In facial age estimation, a feature from a local patch at a fiducial point (e.g.,
lip, eye corners) carries a great deal of information for predicting age. But if the
patch is occluded, this feature is not relevant for that particular image. Consider
another example focused on ambient temperature estimation from outdoor scene
images recently tackled in [10]. Here, we must deal not only with occlusion
and corruption, but, depending on the context, the relevance of an otherwise
predictive feature may also vary. For example, the appearance of a tree (e.g.,
leaf color and density) may enable identifying subtle changes even within a
specific season (e.g., early or late spring). But in winter, after the trees have
shed their leaves, this feature carries little useful information for predicting day-
to-day temperature. In this case, the relevance of the feature varies with the
specific values assigned to the response y. Importantly, being able to evaluate
the different features driving a specific prediction can guide improvement of
learning algorithms by enabling human interpretability.

1.2 Contributions

To summarize, our contribution is a novel formulation using inverse regres-
sion and sufficient reduction that provides end-to-end statistical strategies for
enabling (1) adaptive and dynamic associations between abundant input features
and prediction outputs on an image-by-image basis, and (2) human interpretabil-
ity of these associations. Our model dynamically updates the relevance of each
feature on a sample-by-sample basis and allows for missing or randomly cor-
rupted covariates. Less formally, our algorithm explains why a specific decision
was made for each example (based on feature-level dynamic weights). We ana-
lyze the statistical properties of our formulation and show experimental results
in three different problem settings, which demonstrate its wide applicability.

2 Estimating the conditional confidence of covariates

Given a supervised learning task, our overall workflow consists of two main
modules. We will first derive a formulation to obtain the confidence associated
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with individual covariates xj conditioned on the label y. Once the details of this
procedure are derived, we will develop algorithms that exploit these conditional
confidences for prediction while also providing information on which covariates
were responsible for that specific prediction. We start by describing the details
of the first module.

2.1 A potential solution based on sufficient dimension reduction

The ideal mechanism to assign a confidence score to individual covariates, xj ,
should condition the estimate based on knowledge of all other (uncorrupted)
covariates x−j as well as the response variable y. This is a combinatorial problem
that quickly becomes computationally intractable. For example, even when we
consider only a single pair of covariates and a response, the number of terms
will quadratically increase as f(x1|x2, y), f(x1|x3, y), f(x1|x4, y), . . . f(x1|xp, y).
Another related issue is that, when considering dependencies between multiple
variables f(x1|x2, x3, . . . , y), estimation is challenging because the conditional
distribution is high-dimensional and the number of samples may be small in
comparison. Further, in the prediction phase, we do not have access to the true y,
which makes conditioning somewhat problematic. An interesting starting point
in formulating a solution is the concept of sufficient dimension reduction [11].
We provide a definition and subsequently describe our idea.

Definition 1. Given a regression model h : X → Y , a reduction φ : Rp →
Rq, q ≤ p, is sufficient for the regression task if it satisfies one of the following
conditions:

1) inverse reduction, X|(Y, φ(X)) ∼ X|φ(X),
2) forward reduction, Y |X ∼ Y |φ(X),
3) joint reduction, X ⊥⊥ Y |φ(X),

where ⊥⊥ indicates independence, ∼ means identically distributed, and A|B refers
to the random vector A given the vector B [11,12].

Example 1. Suppose we are interested in predicting obesity y of a subject using
a regression model h : x → y with 10 covariates such as weight x1, height x2,
education x3, age x4, gender x5, . . . , BMI x10. Since obesity is highly correlated
to weight and height, (y|x1, x2, . . . , x10) ∼ (y|φ(x1, . . . , x10)) ∼ (y|x1, x2). Here,
we call φ : (x1, . . . , x10)→ (x1, x2) a sufficient reduction for the given regression
task. Also, for predicting BMI, i.e., h′ : (x1, . . . , x9, y)→ x10, φ′ : (x1, · · · , x9)→
(x1, x2) is a sufficient reduction since (x10|x1, . . . , x9, y) ∼ (x10|x1, x2).

