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ABSTRACT

We describe extensions to the nonlinear modeling [acilities in release 3 of S and S-
plus. These extensions provide classes and methods for fitting and analyzing nonlinear
mixed effects models with the two-stage estimation method described by Lindstrom
and Bales (1990). They are implemented in a combination of S and C code and
complement the classes and methods for the linear mixed effects model that we previ-
ously contributedto the StarLib collection. These methods include an implementation
of the “loose-coupling™ approach to the pseudo-data step which reduces the overall
computational burden in problems with many clusters.
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1. INTRODUCTION

We describe a set of S classes and methods for the analysis of
nonlinear mixed effects models. The source code, wrillen in S
and C, and the documentation are available in the S collection at
StatLib. Details on how to obtain this and other software from
StatLib can be found in Newton (1993).

In this paper we will focus on repeated measures data, i.c.
data generated by observing a number of clusters repeatedly
under different experimental conditions. Usually observations
on the same cluster are made at differenttimes, as in longitudinal
studies. An example of such data is the pine tree growth data
given in Kung (1986). A total of 14 sources (seeds) of Loblolly
pine were planted in the southern United States and the tree
heights (in I1.) were measured at 3, 5, 10, 15, 20, and 25 years
of age. Figure 1 shows a plot of these data. Kung (1986) used
a logistic curve to model the trees’ growth, but an asymptotic
regression model seems Lo explain the observed growth patiern
better!. This model can be expressed as

[t @) = 1 — ppe™ ! (1.1

where £ denotes the tree’s age, ¢, the asymptotic height, ¢, the
difference between @ and the height at age zero, and oy the
growth rate.

!'We also tried the logistic model, the Gomperlz madel, the Maorgan, Mer-
cer, and Flodin model, and the Weibull type model (Ratkowsky, 1990). The
asymptotic regression gave the best overall fit.

2. THE NONLINEAR MIXED EFFECTS MODEL

Repeated measures data are often analyzed using a two-stage
model. The nonlinear mixed effects model described by Lind-
strom and Bates (1990) is such a two-stage model that in some
ways generalizes the linear mixed effects model described in
Laird and Ware (1982). In the first stage the jth observation on
the ith cluster is modeled as

vij = fl@; xij) + eij

where f* is a nonlinear function of a cluster specific parameter
vector ¢; and the covariale vector x;;, and e;; is a normally
distributed noise term. In the second stage the cluster specific
parameter vector is modeled as

¢; = A,B+ B;b,,

(2.1)

b; ~ N(0,0°D), (2.2)

where 3 is a p-dimensional vector of fixed population parame-
ters, b; is a g-dimensional random effects vector associated with
the ith cluster, A; and B; are design matrices for the fixed and
random effects respectively?, and a2 D isa (general) covariance
matrix. Itis further assumed that observations made on different
clusters are independent and that the eij are i.i.d. N'(0,¢?) and
independent of the b;.

Assuming that all three parameters ¢, ¢, and ¢4 in equa-
tion (1.1) have both a fixed and a random component, the non-
linear mixed ellects version of this model for the pine trees is

Yij = (81 + bi1) = (B2 + bip)e™Patbialty 4 ei;, (2.3)

*In most applications A, and B, are incidence matrices, i.e. matrices whose
entries are either zero or one.
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Figure 1: Loblolly pine heights at different ages.

In this case ¢+ = 1,...
hence ¢, = 3 + b;.

IE: SO0 6, A, =B, =1 and

3. PARAMETER ESTIMATION

The parameters to be estimated in a nonlinear mixed clfects
model are the fixed effects 3, the cluster specific variance a?
and the scaled variance-covariance matrix of the random effects,
D. Since D is a symmetric matrix, we only need g(q + 1)/2
parameters to represent it. We will denote by & any such min-
imal set of parameters that determine D. In most applications
the cluster specific parameters b;, estimated by the conditional
modes, are also of interest.

