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Abstract

Images captured by digital video cameras usually have
lower spatial resolution than digital still cameras. This pa-
per addresses the problem of combining images from dig-
ital still cameras and video cameras to generate a video
sequence with higher resolution than the original video. A
method is presented for accomplishing this goal and exper-
imental results are shown that demonstrate its effectiveness.

1. Introduction

Visual information includes the dimensions of space, time,
spectrum, and brightness [12]. However, a camera can-
not capture all this information simultaneously. As a re-
sult, there are always trade-offs between the dimensions.
For example, color cameras trade-off spatial resolution [12].
Among the multiple dimensions of images we are interested
in the space-time interaction.

Digital still cameras capture the world at 5-10 times
the spatial resolution of digital video cameras, while video
cameras have denser temporal sampling. For example, the
Kodak DCS-760 professional digital still camera has a res-
olution of 3032 x 2008 (6 megapixels), while the JVC
JY-HD10U (high definition) digital video camera records
frames of size 1280 x 720 (0.9 megapixels). For consumer
products, 5 megapixel digital cameras (e.g. Canon Power-
shot G5) are common today, while most digital camcorders
have 640 x 480 resolution (0.4 megapixels).

Why do digital still cameras and camcorders have such
different spatial resolutions? One reason is the physical
restriction. Charge-coupled devices (CCDs) are the most
common image sensors used in digital cameras [4]. CCDs
capture light in small photosites on their surface and the
charge is read after an exposure. For example, charges on
the last row are transferred to a read-out register. From
there, the signals are fed to an amplifier and then on to an
analog-to-digital converter. Once the row has been read, its
charges in the read-out register row are deleted, the next row
enters the read-out register, and all of the rows above march
down one row. The charges on each row are “coupled” to

those on the row above so when one moves down, the next
moves down to fill its old space. In this way, each row can
be read, one row at a time, as shown in Fig. 1. In digital
video cameras, to capture 25 or more frames per second,
there are a large quantity of charges to transfer per second.
In order to keep the temporal sampling rate, the number of
charges used for each frame has to be small enough. This is
a space-time tradeoff.

>

Figure 1: The CCD shifts one whole row at a time into the
read-out register. The read-out register then shifts one pixel
at a time to the output amplifier [4].

One way to break through this physical restriction is to
use multiple cameras such as both digital still cameras and
digital camcorders. Then combine the information from
both kinds of cameras to enrich each other.

In practice, one may not need two or more cameras in
order to reach this goal. Nowadays, many of the digital
still cameras can capture short video segments and more
and more digital camcorders can capture digital stills. Be-
cause of this property, one can use, for example, a single
digital camera to capture high quality digital stills and low-
resolution video sequences.

In this paper we consider the goal of combining the best
qualities of each type of camera. Specifically, using high



resolution still images to enhance the spatial resolution of a
video sequence. The framework of the approach is shown
in Fig. 2. This problem is related to, but different from,
existing super-resolution work that is based on signal re-
construction or example-based learning. In reconstruction-
based super-resolution [10] [6] [16] [15] [3], multiple low-
resolution images are registered to create a higher resolu-
tion image. See a review of classical approaches to super-
resolution image reconstruction in [2]. In learning methods
[8] [1], images and their size-reduced images are used as
training pairs to learn high frequency information. Other
recent work [13] aligns video sequences to increase resolu-
tion by assuming the video cameras have the same optical
center.

We present a recognition-based scheme to align high-
resolution images with video sequences in Section 2, and
robustly estimate the mapping between the images and
videos in Section 3. Then we describe a factorization tech-
nique to rotate and correct the high-resolution images in
Sections 4 and 5. Experimental results are shown in Sec-
tion 6 and further issues are discussed in Section 7.

2. Image and Video Alignment via
Recognition

In order to use high-resolution still images to enhance low-
resolution video frames, one has to first establish the rela-
tionship between them. That is, align or register the images
coming from different sources.

Video registration is a challenging problem [14]. Be-
cause of camera motion, the viewpoints of a video sequence
may change continuously and be different from the digi-
tal still images’ viewpoints. Furthermore, the illumination
and camera automatic gain may also change. However, the
biggest variation in our problem is the difference in resolu-
tion.

If two images to be matched have very different resolu-
tions in addition to viewpoint and illumination changes, tra-
ditional direct methods using optical flow or local feature
(e.g. corner) matching cannot be used because these fea-
tures are used under the assumption that local image patches
between two images do not change significantly in appear-
ance. These features especially lack invariance to scale [11].
For example, corner features are usually computed using the
same template size for two images to be matched. When
two images have very different scales, the computed values
will be different in the two images. In order to align still
images with video sequences, we have to find some new
matching techniques.