Our goal is to address the intractability problem by characterizing (xj |x−j , y)
in a simpler form based on the definition of sufficient reduction. Notice that
sufficient reduction relies on specifying an appropriate regression model and we
seek to derive identities for the expression (xj |x−j , y). It therefore makes sense
to structure our regression problem as h : x−j , y → xj . The definition of forward
reduction states that if Y |X ∼ Y |φ(X) holds, φ(X) is a sufficient reduction for
the regression problem h. In this definition, if we let X = xj , Y = (x−j , y), and
φ(X) = φ(x−j , y), we directly have (xj |x−j , y) ∼ (xj |φ(x−j , y)), as desired.
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Why is this useful? The conditional distribution f(xj |x1, . . . , xp) = f(xj |φ(x−j))
can be more efficiently estimated in a lower-dimensional space using sufficient re-
duction. In addition, once we make the assumption that the sufficient reduction
function values coincide with y, i.e., φ(x−j) = y, then estimating the conditional
distribution simplifies to f(xj |x1, . . . , xp) = f(xj |φ(x−j)) = f(xj |y). Intuitively,
this special case is closely related to the well-known conditional independence of
features given a response used in a näıve Bayesian relationship:

f(y|x) ∝
∏
f(xj |y)f(y)

f(x)
. (1)

In other words, given a sufficient reduction, all covariates xj are conditionally
independent. The form in Eq. (1) is simply a special case where φ(·) is y; the
general form, on the other hand, allows significant flexibility in specifying other
forms for φ(·) (e.g., any lower-dimensional map) as well as setting up the condi-
tional dependence concretely in the context of conditional confidence. Note that
sufficient reduction methods are related to generative models (including Näıve
Bayes). It is tempting to think that generative models with lower-dimensional
hidden variables play the same role as sufficient reduction. However, the distinc-
tion is that the sufficient reduction φ from SIR can be obtained independently
for any downstream analysis (regression) whereas hidden variables in generative
models need to be specified and learned for each regression model. Now, the re-
maining piece is to give an expression for the conditional confidence distribution.
For simplicity, in this work, we will use a multivariate Gaussian, which facilitates
evaluating E[xi|y] and VAR[xi|y] easily.

Remarks. Notice that xj may not always correspond to a unique covariate.
Instead, it may refer to a subset of covariates, e.g., multiple features from a local
patch in an image may constitute a specific xj . In various practical situations
it may turn out that one or more of these features may be irrelevant to the
given regression problem. This situation requires special handling: briefly, we
will consider the support of the regression coefficients for E[y|xi] and measure
the confidence of the feature by measuring the deviation from E[x|y] only along
the related regression direction. These extensions will be described later.

2.2 A simple estimation scheme based on abundant features

The above description establishes the identity, f(xj |φ(x−j)) = f(xj |y), assum-
ing φ(x−j) = y and gives us a general expression to calculate the conditional
confidence of individual covariates. What we have not addressed so far is a con-
structive scheme to actually calculate φ(x−j) so that it serves as a surrogate for
y. We describe this procedure below based on sufficient reduction.

A natural strategy is to substitute y using predicted estimates, ŷ, derived
from a subset of covariates, {1, · · · , p} \ j. The difficulty, however, is that many
of these subsets may be corrupted or unavailable. Fortunately, we find that in
most situations (especially with image data), multiple exclusive subsets of the
covariates can reliably predict the response. This corresponds to the abundant
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features assumption described earlier, and seems to be valid in many vision ap-
plications including the three examples studied in this paper. This means that
we can define φI(xI) for distinct subsets I of the covariate set, {1, · · · , p} \ j.
Intuitively, a potentially large number of I’s will each index unique subsets and
can eventually be used to obtain a reliable prediction for y, which makes the suf-
ficient reduction condition, φI(xI) = y, sensible. Marginalizing over distinct I’s,
we can obtain E[xj |φI(xI)] (described below). Then, by calculating the discrep-
ancy between E[xj |φI(xI)] = E[xj |ŷI ] and xj , we can evaluate the conditional
confidence of each specific covariate xj .

