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Abstract

This paper describes a patch-based approach for rapid
image correlation or template matching. By representing a
template image with an ensemble of patches, the method is
robust with respect to variations such as local appearance
variation, partial occlusion, and scale changes. Rectan-
gle filters are applied to each image patch for fast filtering
based on the integral image representation. A new method
is developed for feature dimension reduction by detecting
the “salient” image structures given a single image. Exper-
iments on a variety images show the success of the method
in dealing with different variations in the test images. In
terms of computation time, the approach is faster than tra-
ditional methods by up to two orders of magnitude and is at
least three times faster than a fast implementation of nor-
malized cross correlation.

1. Introduction

Many computer vision applications need to know
whether a pre-defined template sub-image is contained
within a test image. Template matching techniques involve
the translation of the template to every possible position in
the test image and the evaluation of a measure of the match
between the template and the image at that position [13].

One common measure to compare the similarity of a
template image,t(i, j), and a test image,f(i, j), is the sum
of squared difference (SSD), defined by

SSD(m, n) =
∑

i,j

[f(i, j) − t(i − m, j − n)]2 (1)

Another common measure is the normalized cross-
correlation (NCC). TheNCC(m, n) is defined by

∑

i,j [f(i, j) − f̄mn][t(i − m, j − n) − t̄]
√

∑

i,j [f(i, j) − f̄mn]2
√

∑

i,j [t(i − m, j − n) − t̄]2

(2)
wheret̄ is the mean of the template image andf̄mn is the
mean of the test imagef(i, j) in the region centered at
(m, n).

A major disadvantage of bothSSD andNCC measures
is their computational cost when the template is large [13].
Hence, how to speed up correlation computations is critical
for many applications.

For NCC, Lewis [5] proposed to use the integral im-
age representation, which was first developed by Crow [1]
for texture mapping, to compute the denominator in Eq.
(2). The numerator in Eq. (2) can be computed by the fast
Fourier transform (FFT). Viola and Jones [14] used the in-
tegral image for fast face detection. Jurie and Dhome [4]
used the fast template matching for tracking. Schweitzer
et al. [8] extended the integral image to compute the alge-
braic moments and approximated the image with low de-
gree polynomials for fast template matching. Hel-Or and
Hel-Or [3] used Walsh-Hadamard kernels and the integral
image for fast feature extraction and matching. Tao et al.
[10] approximated the template image by a linear combina-
tion of simple binary box features which can be computed
efficiently by using the integral image representation. Al-
though their matching is fast, it is quite slow to learn the
non-orthogonal subspace based on their optimized orthogo-
nal matching pursuit method [10]. Tang and Tao [9] adopted
a matching pursuit method to search the non-orthogonal
subspace, which is faster than that in [10].

Rosenfeld and Vanderbrug [7] proposed a multi-
resolution scheme for template matching. The result in a
low resolution image is refined at higher resolutions. Ueno-
hara and Kanade [12] matched a large set of templates with
the test image, and they represented the template set in a
PCA subspace. An FFT was used to speed up correlation.

Almost all previous template matching methods focus on
speeding up the computation, but have not addressed the oc-
clusion problem, which is the issue of detecting the template
when it is partially occluded in the test image. Variation
in scale is another issue for template matching in practice,
but little previous work has addressed it. The method in
[3] can only handle patterns scaled by powers of 2 using
Walsh-Hadamard kernels inSSD matching. A method in
[9] can deal with scale differences but cannot handle the oc-
clusion problem. In this paper, we propose a new approach
for image correlation that is robust to partial occlusion and
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arbitrary scale change, in addition to fast matching.
While the SIFT method [6] can extract a sparse set of

scale-invariant features for matching, the template matching
methods that we used here are pixel patches. This general
template matching is important when the images contain no
rich texture information for local interest points extraction.
Another scheme is to use an image pyramid for detecting
templates at multiple scales in the test image, but this in-
volves much more computation in searching over all possi-
ble scales.

