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Abstract

DSDP is an implementation of the dual-scaling algorithm for conic programming. The source code,
written entirely in ANSI C, is freely available. The solver can be used as a subroutine library, as a function
within the MATLAB environment, or as an executable that reads and writes to files. Initiated in 1997,
DSDP has developed into an efficient and robust general purpose solver for semidefinite programming.
Although the solver is written with semidefinite programming in mind, it can also be used for linear
programming and other constraint cones.

The features of DSDP include:

• a robust algorithm with a convergence proof and polynomially bounded complexity under mild
assumptions on the data,

• feasible primal and dual solutions,

• relatively low memory requirements for an interior-point method,

• the ability to exploit sparsity and low rank structure in the data,

• extensible data structures that allow applications to customize the solver and improve its perfor-
mance,

• a subroutine library that enables it to be used in larger applications,

• scalable performance for large problems on parallel architectures, and

• a well documented interface.

The package has been used in many applications and tested for efficiency, robustness, and ease of use.
We welcome and encourage further use under the terms of the license included in the distribution.
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1 Conic Programming

The DSDP package uses a dual-scaling algorithm to solve conic optimization problems of the form

(P ) minimize
nb∑
j=1

〈Cj , Xj〉 subject to
nb∑
j=1

〈Ai,j , Xj〉 = bi, i = 1, . . . ,m, Xj ∈ Kj ,

(D) maximize
m∑
i=1

bi yi subject to
m∑
i=1

Ai,jyi + Sj = Cj , j = 1, . . . , nb, Sj ∈ Kj ,

where Kj is a cone, 〈·, ·〉 is the associated inner product, and bi, yi are scalars. For semidefinite programming
each cone Kj is a set of symmetric positive definite matrices, the data Ai,j and Cj are symmetric matrices
of the same dimension, and the inner product 〈C,X〉 := trace CTX =

∑
k,l Ck,lXk,l. In linear programming

the cone K is the nonnegative orthant (Rn+), the data Ai and C are vectors of the same dimension, and the
inner product 〈C,X〉 is the usual vector inner product.

Formulation (P) will be referred to as the primal problem, and formulation (D) will be referred to as
the dual problem. Variables that satisfy the constraints are called feasible, whereas the others are called
infeasible.

Provided (P) and (D) both have a feasible point and there exist a strictly feasible point to either them,
(P) and (D) have solutions and their objective values are equal. To satisfy these assumptions, DSDP bounds
the variables y such that l ≤ y ≤ u where l, u ∈ Rm. Furthermore, it uses an auxiliary variable r that
represents the infeasibility of (D) and associates it with a penalty parameter Γ . The use of the bounds and
penalty parameter also allows DSDP to apply a feasible-point algorithm even when y and S are infeasible.

The standard form used by DSDP is given by the following pair of problems:

(PP ) minimize
nb∑
j=1

〈Cj , Xj〉 + uTxu − lTxl

subject to
nb∑
j=1

〈Ai,j , Xj〉 + xui − xli = bi, i = 1, . . . ,m,

Xj ∈ Kj , xu, xl ≥ 0,
nb∑
j=1

〈Ij , Xj〉 ≤ Γ,

(DD) maximize
m∑
i=1

bi yi − Γr

subject to Cj −
m∑
i=1

Ai,jyi + rIj = Sj ∈ Kj , j = 1, . . . , nb,

li ≤ yi ≤ ui, i = 1, . . . ,m,
r ≥ 0,

where Ij is the identity element of Kj , and xl, xu ∈ Rm are paired with the lower and upper bounds on y,
respectively. The parameters Γ, l, and u are set to penalize infeasiblity in (D) and (P) and force the variables
r, xl, and xu to be near zero at the solution. By default, the bounds and the penalty parameter Γ are very
large. Unbounded and infeasible solutions to either (P) or (D) are determined through examination of the
solutions to (PP) and (DD).
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2 Dual-Scaling Algorithm

This chapter summarizes the dual-scaling algorithm for conic optimization for solving (P) and (D). It assumes
that both of these programs bounded and feasible. Note that (PP) and (DD) are bounded and feasible, and
they can be expressed in that form. For simplicity, the notation will refer to semidefinite programming, but
the algorithm can be generalized to other cones.

Let K be the cone of positive semidefinite matrices. The data C,Ai ∈ Rn×n are given symmetric
matrices, b ∈ Rm is a given vector, and the variables X,S � 0. The symbol � (�) means the matrix is
positive (semi)definite. Following conventional notation, let

AX =
[
〈A1, X〉 · · · 〈Am, X〉

]T and AT y =
m∑
i=1

Aiyi,

For feasible (y, S), let z̄ = 〈C,X〉 for some feasible X and consider the dual potential function

ψ(y, z̄) = ρ ln(z̄ − bT y)− ln detS. (1)

The dual-scaling algorithm reduces this function, whose the first term decreases the duality gap and second
term keeps S in the interior of the positive semidefinite matrix cone. The gradient of this potential function
is

∇ψ(y, z̄) = − ρ

z̄ − bT y
b+A(S−1). (2)

Beginning with a strictly feasible point (yk, Sk) and upper bound z̄k, each iteration solves the following
problem.

Minimize ∇ψT (yk, z̄k)(y − yk) subject to ‖(Sk)−.5AT (y − yk)(Sk)−.5‖ ≤ α, (3)

where α is a positive constant. Denoting S = Sk, the step direction ∆y solves the linear system 〈A1, S
−1A1S

−1〉 · · · 〈A1, S
−1AmS

−1〉
...

. . .
...

〈Am, S−1A1S
−1〉 · · · 〈Am, S−1AmS

−1〉

 ∆y =
ρ

z̄ − bT y
b−A(S−1). (4)

The left-hand side of this linear system is a Gram matrix and is positive definite when S � 0 and the Ais
are linearly independent. In this manuscript, it will sometimes be referred to as M .

Using the ellipsoidal constraint, the minimal solution, yk+1, of (3) is given by

yk+1 − yk = βk∆y where βk = α√
−∇ψT (yk,z̄k)∆y

.

Practically, the algorithm then selects a step size βk ∈ (0, 1] such that Sk+1 = Sk+βk∆S is positive definite
and the potential function ψ(y, z̄) is reduced.