Marginalizing over I to calculate E[f(xj |φI(xI))]. To calculate E[f(xj |φI(xI))],
the only additional piece of information we need is the probability of the index
set I. This can be accomplished by imposing a prior over each corresponding suf-
ficient reduction, φI(·), as wφI := E[(y − φI(xI))2]−1 which expresses the belief
that the reliability of distinct sufficient reductions φI(·) will vary as a function
of the subset of patches it indexes.2 This means that the conditional confidence
for a covariate is calculated by a weighted mean of f(xj |φi(xi)) = f(xj |ŷi) us-
ing wφj (see Line 4 in Alg. 1). With these ingredients, we present the complete
algorithm in Alg. 1.

Algorithm 1 Conditional Confidence of Feature Aware Regression

1: procedure Training
2: Estimate a joint distribution for each covariate, f(xj , y)
3: Find sufficient reduction φI : xI → y for each subset of features xI

4: Estimate the prior/weight for φI(·) as wφI = E[(y − φI(xI))2]−1

5: Estimate cond. confidence of feature wxj :=
∑
I wφI f(xj |ŷI)/

∑
I wφI

6: Fit a feature confidence aware regressor h : [{xj}Kj=1, {wxj}Kj=1]→ y

7: procedure Prediction
8: Evaluate wxj := Ef

(
xj |φI(xI)

)
by lines 3 and 5, with learned wφI .

9: ŷ = h({xj}Kj=1, {wxj}Kj=1)

2.3 Deriving priors for sufficient dimension reduction

We now describe how to derive priors for sufficient dimension reduction using a
convex combination of multiple sufficient reductions. We assume that each weak
sufficient reduction ΦI(·) is an unbiased estimator for y. Since a convex combi-
nation of unbiased estimators (expectation over estimators) is also an unbiased
estimator, our problem is to find the optimal weights for such a combination of
the sufficient reductions. Note that such an estimator will satisfy a minimum
variance property. Once calculated, we will directly use the estimates as a prior
for φI(·).
2 Recall that individual patches correspond to covariates, which will be univariate or

multivariate depending on the descriptor we choose for the patch. Here, I indexes
different subsets of patches.
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Let φ1(x1) ∼ N (y, σ2
1), . . . , φK(xK) ∼ N (y, σ2

K) denote a set of sufficient
reductions for different subsets I in {1, · · · , p} \ j where I indices belong in
the set {1, · · · ,K}. This means that y = E(φI(xI)) since each estimator is
unbiased. Note that each estimator is independent given y, which means, roughly
speaking, the prediction errors among the different sufficient reductions are not
correlated. So, the problem of calculating the weights, w, reduces to the following
optimization model,

min
w

VAR

[
K∑
I=1

φj(xI)wI

]
s.t.

∑
I

wI = 1 and wI ≥ 0, for all I ∈ 1, . . . ,K. (2)

Since we assume that the error is independent given y, Eq. (2) can be written as

min
w

K∑
I=1

σ2
I (wI)2 s.t.

∑
I

wI = 1 and wI ≥ 0, for all I ∈ 1, . . . ,K (3)

The optimal weights w have a closed form due to the following result.

Lemma 1. Based on KKT optimality conditions, one can verify (see the ex-

tended paper) that the optimal weights for Eq. (3) are wI = σ−2I /
∑K
k=1 σ

−2
k .

This is a unique global optimum for Eq. (3) when σ2
I > 0,∀I ∈ {1, . . . ,K}.

This provides a weight for each subset I ∈ {1, . . . ,K} for arbitrary constant K.
In the extended paper, we present a scheme to estimate the conditional con-

fidence of specific features within a particular covariate by considering the suffi-
cient reduction direction. This reduces the influence of irrelevant features within
a multivariate covariate, given a regression task. Next, we introduce a variant
of kernel regression when covariates (and their multivariate features) have an
associated conditional confidence score.

3 Conditional confidence aware kernel regression

In this section we modify an existing kernel regressor formulation to exploit the
conditional confidence of covariates. This final module is needed to leverage the
conditional confidence towards constructions that can be applied to applications
in machine learning and computer vision.