The estimation procedure proposed by Lindstrom and Bates
(1990) is an alternating algorithm. Based on the current esti-
mate of 8, the conditional modes of the random eflects, and
the conditional estimates of 3 are obtained. Using these and a
first order Taylor approximation to the likelihood, new estimates
of @ and B3 are determined. The estimation procedure iterales
between these two estimation stages until some pre-established
convergence criterion is mel.

It can be shown that minimizing

g(B,by..... by |9y): (3.1)
M
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in B and b;, for given 8, produces the conditional modes of the
random effects. Here f;(/3, b;) is the n;-dimensional vector of

predictions with

{Fi(B.b)}; = F(A

By appropriately augmenting the response vector y; with ze-
roes, this minimization can be converted to a nonlinear least
squares problem. This estimation step is called the pseudo-data
nonlinear least squares (PNLS) step. Details may be found in
Lindstrom and Bates (1990).

In order to estimate 3, @, and o we should ideally use the
likelihood

iB+ Bib;,x;;) (3.2)

(B.0.* )= [ 1(B.6.0* |yb)p(b)db  (33)
where p(b) is the multivariate normal density of b. In general
this integral does not have a closed-lorm expression when the
expectation function fis nonlinear in b. To avoid this difficult
integral Lindstrom and Bates (1990) considered a first order
Taylor series expansion of f around the current estimate of 3
and the conditional modes b;, obtaining an approximate log-
likelihood of

((8.0.0% | y) = (3.4)
M
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with the {w) superscriptindicating quantities based on the current
estimates of 3 and b;, || indicating the determinant of a matrix,
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This approximate log-likelihood is the log-likelihood of a

@' is the vector of observa-

tions, 3 represents the lixed effects, and f( e and 2(1“) are the
lixed and random ellects design matrices as described in Lind-
strom and Bates (1988). The second estimation step is therefore
called the linear mixed effects (LME) step.

Alternatively the approximate residual log-likelihood
(Harville, 1974) can replace the log-likelihood in the LME step.
This residual log-likelihood is given by

linear mixed eflects model where w

(1(B.0.0%y) = (3.5)
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4. THE NLME CLASS IN S AND RELATED METHODS

Based on the estimation approach described in the previous
section an integrated set of S (Becker, Chambers and Wilks,
1988) functions was developed to fit and analyze nonlinear
mixed effects models. These use the object-oriented method-
ology introduced in Chambers and Hastie (1992). In this section
we illustrate the use of these functions by analyzing the Loblolly
pine tree data. Details on all the available options and the syntax
of the arguments are in the help files.

The main [unctionisnlme (). It fits a general nonlinear mixed
effects model, as defined in (1.1), using the two-stage algorithm
described in section 3. In the PNLS step we make use of the
loosely coupled structure of the nonlinear least squares mini-
mization problem, as described in Soo and Bates (1992). This
allows the complexity of the calculations involved (o increase
linearly with the number of clusters M, instead of growing with
M? as would be the case if standard nonlinear least squares
techniques were used.

The nlme () function generates an object to which is assigned
the class nlme. Methods for standard generic functions such as
print (), summary().and plot () are defined for this class.

Let us consider the nonlinear mixed effects model lor the
Loblolly pine data in which all the parameters are assumed 1o
have both fixed and random effects, as given in (2.1). As in
most nonlinear methods, we require starting estimates for some
of the parameters. The description of the parameters [ollowing
equation (1.1) and the data in Figure 1 indicate that, [or these
trees, @1 =~ 95, ¢ =~ 100, and @3 =~ 0.044. Because the
patterns for different trees are similar, we use these starting
estimates for 3 and set all b; = 0 initially. The data are stored
in a data frame called pinetree with columns height, age,
and seed. A simple call to nlme () to fit model (2.1) would be

> pine.fit <-

+ nlme(model = height = A - B*exp(-C * age),
figed = 196E0R. % . B oy @ ),

+ random = list{(A ~ ., B~ ., C ™~ .),
cluster = seed, data = pinetree,

+ start = list{fixed = c(95, 100, 0.0443)))

The first argument is a nonlinear model formula describing
the response and the nonlinear model, f.

