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Abstract

A linear programming technique is introduced that
jointly performs feature selection and classifier training so
that a subset of features is optimally selected together with
the classifier. Because traditional classification methods in
computer vision have used a two-step approach: feature
selection followed by classifier training, feature selection
has often been ad hoc, using heuristics or requiring a time-
consuming forward and backward search process. More-
over, it is difficult to determine which features to use and
how many features to use when these two steps are sepa-
rated. The linear programming technique used in this pa-
per, which we call feature selection via linear programming
(FSLP), can determine the number of features and which
features to use in the resulting classification function based
on recent results in optimization. We analyze why FSLP can
avoid the curse of dimensionality problem based on margin
analysis. As one demonstration of the performance of this
FSLP technique for computer vision tasks, we apply it to
the problem of face expression recognition. Recognition ac-
curacy is compared with results using Support Vector Ma-
chines, the AdaBoost algorithm, and a Bayes classifier.

1. Introduction

The goal of feature selection in computer vision and pat-
tern recognition problems is to preprocess data to obtain a
small set of the most important properties while retaining
the optimal salient characteristics of the data. The benefits
of feature selection are not only to reduce recognition time
by reducing the amount of data that needs to be analyzed,
but also, in many cases, to produce better classification ac-
curacy due to finite sample size effects [9].

Most feature selection methods involve evaluating dif-
ferent feature subsets using some criterion such as proba-

bility of error [9]. One difficulty with this approach when
applied to real problems with large feature dimensionality,
is the high computational complexity involved in searching
the exponential space of feature subsets. Several heuristic
techniques have been developed to circumvent this prob-
lem, for example using the branch and bound algorithm [6]
with the assumption that the feature evaluation criterion is
monotonic. Greedy algorithms such as sequential forward
and backward search [6] are also commonly used. These
algorithms are obviously limited by the monotonicity as-
sumption. Sequential floating search [18] can provide bet-
ter results but at the cost of higher search complexity. Jain
and Zongker [9] evaluated different search algorithms for
feature subset selection and found that the sequential for-
ward floating selection (SFFS) algorithm proposed by Pudil
et al. [18] performed best. However, SFFS is very time con-
suming when the number of features is large. For example,
Vailaya [21] used the SFFS method to select 67 features
from 600 for a two-class problem and reported that SFFS
required 12 days of computation time.

Another issue associated with feature selection methods
is the curse of dimensionality, i.e., the problem of feature se-
lection when the number of features is large but the number
of samples is small [9]. This situation is common in many
computer vision tasks such as object recognition because
there are often less than tens of training samples (images)
for each object, but there are hundreds of candidate features
extracted from each image.

Yet another difficult problem is determining how many
features to select for a given data set. Traditional feature
selection methods do not address this problem and require
the user to choose the number of features. Consequently,
this parameter is usually set without a sound basis.

Recently, a new approach to feature selection was pro-
posed in the machine learning community called Feature
Selection via Concave Minimization (FSV) [3]. The basic
idea is to jointly combine feature selection with the classi-

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03) 
1063-6919/03 $17.00 © 2003 IEEE 



fier training process using a linear programming technique.
The results of this method are (1) the number of features
to use, (2) which features to use, and (3) the classification
function. Thus this method gives a complete and optimal
solution.

In order to evaluate how useful this method may be for
problems in computer vision and pattern recognition, this
paper investigates its performance using the face expres-
sion recognition problem as a testbed. 612 features were
extracted from each face image in a database and we will
evaluate if a small subset of these features can be automati-
cally selected without losing discrimination accuracy. Suc-
cess with this task will encourage future use in other object
recognition problems as well as other applications including
perceptual user interfaces, human behavior understanding,
and interactive computer games.

The feature selection via linear programming (FSLP)
formulation is presented in next section. We analyze why
this formulation can avoid the curse of dimensionality prob-
lem in Section 3. Then we describe the face expression
recognition problem and the feature extraction method used
in Section 4. The FSLP method is experimentally evaluated
in Section 5 and results are compared with Support Vector
Machines, AdaBoost, and a Bayes classifier.

2. Linear Programming Formulation

In the early 1960s, the linear programming (LP) tech-
nique [13] was used to address the pattern separation prob-
lem. Later, a robust LP technique was proposed to deal with
linear inseparability [2]. Recently, the LP framework has
been extended to cope with the feature selection problem
[3]. We briefly describe this new LP formulation below.