We start from the Nadaraya-Watson kernel regression with a Gaussian kernel.
Since this estimator requires a dissimilarity measure between samples, we simply
need to define a meaningful measure using the covariate confidences. To do so,
we can use a simple adjustment such that the distance measure makes use of
covariates (both univariate and multivariate) differentially, proportional to their
confidence level. The expectation of distance of each pair of covariates weighted
by confidence shown below is one such measure:

dw(x1, x2, w1, w2) :=

√√√√∑
j wxj1

wxj2
(xj1 − x

j
2)2∑

j wxj1
wxj2

. (4)
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The expression in Eq. (4) can be interpreted as agnostic of the example-specific
labels (even if they were available). Interestingly, the weights wxj are obtained
via a surrogate to the unknown labels/responses via sufficient reduction. This
scheme will still provide meaningful distances even when one or more covariates
are corrupted or unavailable. Next, we modify Eq. (4) so we can guarantee that
it is an unbiased estimator for distances between uncorrupted covariates under
some conditions.

3.1 Unbiased estimator for distance between uncorrupted covariates

This section covers a very important consequence of utilizing inverse regression.
Notice that it is quite uncommon in the forward regression setting to derive
proofs of unbiasedness for distance estimates in the presence of corrupted or miss-
ing covariates or features. This is primarily because few, if any, methods directly
model the covariates xj . Interestingly, inverse regression explicitly characterizes
f(xj |φI(xI)), which means that we have access to E[xj |x−j ]. Let us assume that
the ‘true’ but unobserved value of the covariate is zj ≈ E[xj |x−j ]. Since our
model assumes that xj is observed with noise, we can model the variance of xj

given E[xj |x−j ] using σ2
xj |zj = E[(xj−E[xj |x−j ])2], i.e., xj ∼ N (zj , σ2

xj |zj ). This
allows us to obtain a powerful “corrected” distance measure. We now have:

Proposition 1. Assume that we observe covariates x1, x2 with Gaussian noise
given ground truth feature values z1 and z2, i.e., xj1 ∼ N (z̄j1, σ

2
xj |zj ) and xj2 ∼

N (x̄j2, σ
2
xj |zj ). Then, we have

E[(x1 − x2)2] = E[x1]2 + E[x2]2 − 2E[x1]E[x2]− 2COV(x1, x2) + VAR[x1] + VAR[x2]

= x̄21 + x̄22 − 2x̄1x̄2 + 2σ2
x|z = (x̄1 − x̄2)2 + 2σ2

x|z

(5)

Thus, (x1 − x2)2 − 2σ2
x|z is an unbiased estimator for distances between true

(but unobserved) covariate values, e.g., (z1 − z2)2 = E[(x1 − x2)2 − 2σ2
x|z].

Once we have access to 2σ2
x|z, deriving the unbiased estimate simply involves

a correction. So, we obtain the corrected distances:

d(x1, x2, w1, w2)2 := Ej
[(

(xj1 − x
j
2)2 − 2σ2

j

)]
=

∑
j

(
(xj1 − x

j
2)2 − 2σ2

j

)
w
x
j
1
w
x
j
2∑

j wxj1
w
x
j
2

. (6)

4 Results and discussion

Our method is broadly applicable, and so we show results on three different com-
puter vision datasets, each with an associated task: 1) outdoor photo archives
for temperature prediction, 2) face images for age estimation, and 3) magnetic
resonance imaging (MRI) of brains for Alzheimer’s disease prediction. For tem-
perature prediction on the Hot or Not dataset [10], we show that our algorithm
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can help explain why a specific prediction was made without sacrificing accuracy
compared to the state-of-the-art. We use age estimation as a familiar example to
demonstrate several properties of our approach, namely that our global (wφI ),
and dynamic weights (wxj ) are meaningful and intuitive. Finally, we show that
our method can be used to pinpoint regions of the brain image that contribute
most to Alzheimer’s disease prediction, which is valuable to clinicians.

4.1 Temperature prediction

Hot or Not [10] consists of geo-located image sequences from outdoor webcams
(see supplement). The task is to predict ambient outdoor temperature using
only an image of the scene. For fair comparison, we evaluated our method on
the same 10 sequences selected by [10]. Like [10], we used the first-year images
for training and the second-year images for testing.