One possible way to deal with image matching with very
different scales is to formulate it as a one-to-many match-
ing problem [5]. The high-resolution image is size-reduced
by various scales and some local features are extracted at

each scale. Another way is to extract scale-invariant fea-
tures. Lowe [11] proposed a scale-invariant feature trans-
form (SIFT) operator and used it successfully for object
recognition. Using the SIFT operator, scale information
is automatically encoded in each extracted key point, and
there is no need to extract features at various scales of the
image. Here, we use SIFT feature matching as the first step
for our super-resolution method, and show that the SIFT
operator can deal with large resolution differences.

The SIFT operator first identifies key locations in scale
space by looking for locations that are maxima or minima
of a difference-of-Gaussian function. Each point is used
to generate a feature vector that describes the local image
region sampled relative to its scale-space coordinate frame.
The features achieve partial invariance to local variations
by blurring image gradient locations. The resulting feature
vectors are called SIFT keys. A nearest neighbor criterion
is then used to find similar keys in both images. For more
details on the SIFT operator, see [11].

3. Homography Estimation

After using the SIFT operator for feature extraction and
the nearest-neighbor criterion for feature matching, there
are usually a large number of incorrect feature correspon-
dences. Robust methods such as RANSAC [7] [9] can be
used to remove outlier matches and estimate the homogra-
phy between the two images.

There are three cases in which a planar homography is
appropriate [3] [9]: (1) images of a plane viewed under ar-
bitrary camera motion, (2) images of an arbitrary 3D scene
viewed by a camera rotating about its optical center and/or
zooming, and (3) a freely moving camera viewing a very
distant scene. To demonstrate our approach, in this paper
we assume the scene is planar and so a planar homogra-
phy is sufficient to describe the relation between a high-
resolution image and a low-resolution image.

4. Making Image Planes Parallel
Assume q = Hp, where p = (z,y,w)T are the homoge-
neous coordinates of a point in the low-resolution image,
and q is the corresponding point in the high-resolution im-
age. H is a 3 x 3 matrix, mapping the low-resolution im-
age to the high-resolution image. For super-resolution pur-
poses, knowing only the mapping H is not enough. The
goal is to obtain an image pattern in a high-resolution im-
age with the same viewpoint and illumination as that in the
low-resolution image, mimicking a virtual camera with only
a spatial scale difference.

To accomplish this, the high-resolution image must first
be rotated so that it is parallel to the low-resolution image,
as shown in Fig. 3 where the high-resolution image B is ro-
tated into B’ so that B’ is parallel to the low-resolution im-
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Figure 2; The framework of our approach. More details on each step can be found in the text.

age S. We use QR decomposition to estimate the required
rotation.

4.1. QR Factorization

The 3 x 3 homography matrix H can be decomposed into
two matrices via QR factorization,

H = RU; €]

where R is a rotation matrix, and U; is an upper triangular
matrix. Then the inverse, H~1, is defined as

H'=(RU)' =U 'Ry =UsR; (D)

where Ry = Rl'1 is also a rotation matrix, and Uy = U 1
is another upper triangular matrix.
From p = H'q and Eq. (2), we get

p = UsRoq = Upq 3)

where q’ = Raq is the corresponding point in the ro-
tated high-resolution image plane that is parallel to the low-
resolution image frame. Point p in the low resolution image
is mapped to point q' by

q =U;'p @
and U5 ! has the form
a, 8§ i
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where s is the skew, o, a, are scale factors in the x and
y directions respectively, and ¢, and ¢, are translations. In

practice, the skew, s, may or may not be zero. If s # 0, we
need to decompose U, ! further by

oy 0 itz 1 20
Upl=] 0 o ty 0 1 0|=TuT: (6
0 0 1 0 0 1

where T}, is the skew transform matrix, and T; is the trans-
form of scale and translation. For the purpose of analyzing
resolution difference, it is better to further decompose T
as

ta
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so we have Uy = T Ty Letting Ty, = 13T} Ra, one can
apply T}, to the high resolution image by

q" =Tud =Tha (®)
and apply T;"! to the low resolution image by
T7'p=q" )

Eq. (8) warps the high-resolution image so that it is par-
allel to the low-resolution frame and has no skew or trans-
lation difference. The remaining difference between q” and
p is just the scale factor, which is encoded in Ts. Eq.
(9) is used to scale the low-resolution image and find the
corresponding position in the rotated, skew-corrected, and
translation-corrected high-resolution image for any point p.
Note that there is only a scale transformation, Ts"l, between
p and q”. To summarize, all mappings are shown in Fig. 4.