To find a feasible point X, we solve the least squares problem

minimize ‖S.5XS.5 − ∆k

ρ I‖ subject to AX = b. (5)

The answer to (5) is given explicitly by

X(z̄k) =
z̄ − bT y

ρ
S−1

(
AT∆y + S

)
S−1. (6)
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Computing this matrix at each iteration is expensive and unnecessary. The next step direction only requires
a new upper bound z̄k+1, which can be set to

z̄k+1 := C •X(z̄k) = bT yk +X(z̄k) • Sk = bT yk +
z̄ − bT yk

ρ

(
∆yTA(Sk)−1 + n

)
.

if AT∆y + S � 0.

Alternatively, consider µ > 0 and

maximize φ(y) := bT y + µ ln detS subject to AT y + S = C. (7)

The first-order KKT conditions are AX = b, AT y + S = C, µS−1 = X, and the corresponding Newton
equations are

A(X + ∆X) = b AT (∆y) + ∆S = 0 µS−1∆SS−1 + ∆X = µS−1 −X. (8)

The Schur complement of these equations is (4) if we set µ = z̄−bT y
ρ , and X(z̄k) = µS−1 − µS−1∆SS−1

satisfies the constraints AX(S, µ) = b.

Given a feasible starting point and appropriate choices for step-length and µ, convergence results in
[6] show that either the new point (y, S) or the new point X is feasible and reduces the Tanabe-Todd-Ye
primal-dual potential function

Ψ(X,S) = ρ ln(X • S)− ln detX − ln detS

enough to achieve linear convergence. When ρ > n, the infimum of the potential function occurs at an optimal
solution. A more thorough explanation of the the dual-scaling algorithm and its convergence properties, can
be found in [6].

3 Standard Output

The progress of the DSDP solver can be monitored using standard output printed to the screen. The following
is an example output from a small random problem.

Iter P Objective D Objective DInfeas Mu StepLength Pnrm
-----------------------------------------------------------------------------
0 1.00000000e+02 -1.13743137e+05 3.8e+02 1.1e+05 0.00 0.00 0.00
1 1.36503342e+06 -6.65779055e+04 2.2e+02 1.1e+04 1.00 0.33 4.06
2 1.36631922e+05 -6.21604409e+03 1.9e+01 4.5e+02 1.00 1.00 7.85
3 5.45799174e+03 -3.18292092e+03 9.1e+00 7.5e+01 1.00 1.00 17.63
4 1.02930559e+03 -5.39166166e+02 5.3e-01 2.7e+01 1.00 1.00 7.58
5 4.30074471e+02 -3.02460061e+01 0.0e+00 5.6e+00 1.00 1.00 11.36
...
18 8.99999824e+00 8.99999617e+00 0.0e+00 1.7e-08 1.00 1.00 7.03
19 8.99999668e+00 8.99999629e+00 0.0e+00 3.4e-09 1.00 1.00 14.19

The program will print a variety of statistics for each problem to the screen.

Iter the current iteration number,

P Objective the current objective value in (PP),

D Objective the current objective value in (DD),

DInfeas the variable r in (DD) that corresponds to the infeasibility of y and S in (D).
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Mu the current barrier parameter z̄−bT y
ρ . This parameter decreases to zero as the points

get closer to the solution,

StepLength the multiple of the step-directions in (PP) and (DD),

Pnrm the proximity to a point on the central path:
√
−∇ψT (yk, z̄k)∆y.

4 DSDP with MATLAB

Additional help using the DSDP can be found by typing help dsdp in the directory DSDP5.X. The command

> [STAT, y, X] = DSDP(b, AC)

attempts to solve the semidefinite program by using a dual-scaling algorithm. The first argument is the
objective vector b in (D) and the second argument is a cell array that contains the structure and data for
the constraint cones. Most data has a block structure, which should be specified by the user in the second
argument. For a problem with p cones of constraints, AC is a p × 3 cell array. Each row of the cell array
describes a cone. The first element in each row of the cell array is a string that identifies the type of cone.
The second element of the cell array specifies the dimension of the cone, and the third element contains the
cone data.

4.1 Semidefinite Cones

If the jth cone is a semidefinite cone consisting of a single block with n rows and columns in the matrices,
then the first element in this row of the cell array is the string ’SDP’ and the second element is the number
n. The third element in this row of the cell array is a sparse matrix with n(n+1)/2 rows and m+1 columns.
Columns 1 to m of this matrix represent the constraints A1,j , . . . , Am,j for this block and column m + 1
represents Cj .

The square symmetric data matrices Ai,j and Cj map to the columns of AC{j, 3} through the operator
dvec(·) : Rn×n → Rn(n+1)/2, which is defined as

dvec(A) = [a1,1 a1,2 a2,2 a1,3 a2,3 a3,3 . . . an,n]T .

In this definition, ak,l is the element in row k and column l of A. This ordering is often referred to as
symmetric packed storage format. The inverse of dvec( ) is dmat(·) : Rn(n+1)/2 → Rn×n, which converts
the vector into a square symmetric matrix. Using these operations,

Ai,j = dmat(AC{j, 3}(:, i)), Cj = dmat(AC{j, 3}(:, m + 1))

and
AC{j, 3} = [ dvec(A1,j) . . . dvec(Am,j) dvec(Cj) ];

For example, the problem:

Maximize y1 + y2

Subject to
[

1 0
0 0

]
y1 +

[
0 0
0 1

]
y2 �

[
4 −1

−1 5

]
can be solved by:

> b = [ 1 1 ]’;
> AAC = [ [ 1.0 0 0 ]’ [ 0 0 1.0 ]’ [ 4.0 -1.0 5.0 ]’ ];
> AC{1,1} = ’SDP’;
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> AC{1,2} = [2];
> AC{1,3} = AAC;
> [STAT,y,X]=dsdp(b,AC);
> XX=dmat(X{1});

The solution y is the column vector y’ = [ 3 4 ]’ and the solution X is a p × 1 cell array. In this case,
X = [ 3 x 1 double ], X{1}’=[ 1.0 1.0 1.0 ], and dmat(X{1})=[ 1 1 ; 1 1 ].

Each semidefinite block can be stated in a separate cone of the cell array; only the available memory on
the machine limits the number of cones that can be specified.

Each semidefinite block may, however, be grouped into a single cone in the cell array. To group these
blocks together, the second cell entry must be an array of integers stating the dimension of each block. The
data from the blocks should be concatenated such that the number of rows in the data matrix increases
whereas the number of columns remains constant. The following lines indicate how to group the semidefinite
blocks in rows 1 and 2 of cell array AC1 into a new cell array AC2

> AC2{1,1} = ’SDP’;
> AC2{1,2} = [AC1{1,2} AC1{2,2}];
> AC2{1,3} = [AC1{1,3}; AC1{2,3}]

The new cell array AC2 can be passed directly into DSDP. The advantage of grouping multiple blocks together
is that it uses less memory – especially when there are many blocks and many of the matrices in these blocks
are zero. The performance of DSDP measured by execution time, will change very little.