Given two sets of points A and B in Rn, we seek a linear
function such that f(x) > 0 if x ∈ A, and f(x) ≤ 0 if
x ∈ B. This function is given by f(x) = w′x − γ, and
determines a plane w′x = γ with normal w ∈ Rn that
separates points A from B. Let the set of m points, A,
be represented by a matrix A ∈ Rm×n and the set of k
points, B, be represented by a matrix B ∈ Rk×n. After
normalization, we want to satisfy

Aw ≥ eγ + e, Bw ≤ eγ − e (1)

where e is a vector of all 1s with appropriate dimension.
Practically, because of overlap between the two classes, one
has to minimize some norm of the average error in (1) [2]:

min
w,γ

f(w, γ) = minw,γ
1
m ‖ (−Aw + eγ + e)+ ‖1

+ 1
k ‖ (Bw − eγ + e)+ ‖1 (2)

where x+ denotes the vector with components max{0, xi}.
There are two main reasons for choosing the 1-norm in Eq.

(2): (i) it is easy to formulate as a linear program (see (3)
below) with theoretical properties that make it computation-
ally efficient [2], and (ii) the 1-norm is less sensitive to out-
liers such as those occurring when the underlying data dis-
tributions have pronounced tails [3].

Eq. (2) can be modeled as a so-called robust linear pro-
gramming (RLP) problem [2]:

min
w,γ,y,z

e′y
m + e′z

k

subject to −Aw + eγ + e ≤ y,

Bw − eγ + e ≤ z, (3)

y ≥ 0, z ≥ 0.

which minimizes the average sum of misclassification er-
rors of the points to two bounding planes, x′w = γ + 1 and
x′w = γ − 1, where “′” represents transpose.

Problem (3) solves the classification problem without
considering the feature selection problem. In [3] a feature
selection strategy was integrated into the objective function
in order to simultaneously select a subset of the features.
Feature selection is defined by suppressing as many com-
ponents of the normal vector w to the separating plane P as
needed to obtain an acceptable discrimination between the
sets A and B. To accomplish this, they introduced an extra
term into the objective function of (3), reformulating it as

min
w,γ,y,z

(1 − λ)
(

e′y
m + e′z

k

)
+ λe′|w|∗

subject to −Aw + eγ + e ≤ y,

Bw − eγ + e ≤ z, (4)

y ≥ 0, z ≥ 0.

where |w|∗ ∈ Rn has components equal to 1 if the cor-
responding components of w are nonzero, and has compo-
nents equal to 0 if the corresponding components of w are
0. So, e′|w|∗ is actually a count of the nonzero elements in
the vector w. This is the key to integrating feature selection
with the classifier training process. As a result, Problem
(4) balances the error in discrimination between two sets A
and B, e′y

m + e′z
k , and the number of nonzero elements of w,

e′|w|∗. Moreover, if an element of w is 0, the corresponding
feature is removed. Thus only the features corresponding to
nonzero components in the normal w are selected after lin-
ear programming optimization.

In [3] a method called Feature Selection via Concave
Minimization (FSV) was developed to deal with the last
term in the objective function of (4). They first intro-
duced a variable v to eliminate the absolute value in the
last term by replacing e′|w|∗ with e′v∗ and adding a con-
straint −v ≤ w ≤ v, which models the vector |w|. Because
the step function e′v∗ is discontinuous, they used a concave
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exponential to approximate it, v∗ ≈ t(v, α) = e − ε−αv ,
in order to get a smooth solution. This required introduc-
tion of an additional parameter, α. Alternatively, instead of
computing the concave exponential approximation, we will
use a simple term e′s with only one parameter, µ. This pro-
duces the final formulation, which we call Feature Selection
via Linear Programming (FSLP):

min
w,γ,y,z

(
e
′
y

m + e′z
k

)
+ µe′s

subject to −Aw + eγ − y ≤ −e,

Bw − eγ − z ≤ −e, (5)

−s ≤ w ≤ s,

y, z ≥ 0.

Our FSLP formulation in (5) is slightly different from
the FSV method in that FSLP is simpler to optimize and is
easier to analyze in relation to the margin, which we do in
Section 3. It should be noted that the normal of the sepa-
rating hyperplane w in (5) has a small number of non-zero
components (about 18) and a large number of 0 components
(594) in our experiments. The features corresponding to the
0 components in the normal vector can be discarded, and
only those with non-zero components are used. As a result,
no user-specified parameter is required to tell the system
how many features to use.