4.2. Scale Coherence in Two Directions

The pixels in images may be square or non-square, which
is determined by the physical CCDs. The pixel aspect ratio



Figure 4: The relation between the low-resolution input image S, high-resolution input image B, rotated image B’, and skew
and translation corrected image B”. p, q, q/, and q” are corresponding points in each image.

(AR) is the ratio of horizontal and vertical sizes of a pixel.
This term also refers to an image’s display resolution. For
instance, an image with a 640 x 480 resolution has an aspect
ratio of 4:3, while a 720 x 480 resolution has an AR of 3:2.
The standard aspect ratio for traditional television sets and
computer monitors is 4:3 while the aspect ratio for high-
definition, wide-screen digital systems is 16:9. In our super-
resolution work, the high-resolution still images may have
a different AR than the low-resolution video frames when
two different cameras are used. Different ARs may result in
different scale factors in the z and y directions, i.e., ag #
oy, in Egs. (5) (6) and (7). While the goal is to enhance the
spatial resolution of each video frame, it is not a good idea
to change the aspect ratio of the low-resolution frames after
enhancement. To avoid this, the two scale factors, o, and
@y, should be normalized to a common value, analogous
to digitally zooming the low-resolution images by a given
percentage. Assuming oz > oy, Ts can be decomposed as

a; 0 0 1 0 0
Ts=| 0 a 0 0 3¢ 0| =TT (10)
0 0 1 0 0 1

Let T,’l = Ts.1tT} Ro and apply it to the high-resolution
image, and only apply T;! to the low-resolution images.
The scale factor between the low-resolution and high-
resolution images is equal to the first element of 7,1, i.e.,
T::1(1,1), assuming the last element, T’;;*(3, 3), equals 1.

In practice, even if the aspect ratios of the two cameras
are the same, or only one digital camera is used to cap-
ture both the high-resolution still images and low-resolution
videos, the estimated scale factors, o, and oy, may still be
different because of the image and video registration accu-
racy, and possibly the manufacturing precision. So, nor-
malize the scale factors o, and o, to a common value in all

cases.

4.3. Non-Uniqueness

QR decomposition is not unique. Thus when we use the
computed R to warp the high-resolution image, it may re-
sult in an “invalid” rotation (e.g., the rotated points have
negative coordinates). To prove the non-uniqueness of QR
decomposition, let H = RU = (RD)(D~'U) = R'U’,
given that D is orthogonal with determinant 1 and D # I.
Since both R and D are orthonormal, RD is also orthonor-
mal, and DU is upper triangular.

In practice, we can check if oz and oy (in Eq. (6)) are
both negative. If yes, we can choose

-1 0 0
D=}f 0 -1 0 (11
0o 0 1

and use H = R'U’ instead of RU. Note that o, and cy, can
not have different signs because we cannot capture an image
with positive scale in one dimension and negative scale in
the other.

5. Photometric Correction

Besides the geometrical differences between the low and
high resolution images, there may also be differences in
the intensities between the images because of global illu-
mination variation and/or camera automatic gain changes.
To cope with photometric variation, we use a simple linear
method to align the intensities of the warped high resolution
image with the low resolution image,

E - BII )
BT“"’"‘TI%L‘.“(Smam - Smin) + Smin (12)

maz ~ Pmin

Enew =



Figure 3: Two cameras (with centers C'1 and C2 respec-
tively) are used to capture the low-resolution image S and
high-resolution image B which is rotated into B’ so that the
viewing plane B’ is parallel to S. Note that this rotation
is different from the traditional image rectification in stereo
where both images are warped into parallel to the baseline
C102.

where B, and B, . are the maximum and minimum in-
tensities in a region in the warped high-resolution image,
Smaz and Sp,in are the maximum and minimum intensi-
ties in the corresponding region in the low-resolution im-
age, F is the given pixel’s intensity in B”, and F,.ey 18
the photometrically-corrected value. Eq. (12) is applied for
each pixel in each color channel separately.

The whole procedure presented in Sections 2 to 5 can
be applied to each frame of the video sequence using each
high-resolution still image.

6. Experiments

A Canon PowerShot A70 digital camera was used to capture
both the high-resolution still images (of size 2048 x 1536)

using the “auto mode,” and the video sequences (each frame
of size 320 x 240) with the “video mode.” The scene is a rug
containing many details. For display purposes only, the still
images were reduced to 1280 x 960, which has no influence
on demonstrating the basic idea.