1.1. Pixels, Patches, and Global Template

For numerous computer vision applications, the image
can be analyzed at the patch level rather than at the indi-
vidual pixel level. Patches contain contextual information
and have advantages in terms of computation and general-
ization. For example, patch-based methods produce better
results and are much faster than pixel-based methods for
texture synthesis [2].

On the other hand, some computer vision applications
require a large template to represent a complete object, es-
pecially for object recognition. For instance, face templates
may contain the whole face for use in face detection [14] or
face recognition [11]. Although large templates are useful
for representing the whole object, they are sensitive to local
variations and partial occlusion. To use large templates, an
image can be represented byan ensemble of patches.

Figure 1. Three possible levels of methods for image correlation.

In image correlation or template matching, there are
three levels of approaches: pixel level, patch level, and com-
plete template, as illustrated in Figure 1.SSD andNCC

measures use the whole template for matching but actually
work at the pixel level (see Eqs. (1) and (2)). That is why
standardSSD andNCC are slow and not robust to vari-
ations. Recently proposed methods [5] [10] [9] speed up
NCC by using integral images for the denominator com-
putation and deal with the numerator by a subspace approx-
imation [10] [9] or FFT [5]. Methods in [7] [5] [12] [8]
[3] [10] [9] are sensitive to local variations and occlusions
because they used complete templates only.

1.2. Main Contributions

Motivated by the advantages of representing an image by
a set of patches, we propose a patch-based method for image

correlation. Our main contributions include: 1) proposinga
new approach for template matching using an ensemble of
patches instead of a single, large template; 2) developing a
new method for feature selection given a single image; 3)
addressing the issue of robustness in image correlation with
respect to appearance variation, partial occlusion, and scale
change all together.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the patch-based matching criterion and
rapid filtering for each patch. Section 3 describes a sim-
ple technique for feature selection given a single template
image. Section 4 discusses the robustness of the method to
different variations. Experimental results are presentedin
Section 5. Finally, conclusions are given in Section 6.

2. Patch-based Correlation

A template image is first decomposed into a set of
patches. These patches can be overlapping or non-
overlapping. In all our experiments, all patches are non-
overlapping, as shown in Figure 2.

Figure 2. A template image (see Figure 5 (b)) is divided into non-
overlapping patches.

The template image is now represented byt =
[pt

1, p
t
2, · · · , pt

k] when it is divided intok patches. Then the
similarity between templatet(i, j) and test imagef(i, j) is
defined by

D(t, f, m, n) =

k
∑

r=1

‖ pt
r − pf

r (m, n) ‖ (3)

wherepf
r (m, n) is the patch in the test imagef(i, j) cor-

responding to the patchpt
r in the template, as the template

t(i, j) is translated to a position(m, n) in the test image.
‖ · ‖ is the norm, and we used the 1-norm in our experi-
ments.

D(t, f, m, n) is non-negative. The smaller the value of
D(t, f, m, n), the more similar the templatet and the test
imagef at position(m, n). In our definition, the image
correlation problem is to find the minimum of the objective
function:

(m∗, n∗) = arg min
m,n

D(t, f, m, n) (4)

Now the question is how to measure the similarity of
patches, i.e., Eq. (3).



2.1. Rapid Filtering with Rectangle Filters

For each patch, we use a set of filters to extract features
rather than directly using raw pixel intensities. There are
two advantages to using features over raw pixels for image
correlation: (1) a feature-based system operates much faster
than a pixel-based system [14], and (2) features can encode
some image structure information that can be used to reduce
the number of features further, thus making the correlation
process even faster (see Section 3).

A variety of filters can be used for filtering in each patch,
including Gabor filters and Laplacian-of-Gaussian filters.
Here we choose to use the rectangles filters which were
originally used by Viola and Jones for rapid face detection
[14]. One advantage of using rectangle filters is that they
can be evaluated quickly with simple additions no matter
how big the filters are, based on the integral image repre-
sentation [1].

Figure 3. The filters applied to each image patch. The sum of the
pixels that lie within the dark rectangles (with -) are subtracted
from the sum of pixels in the light rectangles (with +). Filters (a)
and (b) are useful for edge features, (c) and (d) for line features,
and (e) for diagonal structures.

