Dept Copy

Department of Statistics
University of Wisconsin, Madison
PhD Qualifying Exam Part I
January 19, 2010
12:30-4:30pm, Room 133 SMI

- There are a total of FOUR (4) problems in this exam. Please do a total of THREE (3) problems.
- Each problem must be done in a separate exam book.
- Please turn in THREE (3) exam books.
- Please write your code name and NOT your real name on each exam book.

- 1. Suppose that X_1, \ldots, X_n are i.i.d. random variables from a uniform distribution on the interval (σ, τ) .
 - (a) Find the asymptotic limit of $\frac{1}{n^2} \sum_{i=1}^n e^{1/U_i}$ in probability as $n \to \infty$, where $U_i = (X_i \sigma)/(\tau \sigma)$.
 - (b) Find the maximum likelihood estimators of parameters (σ, τ) .
 - (c) Find the asymptotic joint distribution of $(X_{(1)}, X_{(n)})$, where $X_{(1)} = \min(X_1, \dots, X_n)$ and $X_{(n)} = \max(X_1, \dots, X_n)$.
 - (d) We want to test the hypothesis $H_0: \sigma = -\tau$. Find the maximum likelihood estimators of parameters (σ, τ) under H_0 .
 - (e) Find the likelihood ratio statistic Λ_n for testing H_0 .
 - (f) Find the limit distribution of Λ_n under H_0 .

tool

- 2. Background. Let $\mathbf{x} = (x_1, x_2, \dots, x_p)'$ be a random p-dimensional column vector with known covariance matrix Σ . In principal component analysis, \mathbf{x} is linearly transformed to a p-vector $\mathbf{z} = \mathbf{A}'\mathbf{x}$, where \mathbf{A} is a constant $p \times p$ matrix, such that
 - (i) the column vectors of $A = (a_1, a_2, ..., a_p)$ have length 1:

$$a'_{j}a_{j} = 1, \quad j = 1, 2 \dots, p,$$

(ii) the elements of $\mathbf{z} = (z_1, z_2, \dots, z_p)'$ are uncorrelated, i.e.,

$$cov(z_j, z_k) = 0 \text{ for } j \neq k,$$

(iii) the variance of z_1 is maximum over all linear combinations $\mathbf{b'x}$, subject to $\mathbf{b'b} = 1$; the variance of z_2 is next largest, and so on.

It is well known that the columns of A are the solutions (called eigenvectors) a of the equations

$$(\Sigma - \lambda \mathbf{I})\mathbf{a} = 0$$
, $\mathbf{a}'\mathbf{a} = 1$.

Questions.

(a) Let λ_j be the value of λ associated with \mathbf{a}_j . Show that

$$var(z_j) = \lambda_j \text{ for } j = 1, 2, \dots, p.$$

- (b) Show that $\mathbf{a}'_{i}\mathbf{a}_{k} = 0$ for $j \neq k$.
- (c) Show that $\sum_{j=1}^{p} \operatorname{var}(x_j) = \sum_{j=1}^{p} \operatorname{var}(z_j)$.
- (d) Principal components are sometimes used in regression where the unknown Σ is estimated by the sample covariance matrix $\widehat{\Sigma}$ of the x variables. Suppose that in one such application with p=2, a simple linear least-squares regression model fitted to each principal component separately gave the results:

$$\widehat{y} = 3 + 2z_1$$

$$\widehat{y} = 1 + z_2.$$

Explain, with full justification, what you can or cannot say about the least-squares estimates of $(\beta_0, \beta_1, \beta_2)$ in the full model

$$y = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \epsilon.$$

3. Consider the following linear mixed model:

$$y_{ij} = x_{ij}\beta + Z_{ij}b_i + \epsilon_{ij}, \ i = 1, \dots, n; \ j = 1, \dots, m,$$

where x_{ij} is a $m \times p$ fixed effect design matrix for subject i, z_{ij} is a $m \times q$ random effect design matrix for subject i, β is a p-length vector of regression coefficients, $b_i = (b_{i1}, \ldots, b_{iq}) \stackrel{iid}{\sim} N(0, \text{diag}\{\tau_1^2, \ldots, \tau_q^2\}), i = 1, \ldots, n$, are random effects, and $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2), i = 1, \ldots, n, j = 1, \ldots, m$, are random errors. ϵ_{ij} 's and b_i 's are independent.