In Fig. 5 one image extracted from the video sequence
is shown at the top-left, and one high-resolution image is
shown in the middle. Using the SIFT operator for fea-
ture detection, 5,834 points were extracted from the high-
resolution image, and 1,457 points from the low-resolution
image. Using nearest neighbor matching, 471 correspon-
dences were found. However, there are many outliers (i.e.,
mismatches) there. Using RANSAC to estimate the homog-
raphy, 173 inliers were selected, from which only 30 are
displayed in both images (top-right and middle in Fig. 5) to
avoid confusion in this visualization. The condition number
of the 3 x 3 homography matrix H is large, but the estimate
is accurate. We also used the normalization approach, but
it did not improve significantly the results. QR factoriza-
tion and related manipulations were performed, Eq. (8) was
used to warp the high-resolution image parallel to the low-
resolution image frame and to correct skew and translation.
Eq. (9) was used to zoom in the low-resolution image. The
scales were estimated using Eq. (10) and the scales in the =
and y directions are the same without changing the aspect
ratio of the low-resolution images. Photometric correction
using Eq. (12) was then done. For the low-resolution image
shown at the top-left in Fig. 5, its enhanced high-resolution
image (of size 1392 x 1044) is shown at the bottom. The
estimated scale difference is 4.35, which is bigger than the
image size difference (four times in each direction) between
the input high-resolution image (1280 x 960, midd!e in Fig.
5) and the low-resolution image (320 x 240).

To see the result clearly, it is better to look closely at
some selected regions in the images. A 100 x 100 window
was cropped from the low-resolution image (at the top-right
in Fig. 5) and shown in the top of Fig. 6. The small patch
was re-scaled using bilinear interpolation (middle left) and
bicubic interpolation (middle right) as shown in Fig. 6.
Clearly, many details were lost and the image patch looks
vague. Image interpolation does not add new information
although the image size is bigger. The corresponding patch
in the warped high resolution image is cropped and shown
at the bottom-left in Fig. 6, which is much clearer. The
flowers in the middle and the stripes at bottom-left can be
seen clearly. Finally, photometric correction using Eq. (12)
was performed and the new image is shown at the bottom-
right in Fig. 6. From this experimental result we can see
that the low-resolution image can be greatly enriched using
the information from the input high-resolution image.

The input video used in the experiment contained 90

frames. The same procedure described above was exe-
cuted independently for all frames in the video. The low-



resolution input video and high-resolution output video are
not shown here. Instead, they will be shown at the authors’
web pages. The experiments demonstrate that our approach
for still-image-based video enhancement is promising.

7. Discussion

We have demonstrated an approach for using high-
resolution digital still images to enhance low-resolution
video sequences. There are several questions remaining
to be answered: 1) How many high-resolution images are
needed? Currently, we only use one high-resolution image
to enhance the whole video sequence. Some regions in the
low-resolution images cannot be “enhanced” because the
corresponding parts do not exist in the high-resolution im-
age. Hence more high-resolution images may be necessary.
2) How far apart can the viewpoints be when capturing the
videos and high-resolution images? If they are too far apart,
there will be distortions when warping the images. 3) How
should the high-resolution images for a more general, non-
planar, scene be warped? In our experiments, we assumed a
3 x 3 homography, which is not general enough to deal with
all possible scenes. 4) How should photometric correction
be done for more complex illumination conditions? We be-
lieve that all these problems deserve investigation based on
the results here.

8. Conclusion

We have proposed enhancing the spatial resolution of video
sequences using higher resolution digital still images. A
recognition-based method using invariant features is pre-
sented to register the high-resolution images with the low-
resolution video sequences. A simple, robust method based
on QR factorization is used to warp the high-resolution im-
ages in order to mimic a digital “zooming” effect. The pro-
cedure realizes the basic idea of our still-image-based video
enhancement framework. Many extensions of the method
are possible in order to build a real system for practical use.
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Figure 5: Top Left: One frame from a video sequence of size 320 x 240; Top right: partial features detected by the SIFT
operator, with the square of size 100 x 100; Middle: A high resolution still image of size 1280 x 960, 16 times larger than
the video frame. Some corresponding points are labelled in this image. Bottom: The resolution-enhanced image of size
1392 x 1044. The black region is because there is no corresponding information to obtain from the input high-resolution
image. 7



Figure 6: Top row: The image block of size 100 x 100 cropped from the square shown in the top right image of Fig. 5;
Middle-left: Cropped square enlarged using bilinear interpolation with the estimated scale 4.35; Middle-right: Enlarged using
bicubic interpolation; Bottom-left: Corresponding high resolution block extracted and warped from the bottom image in Fig.
5; Bottom-right: Photometrically corrected image of the bottom-left image.