We employed five types of rectangle filters, as shown in
Figure 3, similar to those used in [14]. The difference is that
we apply the filters to each patch instead of the complete
template image. These filters encode edge and line features
in horizontal and vertical directions, or diagonal structures
in images.

Provided with the filters, the similarity measure of Eq.
(3), can be rewritten as follows:

D(t, f, m, n) =
k

∑

r=1

L
∑

l=1

‖ gl ⊗ pt
r − gl ⊗ pf

r (m, n) ‖ (5)

wheregl are the rectangle filters, withl ∈ {1, 2, · · · , L},
and⊗ is convolution.

3. Image Structure based Feature Selection

As described in previous section, we apply rectangle fil-
ters to each patch. As a result, the number of features ex-
tracted from a template image is given by#features =
#patches × #filters. Suppose the template is decom-
posed into 60 patches and 100 filters are applied to each
patch, then the number of features will be 6,000. This num-

ber is usually smaller than the number of pixels in the tem-
plate, e.g., 40,000 for a 200 x 200 image. Thus patch-based
matching can be faster than pixel-basedSSD or NCC.
However, the number of extracted features is still too large
and matching is not fast enough. So the next problem is how
to reduce the number of features extracted from a template.

Feature selection is a classical problem in machine learn-
ing. Usually it requires a large number of training exam-
ples in each class. Classifiers are employed to evaluate
the selected features on a validation set. For general tem-
plate matching, however, it is not practical to collect many
training examples. In addition, template matching based on
SSD andNCC does not require any training examples.

In order to select features for further speeding up patch-
based image correlation, we turn to the template image it-
self. Regions with “salient” image structures should play a
more important role than “flat” regions for image correla-
tion. But how to extract salient regions and relate them to
feature selection? One intuitive way is to detect edges or
corners, but this will involve more computations and it is
not straightforward to relate the detected edges or corners
to our features obtained by the rectangle filters.

Instead, we propose to detect “salient” image structures
by directly comparing the filtered values. As introduced in
the previous section, the rectangle filters we use respond
strongly to image structures such as edges, lines, and diag-
onal structures. Here strong response means large values in
the filtered results.
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Figure 4. (a) Filter responses on the template image of Figure 5
(b); (b) Filter responses on the template of Figure 6 (b).

This heuristic of detecting salient image structures is
supported by real data. Figure 4 (a) and (b) illustrate the
magnitude of the filtered values after sorting in descending
order. They were extracted from two templates (Figure 5
(b) and 6 (b)), respectively. Based on observation in Figure
4 (a) and (b), we may choose a small number of features,
e.g. the top5%, for image correlation, and matching will be
much faster.

Let vt
l,r = gl ⊗ pt

r be the filtered value using the filtergl

on patchpt
r. A small number of features can be selected by



the following measure:

vt
l′,r′ > α × max

l,r
vt

l,r (6)

whereα is a constant to control the number of selected fea-
tures, and thus influences the computation time in matching.

4. Robustness

Our patch-based approach to image correlation has some
special properties, especially its robustness with respect to
different variations, in addition to its fast computation.

4.1. Appearance Variation

Since all patches are processed independently, any local
appearance variation of objects in the test image only has
influence on some patches, without causing a global effect
on template matching. This can be seen from the definition
of the similarity measure in Eq. (5). Furthermore, if the
local variation is extremely large, one may assign smaller
weights to those patches given some prior knowledge about
the variation. For instance, for face objects, the variation in
facial expression often produces large changes in the lower
part of the face, so smaller weights can be used with patches
located in the lower face.

The weighted similarity measure can be defined by

D(t, f, m, n, w) =
k

∑

r=1

L
∑

l=1

wr ‖ gl ⊗ pt
r − gl ⊗ pf

r (m, n) ‖

(7)

4.2. Partial Occlusion

Partial occlusion is an issue in almost all computer vi-
sion applications. Our patch-based correlation method can
effectively deal with partial occlusions. While the idea of
weighting patches for local variations (see Eq. (7)) can also
be adopted for partial occlusion, a simpler idea is to use
the most similar patches in the test image for matching with
the template, rather than assigning specific weights for each
patch.