The second and third arguments, £ixed and random, are lists
of formulas that define the fixed and random effects, respec-
tively. In these formulas a “" on the right hand side ol a formula
indicates that a single paramelter is associated with the effect, but
any linear formula in S could be used instead®. That gives con-
siderable flexibility to the model, as time-dependent parameters
can be easily incorporated (e.g. when a formula in the fixed

$Note that the formulas could be directly incorporated in the model decla-
ration. The approach used in nlme () allows for more efficient calculation of
derivatives and will be useful for update methods that will be incorporated in
the code in the future,

list involves a covariale that changes with time). Usually every
parameter in the model will have an associated fixed effect, but
it may, or may not, have an associated random effect. Since we
assumed that all random effects have mean zero, the inclusion
of a random effect without a corresponding fixed effect would
be unusual.

The cluster argument defines the cluster of each observa-
tion. An S expression or a formula with no left hand side can
be used here. Data names a data frame and start provides a
list of starting values for the iterative algorithm. Only the fixed
effects starting estimates are required. The default value for the
random effects is zero and starting estimates for @ and o are
automatically gencrated using a formula given in Laird, Lange
and Stram (1987) if they are not supplied.

Further information on the arguments of nlme () is available
in the help file.

A briel description of the estimation results can be obtained
through the print method of the nlme class. This method only
gives the estimates for the variance/covariance matrix of the
random effects (¢2.D), the cluster specific variance (¢2), and
the fixed elffects (3).

> pine.fit

Call:

Model: height ~ A - B * exp( - C * age)
Fixed: list(A ~ ., B~ ., C ™ .)
Random: list(A -~ ., B~ ., C ~ .)
Cluster: = seed

Data: pinetree

Variance Components Estimates:
Variance/Covariance/Corr. of Random Effects
A B C
A 52.5813674 51.6526300 -2.310920e-02
2] 1.0000000 50.7402967 -2.270114e-02
€ -0.8842338 -0.8842381 1.298984e-05

Cluster-specific Residual Variance: 0.3965168

Fixed Effects Estimates:
A B e
102.258 110.845 0.0391674%

Number of Observations: 84
Number of Clusters: 14

The most interesting results at this point in the analysis are
the very strong positive correlation between by and by and the
small variance of by. Also of interest is the negative correlation
between by and the other two random effects.

A more complete description of the estimation results is ob-
lained with summary

> summary(pine.fit)



Convergence at iteration: 7
Loglikelihood: -34.61809

Variance Components Estimates:
Variance/Covariance/Corr. of Random Effects
A B 8]
A 52.5813674 51.6526300 -2.310920e-02
B 1.0000000 50.7402967 -2.270114e-02
@ -0.8842338 -0.8842381 1.298984e-05

Cluster-specific Residual Variance: 0.3965168

Fixed Effectg Estimates:
Value Std.Error(C) z ratio(C)

A 102.25796518 2.711028378 3 73925
B 110.84499565 2.556649810 43.35556
C 0.03916749 0.001464481  26.74496

Conditional Correlations of Fixed Effects
A B
B 0.9965924
C -0.9360038 -0.9213363

We can sec thal the fixed effects are being estimated reason-
ably precisely (the approximate standard errors arc only ol the
order of 2% of the estimates’ values), bul their estimators are
highly correlated, especially /3, and 7,.

As mentioned above by and by show a very high positive
correlationand by does not vary substantially among seeds. This
gives some indication that perhaps some of the parameters (or
linear combinations of them) could be considered as purely fixed,
i.e. without an associated random effect. We will return to this
issue below.

Plots of random effects, residuals, and fitted values can be
obtained using the plot method of class nlme. The lollowing
call will produce a scatter plot matrix ol the random elfects, as
shown in Figure 2.

> plot(pine.fit)

This plots shows clearly the almost perfect linear relationship
between the random elfects for A and B. It also indicates the
negative correlation between the last random effect and-the first
two.

The same plot method can be used to gencrate diagnostic
plots of the residuals and the fitted values which can be used to
assess the quality of the fit. For example

> plot(pine.fit, option = ‘r')

produces the plots in Figure 3.