This distribution contains several examples files in SDPA format. A utility routine called readsdpa( · )
can read these files and put the problems in DSDP format. They may serve as examples on how to format an
application for use by the DSDP solver. Another example can be seen in the file maxcut( · ) , which takes
a graph and creates an SDP relaxation of the maximum cut problem from a graph.

4.2 LP Cones

A cone of LP variables can specified separately. For example a randomly generated LP cone AT y ≤ c with
3 variables y and 5 inequality constraints can be specified in the following code.

> n=5; m=3;
> b = rand(m,1);
> At=rand(n,m);
> c=rand(n,1);
> AC{1,1} = ’LP’;
> AC{1,2} = n;
> AC{1,3} = sparse([At c]);
> [STAT,y,X]=dsdp(b,AC);

Multiple cones of LP variables may be passed into the DSDP solver, but for efficiency reasons, it is best to
group them all together. This cone may also be passed to the DSDP solver as a semidefinite cone, where the
matrices Ai and C are diagonal. For efficiency reasons, however, it is best to identify them separately as
belonging the the cone of ’LP’ variables.

Although y variables that are fixed to a constant can be preprocessed and removed from a model, it is
often more convenient to leave them in the model. It is more efficient for to identify fixed variables to DSDP

than to model these constraints as a pair of linear inequalities. The following example sets variables 1 and
8 to the values 2.4 and −6.1, respectively.

> AC{j,1} = ’FIXED’; AC{j,2} = [ 1 8 ]; AC{j,3} = [ 2.4 -6.1 ];

The corresponding variables x to these constraints may be positive or negative.
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4.3 Solver Options

There are more ways to call the solver. The command

> [STAT,y,X] = DSDP(b,AC,OPTIONS)

specifies some options for the solver. The OPTIONS structure may contain any of the following fields that
may significantly affect the performance of the solver. Options that affect the formulation of the problem
are:

r0 is the multiple of the identity matrix added to the initial variable S in
(DD). Specifically, S0 = C−

∑
Aiy

0
i +r0 ∗I. If r0 < 0, a dynamic selection

will be used that selects a very large number ( 1e10). IMPORTANT: To
improve convergence, use a smaller value. [default -1 (Heuristic)].

zbar an upper bound z̄ on the objective value at the solution [default 1.0e10].

penalty penalty parameter Γ in (DD) that enforces feasibility in (D). IMPORTANT:
This parameter must be positive and greater than the trace of the solution
X of (P). [default 1e8].

boundy determines the bounds l and u on the variables y in (DD). That is, −boundy =
l ≤ yi ≤ u = boundy for all i = 1, . . . ,m. The convergence of this solver
assumes the solution set of these variables is bounded. These bounds do
not have to be tight. The default value is 1e6, but smaller bounds may
improve performance.

Fields in the OPTIONS structure that affect the stopping criteria for the solver are:

gaptol tolerance for duality gap as a fraction of the value of the objective functions
[default 1e-6].

maxit maximum number of iterations allowed [default 1000].

steptol tolerance for stopping because of small steps [default 1e-2].

inftol the value r in (DD) must be less than this tolerance to classify the final
solution of (D) as feasible. [default 1e-8].

dual bound an upper bound for the objective value in (D). The solver stops when it finds
a feasible point of (D) with an objective greater than this value. (Helpful
in branch-and-bound algorithms.) [default 1e+30].

Fields in the OPTIONS structure that affect printing are:

print = k to display output in each k iteration, else = 0 [default 10]. (See Section:
3 to interpret the output).

logtime =1 to profile the performance of DSDP subroutines, else =0. (Assumes
proper compilation flags.)

cc add this constant the objective value. This parameter is algorithmically
irrelevant, but it can make the objective values displayed on the screen
more consistent with the underlying application [default 0].

Other fields recognized in OPTIONS structure are:

rho to set the potential parameter ρ in the function (1) to this multiple of the
conic dimension n. [default: 3] IMPORTANT! Increasing this parameter
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to 4 or 5 may significantly improve performance.

dynamicrho to use dynamic rho strategy. [default: 1].

bigM if > 0, the variable r in (DD) will remain positive (as opposed to nonega-
tive). [default 0].

mu0 initial barrier parameter. µ = (z̄ − bT yk)/(ρ). [default -1: use heuristic]

reuse sets a maximum on the number of times the Schur complement matrix can
be reused. Larger numbers reduce the number of iterations but increase
the cost of each iteration. Applications requiring few iterations (¡60) should
consider setting this parameter to 0. [default: 4]

For instance, the commands

> OPTIONS.gaptol = 0.001;
> OPTIONS.boundy = 1000;
> OPTIONS.rho = 5;
> [STAT,y,X] = DSDP(b,AC,OPTIONS);

asks for a solution with approximately three significant digits, bound the y variables by −1000 and +1000,
and use a potential parameter ρ of 5 times the conic dimension. Some of these fields, especially rho, r0, and
ybound can significantly improve performance of the solver.

Using a fourth input argument, the command

> [STAT,y,X] = DSDP(b,AC,OPTIONS,y0);

specifies an initial solution y0 in (D). The default starting vector is the zero vector.

4.4 Solver Performance and Statistics

The second and third output arguments return objective values for (D) and (P), respectively.

The first output argument is a structure with several fields that describe the solution of the problem:

stype PDFeasible if the solutions to both (D) and (P) are feasible, Infeasible
if (D) in infeasible, and and Unbounded if (D) is unbounded.

obj an approximately optimal objective value.

pobj objective value of (P).

dobj objective value of (D).

stopcode equals 0 if solver converged within the prescribed tolerances and equals
nonzero if the solver terminated for other reasons.

Additional fields describe characteristics of the solution:

tracex the trace of the solution X of (P).

r the multiple of the identity matrix added to C−AT (y) in the final solution
to make S positive definite.

mu the final barrier parameter (µ = (z̄ − bT yk)/(ρ))

ynorm the largest element of y (infinity norm).
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boundy the bounds placed on the magnitude of each variable y.

penalty the penalty parameter Γ used by the solver, which must be greater than
the trace of the variables X in (P). (see above).

