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Department of Statistics
University of Wisconsin, Madison
PhD Qualifying Exam Part 11
Thursday, September 1, 2011
1:00-4:00pm, Room 133 SMI

There are a total of FOUR (4) problems in this exam. Please do a total of TWO (
problems,

Each problem must be done in a separate exam book.
Please turn in TWO (2) exam books.

Please write your code name and NO'T' your real name on each exam book.
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1. Suppose that X, ,, n =0,+1,42,---, are random variables with finite variance on a
probability space (£, F, P), and ¢, are independent and identically distributed random
variables with mean zero and finite variance. Assume that X, and €, obey

Xn == 6Jlj{n-—l + -+ Han—p + &n,

where p is a positive integer and 6, - - , 0, are real numbers.

Let F, = o{Xx : k < n} be a sigma-field generated by X,, X;—1, X5—2,-- -, and denote
by B the Borel sigma-field on real line.

(a) Show that the statement:
For any m > n, and A € B,

P(Xm € AlF,) = P(Xn € AlXy) (1)

is equivalent to

(b) Show that Statement (1) implies the statement:
For any m > n, k < n, and A, B € B,

P(Xn € A, X, € B|X,) = P(Xm € A|X,) P(X; € B|Xy,). (3)

(c¢) Show that Statement (3) implies the statement:
For any m > n, k < n, and all bounded measurable functions f and g,

E[f(Xn) 9(Xi) | Xu] = E[f (Xm)| Xa] Elg(Xi)| Xn]-

(d) Show that Statement (3) is equivalent to the statement:
For any m > n, k <n, and A € B,

Pl e AR Xy = Pk, € 415,



2. This question asks you to prove a result regarding the almost sure convergence of order
statistics generated from independent and identically distributed (iid) standard uniform
random variables, A natural way to prove this result is to utilize the connection between
uniform order statistics and standard exponential random variables.

Notation and Setup. We start by setting the notation.
(i) The basic random variables. Consider two independent collections of random vari-
ables {U;,1 <i <n}and {W;,1 <i < n+ 1}, where the U; are iid uniform random

variables distributed on the interval (0,1) and W; are iid exponential random vari-
ables with mean 1. Also, define the partial sum of the W;’s

k
Sk=Y Wi, k=1, ,n+l
1=l

(i) Order statistics (extended to the edge of the interval (0,1)). For the random
variables {U;,1 < i < n}, let Uyyy < Upp) < -+ < Uy) be the order statistics and
define Ujgy = 0 and U4y = 1, that is,

0= Uy < Uy < Uy £+~ ¥ U(n) & U(n-i—l) = 1.

(iii) Partial average notation. We use the Wi notation in the standard way, W, =
%ZLI Wi, k=1,--- ,n+ 1. Additionally, we use W (i, j) for the following

1 ; _
W, 5) = —— Wi + Waga + -+ + Wj), 0<i< j<ntl

(iv) The range of the indices. Let m,, be a positive integer satisfying m, < n/2 and

My

— 00 asn — 0o. (4)
logn

Now, let
e
max and 2
*
*

denote the max and sum, respectively, taken over all pairs (i,j) satisfying (A)
0<i<j<n+1land (B)j~1i>m,

(v) The random variables of interest. Define the sequence of random variables

) (Za=00) |

T, = max

*

9=y

Question. Prove the following parts.

(a) Let 4 denote equality in distribution. Establish the following

1 (Wi
(U(z') "U(ivl))lﬁisﬂ“'l = (QE) 1<i< +1l )
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Now use (5) to prove )
Vi,
x Wn+1

(b) Show that for any € € (0,1/2), we have

SP@ze) <Y P([Wan—1]2¢/3)+ D > P(IW,5) -1 2¢/3) (7)

(c) Show that for some constant ¢ (involving €), we have

15- (6)

P (Wi —1| =€) < 2exp(~ck) (8)

(02]

(d) Using the above, and further calculations, prove as n — oo,

i LR




3. Let 2% denote a full factorial design at two levels (+1 and -1) consisting of all level
combinations of k factors. For example, a 2% has 256 runs. For run size economy,
fractional factorial designs are often used in practice. Let 277 denote a fractional
factorial design at two levels (-1 and -1) in k factors, which is a 277 fraction of a 2*.
The fraction is determined by p defining words. For illustration, Table 1 gives a 2572,
where the column for D equals the product of the columns for A and B, denoted by
A x B, and the column for F equals the product of the columns for A and C. The
defining words for this design are D = A x B and E = A x C, or equivalently

I=AxBxDandlI=AxCxE, (9)

where I denotes a column of all +1's. Notethat I =Ix I =AxXxA=BxB=CxC=
D x D = E x E. The two words in (9) and their product can be written together as [ =

A¥BxD=A%CxE=B%0x Dz E. (10)

The shortest wordlength (i.e., the number of letters) among the three elements in (10)
is three and the design is said to have resolution III (three). Generally, for a fractional
factorial design 2*P, p defining words together with their 22 —p —1 products form a set
with 2P — 1 elements and the resolution of the design is the shortest wordlength among
the 27 — 1 elements. For p =2, 2 — 1 = 3 and (10) has three elements.