The first plot, observed versus fitted values, indicales that the
asymptotic regression model does a reasonable job of explaining
the Loblolly pine trees growth. The points [all very close to the
displayed y =  line, indicating a strong agreemenl belween
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Figure 2: Scatter Plot Matrix of Random Effects.

the observed and fitted values. The second plot shows the major
flaw of the model: all the residuals at the earliest age are pos-
itive, while all those at the second measurement are negative.
Nevertheless the residuals are all relatively small in magnitude
and the underfitting/overfitting problem is not present for later
ages, which are the ones of most interest in this type of study.
The final plot, featuring the boxplots of the residuals by cluster,
suggests that the dispersion is homogeneous over clusters.

One of the major questions of interest for these data is pre-
dicting the tree’s height for later ages. The predict method for
the nlme class can be used for this. As an example we will use
it o predict the heights for the first seed up to 50 years of age.
First we create a new data frame containing information on the
seed number and the ages for which the predictions are desired
ds

> new.pinetree <- data.frame(seed=rep(301,6),
+ age = seq(25, 50, len = 6))

The predictions are then obtained with

> predict(pine.fit, ~ seed, new.pinetree)
cluster population.average cluster.specific

1 301 60.62278 61.30597
Z 301 68.02777 68.48960
3 301 74.11575 74.32499
4 301 79.12096 79.06519
5 301 83.23597 82.91573
6 301 86.61911 86.04361

where the population.average column refers to the pre-
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Figure 3: Residuals and Fitted Values Plots

dictions when the random elfects are sel o zero and the
cluster.specific uses the conditional modes for seed 301,
Itis interesting to note that these predictions are consistent with
what is observed in practice since, as mentioned in Kung (1986),
Loblolly pine trees on a good site can achieve heights ol 90 feet
or more by 50 years of age.

The predict method can also be used for plotting smooth
fitted curves by calculating fitted values at closely spaced times .
Figure 4 presents the fitted curves for the first four sceds using a
total of 200 time points between 2 and 50 years. For the sake ol
comparison we also include the fitted curves corresponding Lo
the individual nonlinear least squares fits*, The two fits almost
coincide, especially for the earlier ages.

One interesting question in the model building process is how
to decide whether a parameter should be fixed for all clusters,
or should include a random component. The literature does not
give a definite answer, especially for nonlinear models. One pos-
sibility is to analyze the eigenstructure of the estimated variance-
covariance matrix of the randomeffects (D), checking lorcigen-
values close to zero and use the approximate log-likelihood of
section 2 to create likelihood ratio tests (or evaluating whether
particular combinations ol the random effects could be elimi-
nated from the model. The validity ol such analysis will, of
course, depend on the accuracy of the approximation of the
log-likelihood.

For the pine tree data the eigenvalues of D are 262.21,

1The nls () function was used to fil the model and the fitted values were
obtained through the predict method of the nls class.
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Figure 4: Fitted Curves for First Four Seeds

7.82 x 107°% and 7.13 x 1079, suggesting that the model is
overparametrized and possibly just one random effect is needed.
The corresponding orthonormalized eigenvectors are

ul = (=0.7134,-0.7007,0.0003)  (4.1)
ul (—0.6925,0.7050, —0.1533)
ul = (-0.1071,0.1096,0.9882)

The vectors wy and wy indicate that by — by and/or bs could be
climinated from the model. We decided to go one step at a time
and first eliminate only by. The corresponding call to nlme ()
and (pieces of) the associated summary are given below.

pine.fit.AB <- nlme(height ~ A-B*exp(-C*age),

ligk(A. © ., B"™ 4 € ™ .}, ld8t(a ™ .y BY .}y
“seed, pinetree,list (fixed=c(95,100,0.0443)))
summary (pine.fit.AB)

vV o+ 4+ Vv

Convergence at iteration: 3
Loglikelihood: -37.53919

Variance Components Estimates:
Variance/Covariance/Corr. of Random Effects
A B
A 13.1269677 13.03844
B 0.9999386 12.95210