Additional fields provide statistics from the solver:

iterations number of iterations used by the algorithm.

pstep the final step length.in (PP)

dstep the final step length in (DD).

pnorm the final norm from the targeted located on the central path.

rho the potential parameter (as a multiple of the total dimension of the cones).

gaphist a history of the duality gap.

infhist a history of the variable r in (DD).

datanorm the Frobenius norm of C, A and b.

DSDP has also provides several utility routines. The utility derror( · ) verifies that the solution satisfies
the constraints and that the objective values (P) and (D) are equal. The errors are computed according to
the the standards of the DIMACS Challenge[7].

5 Reading SDPA files

DSDP can also be run without the MATLAB environment if the user has a problem written in sparse SDPA

format. These executables have been put in the directory DSDPROOT/exec/. The file name should follow
the executable. For example,

> dsdp5 truss4.dat-s

Other options can also be used with DSDP. These should follow the SDPA filename.

-gaptol <rtol> to stop the problem when the relative duality gap is
less than this number.

-mu0 <mu0> to specify the initial barrier parameter.

-r0 <r0> to specify the initial value of r in (DD).

boundy <1e6> to bound the magnitude of each variable y in (DD).

-save <filename> to save the solution into a file with a format similar to
SDPA.

-y0 <filename> to specify an initial vector y in (D).

-maxit <iter> to stop the problem after a specified number of itera-
tions.

-rho <3> to set the potential parameter ρ to this multiple of the
conic dimension.

-dobjmin <dd> to add a constraint that sets a lower bound on the ob-
jective value at the solution.
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-penalty <1e8> to set the penalty parameter for infeasibility in (D).

-print <1> print standard output at each k iteration.

-bigM <0> treat the inequality r ≥ 0 in (DD) as other inequalities
and keep it positive.

-dloginfo <0> to print more detailed output. Higher number produce
more output.

-dlogsummary <1> to print detailed timing information about each domi-
nant computations.

6 Applying DSDP to Graph Problems

Within the directory DSDPROOT/examples/ is a program maxcut.c which reads a file containing a graph,
generates the semidefinite relaxation of a maximum cut problem, and solves the relaxation. For example,

> maxcut graph1

The first line of the graph should contain two integers. The first integer states the number of nodes in
the graph, and the second integer states the number of edges. Subsequent lines have two or three entries
separated by a space. The first two entries specify the two nodes that an edge connects. The optional third
entry specifies the weight of the node. If no weight is specified, a weight of 1 will be assigned.

The same options that apply to reading SDPA files also apply here.

A similar program reads a graph from a file, formulates a minimum bisection problem or Lovász Θ
problem, and solves it. For example,

> theta graph1

reads the graph in the file graph1 and solves this graph problem.

7 DSDP Subroutine Library

DSDP can also be used within a C application through a set of subroutines. There are several examples
of applications that use the DSDP application program interface. Within the DSDPROOT/examples/
directory, the file dsdp.c is a mex function that reads data from the MATLAB environment, passes the data
to the DSDP solver, and returns the solution. The file readsdpa.c reads data from a file for data in SDPA

format, passes the data to the solver, and prints the solution. The files maxcut.c and theta.c read a graph,
formulate a semidefinite relaxation to a combinatorial problem, and pass the data to a DSDP solver. The
subroutines used in these examples are described in this chapter.

Each of these applications includes the header file DSDPROOT/include/dsdp5.h and links to the
library DSDPROOT/lib/libdsdp.a. All DSDP subroutines also return an int that represents an error
code. A return value of zero indicates success, whereas a nonzero return value indicates that an error has
occurred. The documentation of DSDP subroutines in this chapter will not show the return integer, but we
highly recommend that applications check for errors after each subroutine.
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7.1 Creating the Solver

To use DSDP through subroutine, the solver object must first be created with the command

DSDPCreate(int m, DSDP *newsolver);

The first argument in this subroutine is the number of variables in the problem. The second argument should
be the address of a DSDP variable. This subroutine will allocate memory for the solver and set the address
of the DSDP variable to a new solver object. A difference in typeset distinguishes the DSDP package from the
DSDP solver object.

The objective function associated with these variables should be specified using the subroutine

DSDPSetDualObjective(DSDP dsdp, int i, double bi);

The first argument is the solver, and the second and third arguments specify a variable number and the
objective value bi associated with it. The variables are numbered 1 through m, where m is the number
of variables specified in DSDPCreate( · ). The objective associated with each variable must be specified
individually. The default value is zero. A constant may also be added to the objective function. The
subroutine DSDPAddObjectiveConstant(DSDP dsdp, double obj) will add such a constant to the objective
function. This constant is algorithmically irrelevant, but it makes the objective values displayed by the solver
more consistent with the underlying application.

The next step is to provide the conic structure and data in the problem. These subroutines will be
described in the next sections.

7.2 Semidefinite Cone

To specify an application with a cone of semidefinite constraints, the subroutine

DSDPCreateSDPCone(DSDP dsdp,int nblocks,SDPCone *newsdpcone)

can be used to create a new object that describes a semidefinite cone with 1 or more blocks. The first
argument is an existing semidefinite solver, the second argument is the number of blocks in this cone, and
the final argument is an address of a SDPCone variable. This subroutine will allocate structures needed to
specify the constraints and point the variable to this structure. Multiple cones can be created for the same
solver, but it is usually more efficient to group all blocks into the same conic structure.

All subroutines that pass data to the semidefinite cone use this SDPCone variable in the first argument.
The second argument often refers to a specific block. The blocks will be labeled from 0 to nblocks-1.
The subroutine SDPConeSetBlockSize(SDPCone sdpcone, int blockj, int n) can be used to specify
the dimension of each block and the subroutine SDPConeSetSparsity( SDPCone sdpcone, int blockj,
int nnzmat) can be used to specify the number of nonzero matrices Ai,j in each block. These subroutines
are optional, but using them can improve error checking on the data matrices and perform a more efficient
allocation of memory.

The data matrices can be specified by any of the following commands. The choice of data structures is
up to the user, and the performance of the problem depends upon this choice of data structures. In each of
these subroutines, the first four arguments are a pointer to the SDPCone object, the block number, and the
number of variable associated with it, and the number of rows and columns in the matrix. The blocks must
be numbered consecutively, beginning with the number 0. The y variables are numbered consecutively from
1 to m. The objective matrices in (P) are specified as constraint number 0. The data that is passed to the
SDPCone object will be used in the solver, but not modified. The user is responsible for freeing the arrays of
data it passes to DSDP after solving the problem.
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The square symmetric data matrices Ai,j and Cj can be represented with a single array of numbers. DSDP

supports the symmetric packed storage format. In symmetric packaged storage format, the elements of a
matrix with n rows and columns are ordered as follows:

[ a1,1 a2,1 a2,2 a3,1 a3,2 a3,3, . . . , an,n ]. (9)

In this array ak,l is the element in row k and column l of the matrix. The length of this array is n(n+ 1)/2,
which is the number of distinct elements on or below the diagonal. Several routines described below have
an array of this length in its list of arguments. In this storage format, the element in row i and column j,
where i ≥ j, is in element i(i− 1)/2 + j − 1 of the array.