Let Lt, Rt, U t, Dt denote the left, right, up, and down
parts of the template, andΩ = {Lt, Rt, U t, Dt}. Assum-
ing that the occlusion of an object in the test image is less
than a half of the object, then we can always find at least
one un-occluded part fromΩ1. We measure the similarity
of each part of the object and choose the most similar part
to represent the whole similarity. The re-defined similarity
measure is given by

Do(t, f, m, n) = min
S∈Ω

D(t, f, m, n, S) (8)

1Here we ignore the occlusion in the middle of the object. But it is not
difficult to extend the idea presented here to that case.

with

D(t, f, m, n, S) =
∑

pt
r
∈S

L
∑

l=1

‖ gl ⊗ pt
r − gl ⊗ pf

r (m, n) ‖

(9)

4.3. Variable Scales

Objects may have different sizes in the template and test
images. TraditionalSSD and NCC matching does not
consider scale changes. One may alter the test image into
different sizes for matching with the template, but this will
make the template matching process even slower. In con-
trast, the filtering in our approach can be evaluated in the
test image at various scales without increasing the compu-
tation time significantly. The size of test images does not
need to change. This computational advantage of rectangle
filters based on the integral image representation was first
demonstrated by Viola and Jones for face detection [14].
Our patch-based method can take the same approach, and
thus can easily deal with variable scales in template match-
ing.

5. Experiments

To evaluate our patch-based method for image correla-
tion we conducted experiments on a variety of images. In
all our experiments, the patch size is chosen as 24x24. Each
template image is divided into non-overlapping patches of
the same size, as shown in Figure 2. The patches close to
the image boundary of the template were not be used if they
were smaller than 24x24. The number of patches ranges
from 10 to 56 in our experiments, depending on the size of
the template image.

The filter size was chosen as 8x12 for (a) and (c), 12x8
for (b) and (d), and 8x8 for (e) in Figure 3. The filters are
shifted by a step size of 4 pixels within each patch. As a
result, there are 105 filters applied to each patch. For a tem-
plate image with 56 patches, the resulting feature dimension
is 5,880. To select the salient features, we choseα = 0.95 in
Eq.(6). The number of selected features is usually less than
30, therefore the matching is very fast. In all experiments,
the template is translated with a step size of one pixel in the
test image and only gray level intensity values are used for
matching although color images are displayed.

Figure 5(a) is a road sign image. A sub-window contain-
ing the main sign is cropped from 5(a) and shown in 5(b),
which is used as the template. Then our patch-based method
is applied to match the two images. The correlation result is
shown in Figure 5(c). The white box labels the position and
size of the detected pattern in the test image which is correct
when compared with the ground truth. The matching is fast
and the computation time is given in Table 1.



Table 1. Comparison of the computation time (in seconds) of dif-
ferent methods on various images. Our patch-based method with
feature selection is much faster than standard normalized cross
correlation (NCC) and at least three times faster than a fastim-
plementation of NCC using an FFT for the numerator and integral
images for the denominator (F-NCC). The size of each test image
and template is given under each experiment name. The symbols
“o.” and “s.” are for occlusion and multi-scales, respectively.

NCC F-NCC Ours

sign (300x384) 24.39 3.03 0.95
(189x173)

fruit (512x480) 109.53 13.55 3.77
(204x188)

face (640x486) 137.16 16.91 4.95
(177x163)

sign(o.) (300x384) – – 1.50
(189x173)

boat(s.) (710x505) – – 9.67
(140x69)

(a) (b) (c)

Figure 5. (a) A road sign image (of size 300x384); (b) the tem-
plate image (189x173); (c) matching result by our patch-based ap-
proach.

Figure 6(a) is a fruit image. A sub-window is cropped
from 6(a) and shown in 6(b) which is used as the template.
Figure 6(c) shows the detected pattern given by our patch-
based method. The detected position is exactly the same as
the ground truth.