We decompose temperature T into a low-frequency component Tlo and a
high-frequency component Thi as in [10]. We train our algorithm to predict Tlo
and Thi separately, and then estimate the final temperature as T = Tlo + Thi.
Intuitively, Tlo is correlated with seasonal variations (e.g., the position of the
sun in the sky at 11:00am, the presence or absence of tree leaves) and Thi is
correlated with day-to-day variations (e.g., atmospheric conditions).

Glasner et al. [10] demonstrated good performance using each pixel and color
channel as a separate feature. Our approach assumes a set of consistent land-
marks across the image set. In principle, we could treat each pixel and color
channel as a ‘landmark,’ but doing so would result in impractically slow train-
ing. Therefore, we adopt a two-level (hierarchical) approach.

We first describe our lowest-level features. Let zt = Ii,j,c,t be the image in-
tensity at pixel i, j, color channel c ∈ {red, green,blue, gray}, and time t ∈ T .
Let Tt be the ground truth temperature at time t. We omit the lo/hi sub-
script below. Each pixel produces a temperature estimate according to a simple
linear model, T̂i,j,c,t = ai,j,czt + bi,j,c, where T̂i,j,c,t is the estimated tempera-
ture at time t according to pixel i, j, c, t. We compute the regression coefficients
a∗ = a∗i,j,c and b∗ = b∗i,j,c by solving a∗, b∗ = mina,b

∑
t∈T ‖azt + b − Tt‖22. A

straightforward way to produce a single prediction is to combine the pixel-wise
predictions using a weighted average, T̂t. We form two feature vectors at each
pixel, ti,j,t = [T̂red, T̂green, T̂blue, T̂gray] corresponding to temperature estimates,
and vi,j,t = [zgray, gx, gy], where zgray is the grayscale pixel intensity and gx and
gy are the x and y grayscale intensity gradients, respectively.

We divide the image into non-overlapping h × w-pixel patches and assign a
landmark to each patch (we empirically set h = w = 15). At each landmark k
we construct a region covariance descriptor [13]. Specifically, for each patch Pk,t
centered at k at time t we compute two covariance matrices, Σv and Σt: The
feature vector for landmark k is then fk = [σv, σt]

T
, where σv is a 1 × 6 vector

of upper-right entries of Σv and σt is a 1 × 10 vector of upper-right entries of
Σt. We trained and tested our algorithm using the set of {fk,t}.

Fig. 2 illustrates several interesting qualitative results of our approach on
the Hot or Not dataset. Table 1 provides a quantitative comparison between
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the accuracy of variants of our proposed approach, and the accuracy of seven
different estimation methods proposed by [10] on the Hot or Not dataset. The
first seven rows are results reported by [10]. The bottom four rows are variants of
our method. We note that, unlike Glasner et al. [10], our “Kernel Est. with wφwx”
method is capable of producing time-varying (dynamic) landmark weights (see
Fig. 2), which provides a meaningful and intuitive way to understand which
parts of the image contribute most significantly to the temperature estimate. At
the same time, the accuracy of “Kernel Est. with wφwx” is competitive, which
shows that our method does not sacrifice accuracy to achieve this capability.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Last Year 0.42 / 9.14 0.56 / 8.16 0.54 / 7.53 0.41 / 5.44 0.61 / 7.35 0.00 / 4.30 0.67 / 6.20 0.59 / 6.77 0.00 / 4.84 0.61 / 7.64
Nearest Neighbor Image 0.47 / 8.72 0.59 / 7.83 0.51 / 7.73 0.15 / 6.51 0.13 /10.92 0.00 / 4.57 0.16 / 9.89 0.70 / 5.83 0.00 / 4.44 0.62 / 7.47