This array can be passed to the solver using the subroutine

SDPConeSetDenseVecMat(SDPCone sdpcone,int blockj, int vari,
int n, const double val[], int nnz);

The first argument point to a semidefinite cone object, the second argument specifies the block number j,
and the third argument specifies the variable i associated with it. Variables 1, . . . ,m correspond to matrices
A1,j , . . . , Am,j whereas variable 0 corresponds to Cj . The fourth argument is the dimension (number of rows
or columns) of the matrix, n. The fifth argument is the array, and sixth argument is the length of the array.
The application is responsible for allocating this array of data and eventually freeing it. DSDP will directly
access this array in the course of the solving the problem, so it should not be freed until the solver is finished.

A matrix can be passed to the solver in sparse format using the subroutine

SDPConeSetSparseVecMat(SDPCone sdpcone,int blockj, int vari, int n, int ishift
const int ind[], const double val[], int nnz);

In this subroutine, the first four arguments are the same as in the subroutine for dense matrices. The
sixth and seventh arguments are an array an integers and an array of double precision variables. The final
argument states the length of these two arrays, which should equal the number of nonzeros in the lower
triangular part of the matrix. The array of integers specifies which elements of the array (9) are included in
the array of doubles. For example, the matrix

Ai,j =

 3 2 0
2 0 6
0 6 0

 (10)

could be inserted into the cone using one of several ways. If the first element in the val array is a1,1, the
first element in the ind array should be 0. If the second element in the val array is a3,2, then the second
element in ind array should be 4. When the ordering of elements begins with 0, as just shown, the fifth
argument ishift in the subroutine should be set to 0. In general, the argument ishift specifies the index
assigned to a1,1. Although the relative ordering of the elements will not change, the indices assigned to them
will range from ishift to ishift + n(n + 1)/2 − 1. Many applications, for instance, prefer to index the
array from 1 to n(n+ 1)/2, setting the index argument to 1. The matrix (10) can be set in the block j and
variable i of the semidefinite cone using one of the routines

SDPConeSetSparseVecMat(sdpcone,j,i,3,0,ind1,val1,3);
SDPConeSetSparseVecMat(sdpcone,j,i,3,1,ind2,val2,3);
SDPConeSetSparseVecMat(sdpcone,j,i,3,3,ind3,val3,4);

where
ind1 = [ 0 1 4 ] val1 = [ 3 2 6 ]
ind2 = [ 1 2 5 ] val2 = [ 3 2 6 ]
ind3 = [ 7 3 5 4 ] val3 = [ 6 3 0 2 ].

As these examples suggest, there are many other ways to represent the sparse matrix. The nonzeros in
the matrix do not have to be ordered, but ordering them may improve the efficiency of the solver. DSDP
assumes that all matrices Ai,j and Cj that are not explicitly defined and passed to the SDPCone structure
will equal the zero matrix.
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To check whether the matrix passed into the cone matches the one intended, the subroutine

SDPConeViewDataMatrix(SDPCone sdpcone,int blockj, int vari)

can be used to print out the the matrix to the screen. The output prints the row and column numbers,
indexed from 0 to n − 1, of each nonzero element in the matrix. The subroutine SDPConeView(SDPCone
sdpcone,int blockj) can be used to view all of the matrices in a block.

After the DSDP solver has been applied to the data and the solution matrix Xj have been computed (See
DSDPComputeX(), the matrix can be accessed using the command

SDPConeGetXArray(SDPCone sdpcone, int blockj, double *xmat[], int *nn);

The third argument is the address of a pointer that will be set to the array containing the solution. The
integer whose address is passed in the fourth argument will be set to the length of this array, n(n+1)/2, for
the packed symmetric storage format. Since the X solutions are usually fully dense, no sparse representation
is provided. These arrays were allocated by the SDPCone object during DSDPSetup() and the memory will
be freed by the DSDP solver object when it is destroyed. The array used to store Xj could be overwritten by
other operations on the SDPCone object. The command,

SDPConeComputeX(SDPCone sdpcone, int blockj, int n, double xmat[], int nn)

recomputes the matrix Xj and places it into the array specified in the fourth argument. The length of
this array is the fifth argument and the dimension of the block in the third argument. The vectors y
and ∆y needed to compute the matrices Xj are stored internally in SDPCone object. The subroutine
SDPConeMatrixView(SDPCone sdpcone, int blockj); can be used to print this matrix to standard output.

The dimension of each block can be found using the routine

SDPConeGetBlockSize(SDPCone sdpcone, int blockj, int *n)

where the second arguments is the block number and the third arguments are the address of a variable.

The matrix S in (D) can be computed and copied into an array using the command

SDPConeComputeS(SDPCone sdpcone, int blockj, double c, double y[], int m, double r,
int n, double smat[], int nn);

The second argument specifies which block to use, the fourth argument is an array containing the variables
y. The second argument is the multiple of the matrix C to be added, and the sixth argument is the multiple
of the identity matrix to be added. The sixth argument is the dimension of the block, and the seventh
argument is an array whose length is given in the eighth argument.

The memory required for the Xj matrix can be significant for large problems. If the application has an
array of double precision variables of length n(n+ 1)/2 available for use by the solver, the subroutine

SDPConeSetXArray(SDPCone sdpcone,int blockj, int n, double xmat[], int nn)

can be used to pass it to the cone. The second argument specifies the block number whose solution will be
placed into the array xmat. The third argument is the dimension of the block. The dimension specified in
the fifth argument nn refers to the length of the array. The DSDP solver will use this array as a buffer for its
computations and store the solution X in this array at its termination. The application is responsible for
freeing this array after the solution has been found.