For Questions (a)-(b), assume q = 1.

Consider the following testing problem:

$$H_0: \tau_1^2 = 0 \ vs. \ H_1: \tau_1^2 > 0$$
 (1)

- (a) Show the asymptotic null distribution of likelihood ratio test for the testing problem (1).
- (b) Define a one-sided score test for the testing problem (1), and show its asymptotic null distribution.

For Question (c), assume q > 1.

Consider the following testing problem:

$$H_0: \tau_1^2 = 0, \dots, \tau_q^2 = 0 \text{ vs. } H_1: \tau_1^2 > 0, \dots, \tau_q^2 > 0$$
 (2)

(c) Show the asymptotic null distribution of likelihood ratio test for the testing problem (2).

4. Suppose $(Z_1, T_1), \dots, (Z_n, T_n)$ are i.i.d. as (Z, T), where T > 0 is a survival time and $Z \in \mathbb{R}$ with $0 < E[Z^2] < \infty$ and P(Z = 0) = 0 is a predictor random variable. Let $H(z, t; \beta)$, $\beta \in \mathbb{R}$, denote the distribution of (Z, T) and assume that the marginal distribution of Z does not involve β . Consider the estimating equation

$$\frac{1}{n}\sum_{i=1}^{n}\psi_{0}(z_{i},t_{i};\beta)=0,$$

where $\psi_0(z,t;\beta) = \frac{\dot{r}(z;\beta)}{r(z;\beta)} - \dot{r}(z;\beta)t$, where $r(.;\beta) > 0$ is a known 1-1 function of β for almost all z with derivative $\dot{r}(z;\beta) = \frac{\partial r(z;\beta)}{\partial \beta}$.

Suppose H is such that T given Z = z has the Weibull distribution with c.d.f.

$$1 - \exp\{-r(z; \beta_0)t^{\alpha}\} \quad \alpha > 0.$$

Hint: You may use the fact that if W has the Weibull distribution with c.d.f. $1 - \exp(-w^{\alpha}/\theta)$, then $E[W] = \theta^{1/\alpha}c_0(\alpha)$ and $\operatorname{var}(W) = \theta^{2/\alpha}c(\alpha)$, where $c_0(\alpha) = \Gamma(\alpha^{-1} + 1)$ and $c(\alpha) = \Gamma(2\alpha^{-1} + 1) - [\Gamma(\alpha^{-1} + 1)]^2$.

- (a) For what values of α , does $E_H[\psi_0(Z,T;b)] = 0$ have the solution $b = \beta_0$? Show your work.
- (b) Let $r(z; \beta) = \exp(-\beta z)$ and let α be the answer(s) to part (a). Is the solution $b = \beta_0$ in part (a) unique? Justify your answer.
- (c) Let $D(b) = \frac{1}{n} \sum_{i=1}^{n} \psi_0(Z_i, T_i; b)$. Suppose $r(z, \beta) = \exp(-\beta z)$. Show that D(b) = 0 has a unique solution with probability one.
- (d) Let β_1 be the solution to $E_H[\psi_0(Z,T;b)] = 0$ where H is the distribution for which $(T \mid z)$ has the Weibull distribution given above. Let $r(z,\beta) = \exp(-\beta z)$ and let $\widehat{\beta}$ be the solution to D(b) = 0 as detailed in (c). Derive the asymptotic distribution of $\sqrt{n}(\widehat{\beta} \beta_1)$ assuming that (Z,T) has the distribution H. Simplify your answer as much as possible using the given distributional assumptions.
- (e) Suppose P(Z=1) = P(Z=-1) = 1/2. Give the asymptotic distribution in (d) for this case. What is the value of the variance in the asymptotic distribution of $\sqrt{n}(\widehat{\beta} \beta_1)$ when $\alpha = 1$?

Department of Statistics
University of Wisconsin, Madison
PhD Qualifying Exam Part II
January 21, 2010
1:00-4:00pm, Room 133 SMI

- There are a total of FOUR (4) problems in this exam. Please do a total of TWO (2) problems.
- Each problem must be done in a separate exam book.
- Please turn in TWO (2) exam books.
- Please write your code name and NOT your real name on each exam book.