Local Regression 0.67 / 6.85 0.65 / 7.24 0.70 / 6.03 0.59 / 4.53 0.76 / 5.77 0.38 / 3.19 0.50 / 7.63 0.77 / 5.09 0.10 / 3.68 0.59 / 7.77
LR Temporal Window 0.61 / 7.52 0.69 / 6.86 0.72 / 5.82 0.64 / 4.23 0.79 / 5.39 0.53 / 2.77 0.54 / 7.35 0.76 / 5.22 0.11 / 3.67 0.58 / 7.85
Global Ridge Regression 0.00 /18.16 0.78 / 5.74 0.00 /35.02 0.00 /11.37 0.00 /43.51 0.10 / 3.84 0.74 / 5.54 0.00 /13.86 0.23 / 3.41 0.46 / 8.91
Convolutional NN 0.49 / 8.55 0.79 / 5.59 0.71 / 5.96 0.24 / 6.17 0.61 / 7.36 0.48 / 2.90 0.39 / 8.48 0.79 / 4.88 0.43 / 2.93 0.66 / 7.12
Transient Attributes 0.36 / 9.60 0.70 / 6.69 0.58 / 7.20 0.55 / 4.75 0.68 / 6.62 0.21 / 3.59 0.58 / 7.03 0.65 / 6.31 0.16 / 3.56 0.67 / 7.00

Weighted Avg. with wφ 0.54 / 8.13 0.66 / 7.18 0.00 / 13.00 0.38 / 5.59 0.69 / 6.54 0.35 / 3.26 0.49 / 7.74 0.12 / 9.96 0.34 / 3.17 0.58 / 7.91

Kernel Est. (no weights) 0.55 / 8.01 0.81 / 5.38 0.75 / 5.54 0.56 / 4.69 0.82 / 4.92 0.00 / 4.23 0.33 / 8.89 0.71 / 5.68 0.45 / 2.88 0.72 / 6.49
Kernel Est. with wφ 0.13 / 11.15 0.81 / 5.32 0.74 / 5.59 0.41 / 5.43 0.83 / 4.82 0.20 / 3.62 0.39 / 8.42 0.71 / 5.68 0.53 / 2.67 0.68 / 6.93

Kernel Est. with wφwx 0.28 / 10.16 0.81 / 5.30 0.76 / 5.41 0.32 / 5.82 0.83 / 4.87 0.22 / 3.56 0.38 / 8.52 0.72 / 5.59 0.55 / 2.62 0.68 / 6.93

Table 1. Accuracy of Celsius temperature prediction on Hot or Not [10]. Each cell
contains two values: R2 / RMSE, where R2 = 1− MSE

σ2 , MSE is the mean squared error
of the temperature estimation, σ2 is temperature variance, and RMSE is root MSE.
The first seven rows are results from [10]. The bottom four rows are variants of our
method. Our method produces a time-varying (dynamic) weight for each landmark,
which provides a richer, more intuitive explanation of the estimation process.

4.2 Face age estimation

Face age estimation is a well-studied area in computer vision. For example,
apparent age estimation [14] was a key topic in the 2015 Looking At People
ICCV Challenge [15]. The top performers in that challenge all used a combina-
tion of deep convolutional neural networks and large training databases (e.g.,
∼ 250k images). Given the significant engineering overhead required, we do not
focus on achieving state-of-the-art accuracy using such large datasets. Instead,
here we show qualitative results on a smaller age estimation dataset to illus-
trate several aspects of our approach. For experimentation, we used the Lifes-
pan database [16], which has been previously used for age estimation [17] and
modeling the evolution of facial landmark appearance [18].

The Lifespan database contains frontal face images with neutral and happy
expressions, with ages ranging from 18 to 94 years. We used the 590 neutral
expression faces with associated manually labeled landmarks from [17]. Following
[17], we used five-fold cross-validation for our experiments.

Fig. 3 shows the age estimates and landmark weights produced by our method.
We see that certain regions of the face (e.g., eyes, mouth corners) generally re-
ceived higher weights than others (e.g., nose tip). However, this is not true for
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Low-frequency High-frequency

weight = 1.0

weight = 0.0
time-invariant (global) weights wφI

Actual 25.6o C, Est. 21.6o C time-specific (dynamic) weights wxj

Actual 3.3o C, Est. 10.0o C time-specific (dynamic) weights wxj

Actual −0.6o C, Est. 2.8o C time-specific (dynamic) weights wxj

Fig. 2. Qualitative results on scene (a) from the Hot or Not dataset [10]: summer, late
autumn, and winter. Notice that low-frequency global weights (row 1, middle column)
tend to be larger around the background trees and at the edge of the foreground tree,
which reflects that leaf appearance is well correlated with the season. Observe that high-
frequency global weights (row 1, right column) tend to be larger on distant buildings,
which reflects the intuition that daily weather variations (e.g., fog, precipitation) can
dramatically change the appearance of the atmosphere, which is especially noticeable
against the backdrop of distant buildings. Note that our method correctly reduces
the high-frequency weights on the crane (row 3, right column), which suggests that
unpredictably occluded landmarks should not contribute to the estimate (appearance
temporarily becomes uncorrelated with temperature). Best viewed in color.