DSDP also supports the symmetric full storage format. In symmetric full storage format, an n × n
matrix is stored in an array of n2 elements in row major order. That is, the elements of a matrix with n
rows and columns are ordered

[ a1,1 0 . . . 0 a2,1 a2,2 0 . . . 0 . . . an,1 . . . , an,n ]. (11)

The length of this array is n×n. Early versions of DSDP5 used the packed format exclusively, but this format
has been added because its more convenient for some applications. The routines

SDPConeSetStorageFormat(SDPCone sdpcone,int blockj, char UPLQ)
SDPConeGetStorageFormat(SDPCone sdpcone, int blockj, char *UPLQ)
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set and get the storage format for a block. The second argument specifies the block number and the third
argument should be ’P’ for packed storage format and ’U’ for full storage format. The default value is ’P’.
These storage formats correspond the LAPACK storage formats for the upper half matrices in column major
ordering. All of the above commands apply to the symmetric full storage format. One difference in their use,
however, is that the size of the arrays in the arguments should be n× n instead of n× (n+ 1)/2. Using the
symmetric full storage format, if the first element in the val array is a1,1, the first element in the ind array
should be 0. If the second element in the val array is a3,2, then the second element in ind array should be
8. The matrix (10) can be set in the block j and variable i of the semidefinite cone using one of the routines

SDPConeSetSparseVecMat(sdpcone,j,i,3,0,ind1,val1,3);

where
ind1 = [ 0 3 7 ] val1 = [ 3 2 6 ] .

7.3 LP Cone

To specify an application with a cone of linear scalar inequalities, the subroutine

DSDPCreateLPCone( DSDP dsdp, LPCone *newlpcone)

can be used to create a new object that describes a cone with 1 or more linear scalar inequalities. The first
argument is an existing DSDP solver and the second argument is the address of an LPCone variable. This
subroutine will allocate structures needed to specify the constraints and point the variable to this structure.
Multiple cones for these inequalities can be created for the same DSDP solver, but it is usually more efficient
to group all inequalities of this type into the same structure. All subroutines that pass data to the LP cone
use this LPCone variable in the first argument.

A list of n linear inequalities are passed to the object in sparse column format. The vector c ∈ Rn should
be considered an additional column of the data. (In the formulation (P), the data A and c is represented in
sparse row format.)

Pass the data to the LPCone using the subroutine:

LPConeSetData(LPCone lpcone, int n,
const int nnzin[], const int row[], const double aval[]);

In this case, the integer array nnzin has length m + 2, begins with 0, and nnzin[i + 1]− nnzin[i] equals
the number of nonzeros in column i (i = 0, . . .m) (or row i of A). The length of the second and third array
equals the number of nonzeros in A and c. The arrays contain the nonzeros and the associated row numbers
of each element (or column numbers in A). The first column contains the elements of c, the second column
contains the elements corresponding to y1, and the last column contains elements corresponding to ym.

For example, the following problems in the form of (D):

Maximize y1 + y2
Subject to 4y1 + 2y2 ≤ 6

3y1 + 7y2 ≤ 10
−y2 ≤ 12

In this example, there three inequalities, so the dimension of the x vector would be 3 and n = 3. The input
arrays would be as follows:

nnzin =
[

0 3 5 7
]

row =
[

0 1 2 0 1 0 1 2
]

aval =
[

6.0 10.0 12.0 4.0 3.0 2.0 7.0 −1.0
]

An example of the use of this subroutine can be seen in the DSDPROOT/examples/readsdpa.c.

If its more convenient to specify the vector c in the last column, consider using the subroutine:
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LPConeSetData2(LPCone lpcone,int n, const int ik[],const int cols[],const double vals[]);

This input is also sparse column input, but the first column corr In this form the input arrays would be as
follows:

nnzin =
[

0 2 5 7
]

row =
[

0 1 0 1 2 0 1 2
]

aval =
[

4.0 3.0 2.0 7.0 −1.0 6.0 10.0 12.0
]

This subroutine is used in the DSDP Matlab mex function, which can be used as an example.

The subroutines

LPConeView(LPCone lpcone);
LPConeView2(LPCone lpcone);

can be used to view the data that has been set and verify the correctness of the data. Multiple LPCone
structures can be used, but for efficiency purposes, it is often better to include all linear inequalities in a
single cone.

The variables s in (D) and x in (P) can be found using the subroutines

LPConeGetXArray(LPCone lpcone,double *xout[], int *n);
LPConeGetSArray(LPCone lpcone,double *sout[], int *n);

In these subroutines, the second argument sets a pointer to an an array of doubles containing the variables
and the integer in the third argument will be set to the length of this array. These array were allocated by
the LPCone object and the memory will be freed with the DSDP solver object is destroyed. Alternatively, the
application can give the LPCone an array in which to put the solution x of (P). This array should be passed
to the cone using the following subroutine

LPConeSetXVec(LPCone lpcone,double xout[], int n);

At completion of the DSDP solver, the solution x will be copied into this array xout, which must have length n.
The slack variables s may be scaled. To get the unscaled vector, pass an array of appropriate length into the
object using int LPConeGetSArray2(LPCone lpcone, double s[], int n);. This subroutine will copy
the slack variables into the array.

In some applications it may be useful to fix a variable to a number. Instead of modeling this constraint
as a pair of linear inequalities, fixed variables can be passed directly to the solver using the subroutine

DSDPSetFixedVariables(DSDP dsdp, double vars[], double vals[], double x[],int n);

In this subroutine, the array of variables in the second argument is set to the values in the array of the third
argument. The fourth argument is an optional array in which the solver will put the sensitivities to these
fixed variables. The final argument is the length of the arrays. Note, the values in the second argument are
integer numbers from 1 to m represented in double precision. Again, the integers should be one of 1, . . . ,m.
Alternatively, a single variable can be set to a value using the subroutine DSDPFixVariable(DSDP dsdp,
int vari, double val).

7.4 Applying the Solver

After setting the data associated with the constraint cones, DSDP must allocate internal data structures and
factor the data in the subroutine

DSDPSetup(DSDP dsdp);

This subroutine identifies factors the data, creates a Schur complement matrix with the appropriate sparsity,
and allocates additional resources for the solver. This subroutine should be called after setting the data but
before solving the problem. Furthermore, it should be called only once for each DSDP solver. On very large
problems, insufficient memory on the computer may be encountered in this subroutine, so the error code
should be checked.
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The convergence of the dual-scaling algorithm assumes the existence of a strict interior in both (P) and
(D). The use of a penalty parameter can add an interior to (D). An interior to (P) can be created by bounding
the variables y. If lower and upper bounds on these variables can be determined beforehand, they may be
set using the subroutine

DSDPBoundDualVariables(DSDP dsdp, double minbound, double maxbound).