A scientist studies the impact of five factors A, B,C, D and E on a chemical process
using a fractional factorial design in Table 2 (with one replicate per level combination).

(a) Find a set of defining words for this design. What's its resolution?

(b) Suppose the scientist has conducted an experiment using the design in Table 2, with
Y1,...,Yys denoting the response values of Runs 1,...,8, respectively. He believes
that only two factors in Table 2, denoted by W, and W, can have significant effects
on the response and considers a two-factor model

Yi = Po + Brwys + Bawa; + Browiwe; + €, fori=1,...,8, (11)

where the ¢ are independent Normal random variables with mean zero and an
unknown variance o2, and w;; and wsy; represent the entries in the sth rows of
W, and W, in Table 2. For a given pair of Wi and Ws, let B = (8o, f1, B2, f12)
and let ¥ denote the covariance matrix of the least squares estimator @ of 3.
There are 20 different ways to choose W) and W, to be two distinct factors from
Table 2. Compute the average value of ¥ (in terms of a 4 by 4 matrix) over these
20 possibilities of W) and W,. Explain your reasoning clearly.

(c) Suppose the scientist realizes that in addition to A, B,C, D and F, another factor
F should also be included in this study. Use the design in Table 2 to construct a
fractional factorial design 2572 with resolution IV (four).

(d) In general, is it possible to construct a fractional factorial design 2572 with resolu-

tion IV (four)? Construct one or prove such a design does not exist.
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Table 1: A 2°~? with resolution III

A B C D E

-1 -1 -1 +1 +1
-1 -1 41 +1 -1
~1 41 -1 —1 +1
—1 +1 +1 T -1
+1 -1 -1 -1 -1
+1 -1 +1 =1 +1
+1 4+1 ~1 +1 -1
+1 41 +1 -1 +1

Table 2: A fractional factorial design

of eight runs and five columns

Ruti# -4 B ¢ 8B B
1 F1 =1 =1 =1 <=1
2 ~1 -1 -1 +1 +1
3 +1 +1 +1 -1 +1
4 -1 +1 +1 +1 -1
5 +1 +1 -1 41 -1
6 -1 41 ~1 -1 +1
7 +1 -1 +1 +1 +1
8 -1 -1 +1 -1 -1




4. Hoping to reduce his heating bills, a Madison homeowner spent $700 to add insulation
to his attic in October 2010. The house uses natural gas for heating and for hot wa-
ter. Electricity is used for everything else. Table 3 shows the monthly heating bill for
the house since January 2008. The thermostat in the home is kept at 68 degrees from
November through April. HDD (heating degree day) is a unit of measurement designed
to reflect the demand for energy needed to heat a home or business. It is derived from
measurements of outside air temperature. A therm is a unit of heat energy, approx-
imately the equivalent of burning 100 cubic feet of natural gas. The current cost of
natural gas is $1.12 per therm. Table 4 gives some summary statistics and Table 5 gives
historical monthly average data for Madison.

(a) Determine if the insulation led to reduced energy use, after differences in HDD are
accounted for. Test the appropriate hypothesis at the 0.05 level.

(b) Find a 95% confidence interval for the average monthly amount of heat used for
hot water. '

(c) Estimate the mean annual total savings (in dollars) after insulation for the six
months from November through April. How long will it take to recover the cost of
the insulation?

Table 3: Monthly utility records

2008 2009 2010 - 20011
Month | HDD Therms | HDD Therms | HDD Therms | HDD Therms
Jan | 1415 166 | 1669 188 1201 - 1B8.| 1395 139
Feb 1461 169 | 1171 139 | 1167 127 1 1193 116
Mar 1020 122 866 ) 802 94 998 103
Apr 514 80 569 74 385 56 291 68
May 317 42 210 a3 211 37 281 31
Jun 16 22 63 20 15 9
Jul 9 19 34 24 0 15
Aug 8 19 42 21 4 15
Sep 97 22 94 22 147 17
Oct 518 40 622 69 393 29
Nov 813 90 652 70 787 70
Dec 1526 176 | 1503 177 | 1491 144




Table 4: Summary statistics for the data in Table 3

HDD
Mean sSD

Therms
Mean sD

Before Oct 2010
After Oct 2010

604.735 561.657
062.286 438.561

76.265 59.748
95.857 41.406

Table 5: Historical monthly averages for Madison

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Avg max temp | 24.8 301 415 56.7 689 782 824 79.6 715 50.9 440 298
Avg min temp 72 11,1 230 341 442 B4.2 595 B56.9 482 377 287 13.5
HDD 1519 1243 1014 588 294 680 12.0 380 168 499 8388 1342