(a) (b) (c)

Figure 6. (a) A fruit image (512x480); (b) the template (204x188);
(c) matching result by our method.

The experiments in Figures 5 and 6 demonstrate that
the patch-based method works well for the given cropped
templates. The next experiments will verify the robustness

of the method with respect to different variations.

Appearance variation
Figure 7(a) is an image of a face with a neutral ex-

pression. Figure 7(b) is the face window cropped from
7(a). Applying the patch-based method to match 7(a) and
7(b), the face pattern is detected correctly and shown in
Figure 7(c). More interestingly, the template is matched
to another image of a smiling face of the same individual.
The detected pattern of a smiling face is shown in Figure
7(d). There is no ground truth for measuring the positional
accuracy of the smiling face, but one can visually check
the matching result. It is quite accurate. This experiment
shows the robustness of the method to local appearance
change.

(a) (b)

(c) (d)

Figure 7. (a) A face image (640x486); (b) the template (177x163);
(c) matching result; (d) the detected face pattern on a test image
(640x486) of a smiling face.

Partial occlusion
To verify the robustness to occlusion, we manually erase

the right half of the road sign in Figure 5(a) and show it in
Figure 8(a). The matching template shown in Figure 8(b)
is the same as Figure 5(b). For this example, we used the
same weights for each patch. The partially occluded road
sign is correctly identified by our patch-based method as
shown in Figure 8(c). Previous methods using the global
template cannot detect the occluded pattern as ours does.
The reason is that they do not have a flexible mechanism to
deal with partial occlusion.

Variable scales
Another image variation is scale change. An object

often appears with different sizes in different images. To
verify the robustness of our method with respect to image
scale change, a boat template is cropped from the image
in Figure 9(a) and down-sampled by a factor of 2 in both
directions. It is shown in Figure 9(b). Then we perform
a multi-scale search of the template over the test image
shown in Figure 9(a). Two schemes are executed in varying



(a) (b) (c)

Figure 8. (a) A partially occluded road sign image (300x384)used
as a test; (b) the template image (189x173); (c) the detectedpattern
given by our method.

the scales: the first is to use scales of a power of 2, such
as 1, 2, and 4. The correct position and scale found by the
method are shown in Figure 9(c). The second scheme is to
use a set of scales a factor of 1.25 apart. Then the detected
scale is1.253 = 1.95. Figure 9(d) shows the detected
pattern. Note that in the second scheme, the detected scale,
position, and size of the boat pattern is slightly different
from the ground truth, although the two results are almost
the same visually. We intentionally chose different scales
to search in order to verify the robustness of the method
with respect to variable scales because in practice a method
cannot exhaustively search over all continuous scales to
guarantee the exact scale of the test image is not missed.

(a) (b)

(c) (d)

Figure 9. (a) A boat image (710x505); (b) the template image
cropped and down-sampled to (140x69); (c) the detected pattern
using the power of 2 in scale search; (d) the identified pattern us-
ing a set of scales a factor of 1.25 apart.

Discussion
The patch-based image correlation method presented in

this paper can be used for applications whenever standard
SSD or NCC can be applied, e.g., object detection, recog-
nition, and tracking, given only a single example image, i.e.,
the template, can be used. Because it is fast and robust with
respect to many types of variations, a more interesting ap-
plication of our method is to interactively collect data in

a semi-supervised manner. The user provides a (cropped)
template, and the matching technique finds similar patterns
in a database and “cuts” them out for the user. This is easier
than manually cropping patterns by the user for collecting
training data for tasks in learning-based vision.

6. Conclusion

We have presented a new method for fast template
matching. Our patch-based approach is robust to many
types of variations, such as local appearance change, partial
occlusion, and scale variation. To our knowledge, no pre-
vious methods address these variations all together in tem-
plate matching. The rectangle filters applied to each patch
can be evaluated quickly based on the integral image rep-
resentation, and thus matching is faster than traditional ap-
proaches. A new feature selection strategy was developed
based on detecting salient image structures that are encoded
naturally by rectangle filters. Experiments on a variety of
test images show that our patch-based correlation method is
promising for fast template matching.
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