The second argument should be a negative number that is a lower bound of each variable yi and the third
argument is an upper bound of each variable. These bounds should not be tight. Bounds of negative and
positive 1.0e6 can significantly improve the robustness of the solver while usually not affecting the solution.
Even if the solution set for y is bounded and bounds have already been incorporated into the model, the
developers suggest setting bounds using this routine. If one of the variables nearly equals the bound at the
solution, the solver will return a termination code saying (D) is unbounded.

The subroutine

DSDPSetStandardMonitor(DSDP dsdp, int k)

will tell the solver to print the objective values and other information at each k iteration to standard output.
The subroutine info=DSDPLogInfoAllow(int,0); will print even more information if the first argument is
positive.

The subroutine

DSDPSolve(DSDP dsdp)

attempts to solve the problem. This subroutine can be called more than once. For instance, the user may
try solving the problem using different initial points.

The subroutine

DSDPComputeX(DSDP dsdp)

can be called after DSDPSolve() to compute the variables X in (P). These computations are not perfomed
within the solver because these variables are not needed to compute the step direction. Infeasibility in either
(P) or (D) can be determined using the command

DSDPGetSolutionType(DSDP dsdp, DSDPSolutionType *pdfeasible);

This command sets the second argument to an enumerated type. There are four types for DSDPSolutionType.
The type DSDP UNBOUNDED means that (D) is unbounded and (P) is infeasible. The type DSDP INFEASIBLE
means that (D) is infeasible and (P) is unbounded. The type DSDP PDFEASIBLE means that both (D) and (P)
are feasible and their objective values are bounded, and the type DSDP PDUNKNOWN means DSDP was unable
to determine boundedness or feasibility in solutions. The latter type applies when the initial point for (DD)
was infeasible.

Each solver created should be destroyed with the command

DSDPDestroy(DSDP dsdp);

This subroutine frees the work arrays and data structures allocated by the solver.

7.5 Convergence Criteria

Convergence of the DSDP solver may be defined using several options. The precision of the solution can be
set by using the subroutine

DSDPSetGapTolerance(DSDP dsdp, double rgaptol);

The solver will terminate if there is a sufficiently feasible solution such that the difference between the
objective values in (DD) and (PP), divided by the sum of their absolute values, is less than the prescribed
number. A tolerance of 0.001 provides roughly three digits of accuracy, whereas a tolerance of 1.0e-5
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provides roughly five digits of accuracy. The subroutine

DSDPSetMaxIts(DSDP dsdp, int maxits)

specifies the maximum number of iterations. The subroutine DSDPSetRTolerance(DSDP, double) specifies
how small the constant r representing the infeasibility in (D) must be to be an approximate solution, and
the subroutine DSDPSetDualBound( DSDP, double) specifies an upper bound on the objective value in (D).
The algorithm will terminate when it finds a point when the variable r in (DD) is less than the prescribed
tolerance and the objective value in (DD) is greater than this number.

7.6 Solutions and Statistics

The objective values in (P) and (D) can be retrieved using the commands

DSDPGetPrimalObjective(DSDP dsdp, double *pobj);
DSDPGetDualObjective(DSDP dsdp, double *dobj);

The second argument in these routines is the address of a double precision variable.

The solution vector y can be viewed by using the command

DSDPGetY(DSDP dsdp, double y[], int m);

The user passes an array of size m where m is the number of variables in the problem. This subroutine will
copy the solution into this array.

The success of DSDP can be interpreted with the command

DSDPStopReason(DSDP dsdp, DSDPTerminationReason *reason);

This command sets the second argument to an enumerated type. The various reasons for termination are
listed below.

DSDP CONVERGED The solutions to (D) and (D) satisfy the convergence criteria.

DSDP MAX IT The solver applied the maximum number of iterations without
finding solution.

DSDP INFEASIBLE START The initial point in (DD) was infeasible.

DSDP INDEFINITE SCHUR Numerical issues created an indefinite Schur matrix that pre-
vented the further progress.

DSDP SMALL STEPS Small step sizes prevented further progress.

DSDP NUMERICAL ERROR Numerical issues prevented further progress.

The subroutines

DSDPGetBarrierParameter(DSDP dsdp, double *mu);
DSDPGetR(DSDP dsdp, double *r);
DSDPGetStepLengths(DSDP dsdp, double *pstep, double *dstep);
DSDPGetPnorm(DSDP dsdp, double *pnorm);

provide more information about the current solution. The subroutines obtain the barrier parameter, the
variable r in (DD), the step lengths in (PP) and (DD), and a distance to the central path at the current
iteration.

A history of information about the convergence of the solver can be obtained with the commands

DSDPGetGapHistory(DSDP dsdp, double gaphistory[], int history);
DSDPGetRHistory(DSDP dsdp, double rhistory[], int history);

retrieve the history of the duality gap and the variable r in (DD) for up to 100 iterations. The user passes
an array of double precision variables and the length of this array. The subroutine
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DSDPGetTraceX(DSDP dsdp, double *tracex);

gets the trace of the solution X in (P). Recall that the penalty parameter must exceed this quantity in order
to return a feasible solution from an infeasible starting point. The subroutine

DSDPEventLogSummary(void)

will print out a summary of time spent in each cone and many of the primary computational subroutines.

7.7 Improving Performance

The performance of the DSDP may be significantly improved with the proper selection of bounds, parameters
and initial point.

The application may specify an initial vector y to (D), a multiple of the identity matrix to make the
initial matrix S positive definite, and an initial barrier parameter. The subroutine DSDPSetY0(DSDP dsdp,
int vari, double yi0) can specify the initial value of the variable yi. Like the objective function in
(D), the variables are labeled from 1 to m. By default the initial values of y equal 0. Since convergence of
the algorithm depends on the proximity of the point to the central path, initial points can be difficult to
determine. Nonetheless, the subroutine

DSDPSetR0(DSDP dsdp, double r0)

will set the initial value of r in (DD). If r0 < 0, a default value will of r0 will be chosen. If S0 is not positive
definite, the solver will terminate will an appropriate termination flag. The default value is usually very large
(1e10), but smaller values can significantly improve performance. The subroutine DSDPSetZBar(DSDP dsdp,
double zbar) sets an initial upper bound on the objective value at the solution. This value corresponds to
the objective value of any feasible point of (P).