3. Avoiding the Curse of Dimensionality

In [3] the authors did not address the issue of the curse
of dimensionality. Instead, they focused on developing the
FSV method to get a smooth solution, which is not explic-
itly connected with the margin analysis as we do here. Also,
their experiments used data sets in which the number of ex-
amples was much larger than the number of feature dimen-
sions. Here we will show that our FSLP method is actually
related to margin maximization, which makes it possible to
avoid the curse of dimensionality problem [9].

Consider the last term, e′s, in the objective function of
(5), where s is the absolute value of the normal w due to the
constraint −s ≤ w ≤ s. To minimize the objective function
in (5) requires minimizing the term e′s too. Since

e′s =
∑

i

si =
∑

i

|wi| =‖ w ‖1 (6)

this means minimizing ‖ w ‖1, which is the 1-norm of the
normal w. Because minimizing ‖ w ‖1 is equivalent to
maximizing 1

‖w‖1
, the objective function in (5) maximizes

1
‖w‖1

.
Recall from Eq. (1) there are two bounding hyperplanes,

P1 : w′x − γ = 1 and P2 : w′x − γ = −1. The dis-
criminating hyperplane P is midway between these two hy-
perplanes, i.e., w′x − γ = 0. The distance of any point

x to the hyperplane P is defined as d(x; P ) = |w′x−γ|
‖w‖2

.
From Eq. (1) |w′x − γ| ≥ 1, so any point, x, that is out-
side the two bounding hyperplanes, P1 and P2, satisfies
d(x; P ) ≥ 1

‖w‖2
.

The minimum distance between the two bounding hy-
perplanes is 2

‖w‖2
, which is defined as the margin, simi-

lar to that used in developing SVMs [22]. We know that
the p-norm is non-increasing monotonic for p ∈ [1,∞], so
‖ w ‖1≥‖ w ‖2, ∀w ∈ Rn, which is equivalent to

1
‖ w ‖1

≤ 1
‖ w ‖2

. (7)

Also, the p-norm ‖ w ‖p is convex on Rn, ∀p ∈ [1,∞]
[19]. So, by maximizing 1

‖w‖1
, we approximately maximize

2
‖w‖2

. As a result, the last term, e′s, in the objective function
of (5) has the effect of maximizing the margin.

Maximizing the margin can often circumvent the curse
of dimensionality problem, as seen in Support Vector Ma-
chines, which can classify data in very high-dimensional
feature spaces [22]. Our FSLP method has a similar ad-
vantage because it incorporates a feature selection process
based on margin size.

In fact, when µ = 0 the last term in the objective function
of (5) disappears. In this case classification performance
worsens (we do not describe this case in Section 5 formally)
because the remaining two terms do not have the property
of maximizing the margin. So, the last term, e′s, has two
effects: (i) feature selection, and (ii) margin maximization.

Because the curse of dimensionality problem occurs in
so many computer vision tasks, our analysis that FSLP cir-
cumvents this problem is an important new result. Further
demonstration of this property is shown empirically in Sec-
tion 5.

4. Face Expression Recognition

Face expression recognition is an active research area in
computer vision [11] [12] [25] [24]. See [16] for a recent
review of methods for face expression recognition.

In this paper we investigate face expression recogni-
tion from static images using Gabor filters for facial fea-
ture extraction. Several researchers [11] [12] [25] [24] have
demonstrated the advantages of using Gabor wavelet coef-
ficients [5] to code facial expressions.

A two-dimensional Gabor function, g(x, y), and its
Fourier transform, G(u, v), can be written as

g(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx

]

(8)

G(u, v) = exp
{
−1

2

[
(u − W )2

σ2
u

+
v2

σ2
v

]}
(9)
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where W is the frequency of a sinusoidal plane wave along
the x-axis, and σx and σy are the space constants of the
Gaussian envelope along the x and y axes, respectively.
σu = 1/2πσx and σv = 1/2πσy. Filtering a signal with
this basis provides a localized frequency characterization.
Filters with arbitrary orientation can be obtained by a rota-
tion of the x-y coordinate system.

In our experiments, each input face image was convolved
with 18 Gabor filters (3 scales and 6 orientations), result-
ing in 18 filtered images. The amplitudes of each filtered
image at selected fiducial points were used as feature vec-
tors. Thus, for each face image, the extracted feature vector
was length 612 (34x3x6) when 34 fiducial points were used.
Typical positions of the fiducial points are shown in Figure
1.