all faces. For example, cosmetics can alter appearance in ways that conceals ap-
parent age, and landmarks can be occluded (e.g., by hair or sunglasses). This
implies that a globally consistent weight for each landmark is suboptimal. In
contrast, our dynamic weights wx adapt to each face instance to better handle
such variations. See the supplementary material for additional results.
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weight = 1.0

weight = 0.0
Actual 72, Est. 68.6 Actual 65, Est. 70.0

Actual 36, Est. 38.4 Actual 26, Est. 27.1 Actual 20, Est. 34.7

Fig. 3. Qualitative age estimation results on images from the Lifespan database [16].
Notice that landmarks occluded by hair are correctly down-weighted. Eye and mouth
landmarks tend to have higher weight, which suggests that their appearance is more
predictive of age than the nose, for example. However, we see that the eye and mouth
corners of the 36-year-old woman (second row, first column) are very low, perhaps due
to her cosmetics. Our method is not always accurate. For example, the age estimate
for the 20-year-old man (second row, third column) is technically incorrect. However,
his apparent age is arguably closer to the estimate than his actual age. See the supple-
mentary material for additional results. Best viewed electronically in color.

4.3 Alzheimer’s disease (AD) classification

We further demonstrate the performance of our model on a clinically-relevant
task of predicting disease status from neuroimaging data. For this set of experi-
ments we used diffusion tensor imaging (DTI) data from an Alzheimer’s disease
(AD) dataset. We use the fractional anisotropy (FA) maps that are the normal-
ized standard deviation maps of the eigenvalues of the DTI as a single channel
image for deriving the feature vectors. We used standard image processing of
DTI [19] to derive these measures in the entire white matter region of the brain
from a total of 102 subjects. There were 44 subjects with AD diagnosis and 58
matched normal control (CN) subjects. We defined 186 regularly-placed land-
marks on the lattice of the brain volume. At each of these landmarks we derived
mean feature vector ([I, Ix, Iy, Iz]) using a local 3D patch of size 10×10×10. I
is the FA value, Ix, Iy, Iz are the differentiated FA values in the x, y and z direc-
tions, respectively. Since our algorithm performs regression, we used {0, 2} for
{CN,AD} and thresholded the prediction results at 1. Using these features we
obtained a classification accuracy of 86.17% using 10-fold cross-validation. Even
though our method is a regression model, this outperforms SVM with PCA on
the same data set showing 80%-85% [20]. The resulting conditional confidence
maps (computed using wxj in Alg. 1 ) for the top 20 landmarks (of the 186) for
two sample subjects are shown in Fig. 4.
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Fig. 4. Conditional confidence maps of two representative subjects from the normal
control group (left) and the AD group (right). The maps are overlaid on the population
mean FA map. Observe that different white matter regions play important roles in the
prediction. For example, the frontal white matter is bilaterally important in the CN
subject where as there is assymetry in the AD subject.

5 Conclusions

This paper provided a statistical algorithm for identifying conditional confidence
of covariates in a regression setting. We utilized the concept of Sufficient Reduc-
tion within an Inverse Regression (AIR) model to obtain formulations that offer
individual-level relevance of covariates. On all three applications described here,
we found that in addition to gross accuracy, the ability to explain a prediction for
each test example can be valuable for many applications. Our approach comes
with various properties such as optimal weights, unbiasedness, and procedures
to calculate conditional densities along only relevant dimensions given a regres-
sion task; these are interesting side results. Our evaluations suggest that there
is substantial value in further exploring how Abundant Inverse Regression can
complement current regression approaches in computer vision, offer a viable tool
for interpretation/feedback, and guide the design of new methods that exploit
these conditional confidence capabilities directly.
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