The subroutine DSDPSetPotentialParameter(DSDP dsdp, double rho); sets the potential parameter
ρ. This parameter be be greater than 1. The default value is 4.0, but larger values such as 5 or 10 can
significantly improve performance. Feasibility in (D) is enforced by means of a penalty parameter. By default
it is set to 10e8, but other values can affect the convergence of the algorithm. This parameter can be set using
DSDPSetPenaltyParameter(DSDP dsdp, double M), where M is the large positive penalty parameter. This
parameter must exceed the trace of the solution X in order to return a feasible solution from an infeasible
starting point. The subroutine DSDPUsePenalty(DSDP dsdp,int yesorno) is used to modify the algorithm.
By default, the value is 0. A positive value means that the variable r in (DD) should be kept positive, treated
like other inequalities, and penalized with the parameter M. The subroutine DSDPSetBarrierParameter(DSDP
dsdp, double mu0) sets the initial barrier parameter. The default heuristic is very robust, but performance
can get generally be improved by providing a smaller value.

DSDP reuses the Schur complement matrix for multiple linear systems. This feature often reduces the
number of iterations and improves robustness. The cost of each iteration increases, especially when the
dimension of the semidefinite blocks is of similar dimension or larger than the number of variables y. The
subroutine

DSDPReuseMatrix(DSDP dsdp, int reuse);

can set a maximum on the number of times the Schur complement matrix is reused. Applications that use
a low number of iterations (60 or fewer) should consider setting this number to 0. The default value is 4.

7.8 Iteration Monitor

A standard monitor that prints out the objective value and other relevant information at the current iterate
can be set using the command

DSDPSetStandardMonitor(DSDP dsdp, int k);
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A user can write a customized subroutine of the form

int (*monitor)(DSDP dsdp,void* ctx);

This subroutine will be called from the DSDP solver each iteration. It is useful for writing a specialized
convergence criteria or monitoring the progress of the solver. The objective value and other information can
be retrieved from the solver using the commands in the section 7.6. To set this subroutine, use the command

DSDPSetMonitor(DSDP dsdp, int (*monitor)(DSDP,void*), void* ctx);

In this subroutine, the first argument is the solver, the second argument is the monitoring subroutine, and
the third argument will be passed as the second argument in the monitoring subroutine. Examples of two
monitors can be found in DSDPROOT/src/solver/dsdpconverge.c. The first monitor prints the solver
statistics at each iteration and the second monitor determines the convergence of the solver. A monitor cam
also be used to print the time, duality gap, potential function at each iteration. Monitors have also been
used to stop the solver after a specified time limit and change the parameters in the solver.

8 PDSDP

The DSDP package can also be run in parallel using multiple processors. In the parallel version, the Schur
complement matrix is computed and solved in parallel. The parallel Cholesky factorization in PDSDP is
performed using PLAPACK[9]. The parallel Cholesky factorization in PLAPACK uses a two-dimensional block
cyclic structure to distribute the data. The blocking parameter in PLAPACK determines how many rows and
columns are in each block. Larger block sizes can be faster and reduce the overhead of passing messages, but
smaller block sizes balance the work among the processors more equitably. PDSDP used a blocking parameter
of 32 after experimenting with several choices. Since PLAPACK uses a dense matrix structure, this version is
not appropriate when the Schur complement matrix is sparse.

The following steps should be used to run an application in parallel using PDSDP.

1. Install DSDP. Edit DSDPROOT/make.include to set the appropriate compiler flags.

2. Install PLAPACK. This package contains parallel linear solvers and is freely available to the public.

3. Go to the directory DSDPROOT/src/pdsdp/plapack/ and edit Makefile to identify the location of
the DSDP and PLAPACK libraries.

4. Compile the PDSDP file pdsdpplapack.c, which implements the additional operations. Then compile
the executable readsdpa.c, which will read an SDPA file.

A PDSDP executable can be used much like serial version of DSDP that reads SDPA files. Given a SDPA
file such as truss1.dat-s, the command

mpirun -np 2 dsdp5 truss1.dat-s -log_summary

will solve the problem using two processors. Additional processors may also be used. This implementation
is best suited for very large problems.

Use of PDSDP as a subroutine library is also very similar to the use of the serial version of the solver.
The application must create the solver and conic object on each processor and provide each processor with
a copy of the data matrices, objective vector, and options. At the end of the algorithm, each solver has a
copy of the solution. The routines to set the data and retrieve the solution are the same.

The few differences between the serial and parallel version are listed below.

1. All PDSDP programs must include the header file:
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#include pdsdp5plapack.h

2. Parallel applications should link to the DSDP library, the PLAPACK library, and the compiled source
code in dsdpplapack.c. Linking to the BLAS and LAPACK libraries are usually included while linking
to PLAPACK.

3. The application should initialize and finalize MPI.

4. After creating the DSDP solver object, the application should call

int PDSDPUsePLAPACKLinearSolver(DSDP dsdp,MPI_Comm comm);

Most applications can set the variable comm to MPI COMM WORLD.

5. The monitor should be set on only one processor. For example:

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
if (rank==0){ info = DSDPSetStandardMonitor(dsdp); }

An example of the usage is provided in DSDPROOT/pdsdp/plapack/readsdpa.c. Scalability of
medium and large-scale problems has been achieved on up to 64 processors. See [1] for more details.

Source code that uses the parallel conjugate gradient method in PETSc to solve the linear systems is
also included in the distribution.

9 A Brief History

DSDP began as a specialized solver for combinatorial optimization problems. Over the years, improvements
in efficiency and design have enabled its use in many applications. Its success has resulted in hundreds of
citations in research journals. Below is a brief history of DSDP.

1997 At the University of Iowa the authors release the initial version of DSDP. It solved the semidefi-
nite relaxations of the maximum cut, minimum bisection, s-t cut, and bound constrained quadratic
problems[6].

1999 DSDP version 2 increased functionality to address semidefinite cones with rank-one constraint matrices
and LP constraints [5]. It was used specifically for combinatorial problems such as graph coloring,
stable sets[2], and satisfiability problems.

2000 DSDP version 3 was a general purpose SDP solver that addressed large-scale applications included in the
the Seventh DIMACS Implementation Challenge on Semidefinite and Related Optimization Problems
[7]. DSDP 3 also featured the initial release of PDSDP[1], the first parallel solver for semidefinite
programming.

2002 DSDP version 4 added new sparse data structures and linked to BLAS and LAPACK to improve efficiency
and precision[4]. A Lanczos based line search and efficient iterative solver were added. It solved all
problems in the SDPLIB collection that includes examples from control theory, truss topology design,
and relaxations of combinatorial problems [3].

2004 DSDP version 5 features a new efficient interface for semidefinite constraints, and extensibility to
structured applications in conic programming. Existence of the central path was ensured by bounding
the variables. New applications from in computational chemistry, global optimization, and sensor
network location motivated the improvements in efficiency in robustness.
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