12
3

45
6 7
8

9
10

11
12

13 14
1516

17 18 19

20

21 22

2324 25

26
27 28

29

30 31

32

33

34

Figure 1. 34 fiducial points on a face image.

5. Experimental Evaluation

5.1. Face Expression Database

The face expression database [11] used in our experi-
ments contains 213 images of 10 Japanese women. Each
person has two to four images for each of seven expressions:
neutral, happy, sad, surprise, anger, disgust, and fear. Each
image size is 256 x 256 pixels. A few examples are shown
in Figure 2. For more information on the database such as
image collection, data description, and human ranking, see
[11]. This database was also used in [12] [25] [24].

5.2. Experimental Results

Our experimental procedure used 10-fold cross-
validation because the database contains only 213 images.
That is, the database was divided randomly into ten roughly
equal-sized parts, from which the data from nine parts were
used for training the classifiers and the last part was used
for testing. We repeated this procedure ten times so that
each part was used once as the test set.

Experimentally we found that the parameter µ in (5) is
best set to a small value, and we used µ = 0.00001 in all
experiments. To solve this 7-expression classification prob-
lem we used a simple binary tree tournament scheme with
pairwise comparisons.

Table 1. The performance of FSLP compared
to linear SVM (L-SVM) and GRBF non-linear
SVM (NL-SVM) using 10-fold cross-validation.
The average number of selected features
(Ave. #) for each pairwise classifier and the
total number of selected features (Total #)
used for all pairs are shown in addition to the
number of errors out of 21 test examples in
each run.

Test Ave. # Total # FSLP L-SVM NL-SVM

Set 1 16.8 82 3 2 1
Set 2 17.0 84 2 2 2
Set 3 17.1 90 1 1 2
Set 4 16.4 92 3 3 3
Set 5 16.0 83 1 2 2
Set 6 19.1 102 2 2 2
Set 7 16.9 85 2 2 2
Set 8 17.2 91 1 0 0
Set 9 17.5 91 2 1 2
Set 10 17.4 89 2 1 1

Ave. 17.1 88.9 1.9 1.6 1.7

Experimental results of the FSLP method are shown in
Table 1. Feature selection was performed for each pair of
classes, resulting in a total of 21 pairs for the 7-expression
classification problem. The second column in Table 1 shows
the number of selected features on average over the 21 pair-
wise classifiers, ranging from 16.0 to 19.1 for the ten runs.
The average number of selected features over the ten runs
was 17.1. Thus a very sparse set of features was automat-
ically selected out of the 612 features extracted from each
face image. This demonstrates that FSLP can significantly
reduce the number of feature dimensions, and without any
user interaction.
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Figure 2. Some images in the face expression database. From left to right, the expressions are angry,
disgust, fear, happy, neutral, sad, and surprise.
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Figure 3. Histogram of the frequency of oc-
currence of the 612 features used in training
Set 1 for all 21 pairwise FSLP classifiers.

The third column in Table 1 shows the total number of
features selected by FSLP for all 21 pairwise classifiers in
each test set. Because some features are useful in discrimi-
nating between one pair, say, “angry” and “happy,” but not
for separating another pair, say “angry” and “sad,” the num-
ber of features selected for all pairs is larger than that for
each pair. For instance, there were 82 selected features for
21 pairwise classifiers in Set 1. This number is still much
smaller than all 612 features. On the other hand, the fre-

quency of occurrence of the 82 features over all pairs of
classes was very variable, as shown by the histogram in Fig-
ure 3.

Column 4 in Table 1 lists the number of classification
errors out of 21 test examples by FSLP on each data set.
The average over 10 runs was 1.9.

