Department of Statistics
University of Wisconsin, Madison
PhD Qualifying Exam Part I
Tuesday, January 22, 2013
12:30-4:30pm, Room 133 SMI

- There are a total of FOUR (4) problems in this exam. Please do a total of THREE (3) problems.
- Each problem must be done in a separate exam book.
- Please turn in THREE (3) exam books.
- Please write your code name and NOT your real name on each exam book.

- 1. Let U_1, \ldots, U_n be independent and have a uniform distribution on (0,1), and $U_{(1)} \leq \cdots \leq U_{(n)}$ be their order statistics.
 - (a) Show that $\left(\frac{U_{(1)}}{U_{(n)}}, \cdots, \frac{U_{(n-1)}}{U_{(n)}}\right)$ is independent of $U_{(n)}$.
 - (b) Find the joint distribution of $\left(\frac{U_{(1)}}{U_{(n)}}, \cdots, \frac{U_{(n-1)}}{U_{(n)}}\right)$.
 - (c) For $n = 1, 2, \ldots$, derive

$$P\left(\bigcap_{j=1}^{n} \left\{ U_{(j)} > \frac{\alpha j}{n} \right\} \right),\,$$

where $0 \le \alpha \le 1$.

2. A system involves mutually independent and Poisson-distributed random variables X_i, Z_i , for i = 1, 2, ..., n. For a parameter of interest $\theta > 0$ and positive nuisance parameters $\lambda_1, \lambda_2, ..., \lambda_n$, we know that $E(X_i) = \lambda_i$ and $E(Z_i) = \theta \lambda_i$. The measurements available for inference on θ are incomplete; for each i = 1, 2, ..., n, we observe the pair (X_i, Y_i) , where

$$Y_i = I(X_i > 0) I(Z_i > 0),$$

and where $I(\cdot)$ is the indicator function. Define $R_i = 2Y_i - 1$, and $T_n = \sum_{i=1}^n R_i X_i$.

- (a) Compute the mean $E(T_n)$ and show that it is increasing in θ .
- (b) Compute the variance $\sigma_n^2 = \text{var}(T_n)$ and show that on the null hypothesis $H_0: \theta = 1$,

$$\sum_{i=1}^{n} \lambda_i \le \sigma_n^2 \le \sum_{i=1}^{n} (\lambda_i + \lambda_i^2).$$

- (c) In the special case that all λ_i equal a common value λ , derive the maximum likelihood estimator of (θ, λ) .
- (d) In another special case, the λ_i 's are not arbitrary but are viewed as independent and identically distributed realizations of a standard exponential distribution. Find a consistent estimator for θ in this case.

3. Suppose there are two independent Bernoulli random variables X and Y. Assume $P(X=1)=p_1$ and $P(Y=1)=p_2$. For each random variable, we have n independent observations: X_1, \dots, X_n and Y_1, \dots, Y_n , where X_i are identically distributed as X, Y_j are identically distributed as Y, and X_1, \dots, X_n and Y_1, \dots, Y_n are independent.

We consider the following hypothesis testing problem:

$$H_0: p_1 = p_2 \ vs. \ H_1: p_1 \neq p_2.$$

Let $\hat{p}_1 = \sum_i X_i/n$ and $\hat{p}_2 = \sum_i Y_i/n$. Define

$$T = \frac{\hat{p}_2 - \hat{p}_1}{\sqrt{2\hat{p}\hat{q}/n}},$$

where $\hat{p} = (\hat{p}_1 + \hat{p}_2)/2$ and $\hat{q} = 1 - \hat{p}$.

We will reject H_0 if $|T| > z_{\alpha/2}$, where α is the type-I error, $z_{\alpha/2}$ satisfies $P(Z > z_{\alpha/2}) = \alpha/2$, and Z is a standard normal random variable.

(a) Define

$$\Pi_n = P\left(\frac{\hat{p}_2 - \hat{p}_1}{\sqrt{2\hat{p}\hat{q}/n}} < -z_{\alpha/2}\right).$$

When $p_1 = p_2$, show that Π_n converges to $\alpha/2$ as $n \to \infty$. When $p_2 > p_1$, show that $\lim_{n\to\infty} \Pi_n < \alpha/2$.

(b) Show that the power of the test tends to 1 as $n \to \infty$.

4. Let X_1, \ldots, X_n be a random sample from a continuous distribution with density

$$f_{a,b}(x) = \frac{1}{b} \exp^{-\frac{1}{b}(x-a)} I(x \ge a),$$
 (1)

where $-\infty < a < \infty$ and b > 0. Define $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ to be the order statistics of the X_1, \cdots, X_n . It can be shown that the joint density of $X_{(1)}, X_{(2)}, \ldots, X_{(r)}$ for $r \leq n$ is

$$f(x_{(1)}, \dots, x_{(r)}) = \frac{1}{b^r} \frac{n!}{(n-r)!} \exp\left[-\frac{\sum_{i=1}^r x_{(i)} + (n-r)x_{(r)} - na}{b}\right] I(x_{(1)} \ge a).$$
 (2)

(a) Let $Z_1 = 2n[X_{(1)} - a]/b$. For i = 2, ..., n, define

$$Z_i = \frac{(n-i+1)(X_{(i)} - X_{(i-1)})}{b/2}.$$

Give an explicit form of the joint density of (Z_1, \ldots, Z_n) . Provide details.

(b) For r = 1, ..., n, show that

$$\frac{\sum_{i=1}^{r} X_{(i)} + (n-r)X_{(r)} - na}{b/2}$$

follows the χ^2 distribution with 2r degrees of freedom. Give details.

- (c) Assuming b is known, determine an explicit form of the UMP test at level α of $H_0: a=a_0$ versus $H_a: a=a_1 < a_0$. Give details.
- (d) When b is unknown, for testing H_0 : $a=a_0$ versus H_a : $a\neq a_0$, consider the following test statistic:

$$T = \frac{X_{(1)} - a_0}{\sum_{i=1}^{n} [X_i - X_{(1)}]}.$$
 (3)

Derive the distribution of T under H_0 . Provide details.