5.3. Comparison with SVMs

In order to verify whether the FSLP method has good
performance or not in terms of recognition accuracy, we
compared it with some other methods. Support Vector Ma-
chines [22] are known to give high recognition accuracy in
practice, so we first compared FSLP with SVMs. The clas-
sification errors of both linear or non-linear SVMs (using
all 612 features without selection) in each run are shown in
columns 5 and 6 of Table 1. For the non-linear SVM, we
used the GRBF kernel and experimentally set the width pa-
rameter to its best value. The maximum error of FSLP was
3 over the 10 runs, which was never larger than the errors by
linear SVMs and non-linear SVMs. The average number of
errors over 10 runs was very similar for FSLP, linear SVM
(1.6 errors) and non-linear SVM (1.7 errors). The corre-
sponding recognition accuracies of the three methods were
91.0%, 92.4%, and 91.9%, respectively (see Table 2), which
are comparable. Notice, however, that the average number
of features selected by FSLP was 17.1, much less than that
used by the SVMs. Furthermore, the computation time of
FSLP was fast in both the training and recognition phases,
with run times of several minutes to train all 21 classifiers
on a Linux machine with a 1.2 GHz Pentium processor us-
ing a Matlab implementation and CPLEX 6.6 for the stan-
dard linear programming optimization.
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While the recognition accuracy of SVMs is comparable
to FSLP, one major weakness of SVMs is their high com-
putational cost, which precludes real-time applications. In
addition, SVMs are formulated as a quadratic programming
problem and, therefore, it is difficult to use SVMs to do fea-
ture selection directly. (Some researchers have proposed
approximations to SVM for feature selection [23] [4] by
first training the SVM using the whole training set, and
then computing approximations to reduce the number of
features. This two-step approach cannot guarantee selection
of the best feature subset, however.) Finally, SVM approxi-
mations [23] [4] cannot determine automatically how many
features to use. On the contrary, FSLP addresses all of these
issues at once.
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Figure 4. Recognition accuracies of a Bayes
classifier and Adaboost as a function of the
number of features selected.

5.4. Comparison with AdaBoost and Bayes

Because one of our main goals was an evaluation of
FSLP’s feature selection process, we also compared the
method with some greedy and heuristic methods for feature
selection. The AdaBoost method [20] uses a greedy strat-
egy to select features in the learning phase. Greedy fea-
ture selection can also be used with a Bayes classifier by
assuming feature independence and incrementally adding
the most discriminating feature [10]. Figure 4 shows the
recognition performance of the AdaBoost and Bayes clas-
sifiers as a function of the number of features selected. It
is clear that less that 100 features are sufficient for both al-
gorithms. The Bayes classifier reached its best performance
of 71.0% with 60 features, and the performance deteriorated

slightly if more features were used. The recognition accu-
racy of the Bayes classifier was 63.3% (shown in Table 2)
when all 612 features were used. Overfitting the training
data is a serious problem for the Bayes method, so feature
selection is necessary for it. Nevertheless, a simple greedy
method does not give Bayes much better accuracy. For the
AdaBoost method, peak performance was 71.9% using 80
features (see Table 2) for each pair of classes. As shown
in Figure 4, using more features slightly lowered recogni-
tion accuracy. In summary, both the AdaBoost and Bayes
classifiers combined with a greedy feature selection strat-
egy need to use a larger number of features than FSLP, and
their recognition accuracies are much worse than FSLP.

5.5. Comparison with Neural Nets and LDA

We also compared the recognition performance of FSLP
with other published methods [25] [24] [12] that used the
same database. In [25] [24] a Neural Network was used
with 90.1% recognition accuracy. When some problematic
images in the database were discarded, the accuracy was
92.2%. In [12] a result of 92% using linear discriminant
analysis (LDA) was reported, but they only included nine
people’s face images and, hence, only 193 of the 213 images
were used. In conclusion, FSLP gives comparable results
to Neural Network and LDA methods, but FSLP optimally
selects a small number of features automatically, which is
especially important for real-time applications.

6. Concluding Remarks

This paper introduced a linear programming technique
called FSLP for accomplishing jointly-optimal feature se-
lection and classifier training, and demonstrated its perfor-
mance for face expression recognition. There are four main
properties of this new technique that make it advantageous
over existing methods: (1) FSLP can determine how many
features to use automatically without any user interaction;
(2) FSLP gives high recognition performance, comparable
with linear SVMs, non-linear SVMs, Neural Networks, and
LDA, and much better than AdaBoost and Bayes classifiers;
(3) FSLP avoids the curse of dimensionality problem, which
often occurs when the amount of training data is small [9];
and (4) FSLP feature selection is fast to compute.
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Table 2. Comparison of the recognition accuracy and the number of features used by the Bayes
classifier without feature selection (Bayes All), Bayes with pairwise-greedy feature selection (Bayes
FS), AdaBoost, linear SVM (L-SVM), non-linear SVM (NL-SVM), and FSLP.

Bayes All Bayes FS AdaBoost L-SVM NL-SVM FSLP

Accuracy 63.3% 71.0% 71.9% 92.4% 91.9% 91.0%
# Features 612 60 80 612 612 17.1
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