Cluster-specific Residual Variance: 0.5161905



Fixed Effects Estimates:
Value Std.Error(C) z ratio(C)

A 101.47369856 2.414937496  42.01918
B 110.09821064 2.203230618 49.97126
@ 0.03939487 0.001325846 29.71300

Conditional Correlations of Fixed Effects
A B
B 0.9950441
C -0.9085410 -0.8791107

The resulling approximate log-likelihood is —37.54, which,
when compared with the value of —34.62 for the full model,

gives a likelihood ratio statistic of 5.84. Since the removal of

by from the full model implies three fewer parameters in the re-
duced model factorization of D, we compare the likelihood ratio
statistic to a y? with 3 degrees of freedom. The correspond-
ing p-value is 0.12, indicating that the random elfect could be
dropped from the model. We observe a considerable decrease in
the variances of the remaining two random effects, when com-
pared (o the values obtained for the [ull model. The correlation
between the two random effects continues to be extremely high.
The fixed effects estimates do not change much, nor do their
approximate standard errors.

The natural question now is whether we can drop other ran-
dom eflects from the model. We tried remaving cach ol the
random effects separately, but in both cases the log-likelihood
ratio statistic turned out to be highly significant. Table 1 sum-
marizes the findings.

Table 1: Likelihood Ratio Statistics for Random Effects

Effect Approximate  Likelihood p-value
Removed Log-likelihood Ratio

by -76.53 86.72 < 0.0001

by -61.01 52.78 < 0.0001

The cigenvalues of the estimated D matrix in the reduced
model are 26.08 and 0.0008, giving a clear indication that the
model is still overparametrized. The eigenvector corresponding
to the smallest eigenvalue is us’ = (0.705, —0.709) suggest-
ing that by — by should be eliminated. That led us o consider
the following reparametrization of the original asymptotic re-
gression model

flt, @) =& + (2 — &y ) e8! (4.2)

where ¢ and @y conlinue to have the same interpretation as
before, but ¢ now represents the height at age zero. Using this
reformulation of the model we get the values shown in table 2
for the log-likelihood where the likelihood ratio statistics are
calculated with respectto the full model (i.e. with all three effects
as random). We conclude that the reparametrized model with

Table 2: Likelihood Ratio Statistics for Random Effects in the
Reparametrized model

Random Approximate  Likelihood  p-value
Elfects Log-likelihood Ratio
none -85.65 102.08 <0.0001
by -37.55 5.88 0.318
by and by -37.54 5.86 0.119
Dy, by, and by -34.61

just one random effect for the asymptotic height is adequate
to fit the data. In order to find out about the cluster specific
parameter estimates for this final fit the cs . coef method can be
used. Note that as height at age zero and growth rate do not have
an associated random elfect, their respective estimates do not
vary with cluster. Therefore we extract only the cluster specific
asymplotic heights.

> pine.fit.noBC <-

+ nlme(height " A + (B - A) * exp(-C * age),

+ list{(A ™ ., B~ ., C 7 .}),list(a ~ .}, "seced,
+ pinetree,list(fixed=c(A=100,B=-10,C=0.039)))
> cs.coef (pine.fit.noBC) [, 1)

301 303 305 307 309
103.4589 106.0564 108.5432 99.08856 105.036

8141 315 319 321 323
100.0454 101.3371 102.6419 99.08609 104.4332

325 327 329 331
99.75504 96.4305 95.8819 98.46592

These values are in agreement with the expected behavior of
Loblolly pine trees at older ages, as reported in Kung (1986).
An intcresting aspect of this example is that neither the random
effect for ¢b; alone nor that for ¢, alone can be dropped from the
model, but a linear combination of them can. The example also
illustrales how the eigenstructure of the estimated D matrix can
help in the model building process.

5. CONCLUSIONS

The classes and methods described here provide tools for an-
alyzing nonlincar mixed effects models. As they are defined
within the § environment, all the powerful analytical and graph-
ical machinery present in S is simultaneously available. The
analysis ol the Loblolly pine tree illustrates some of the avail-
able features, but many other features are available.

Some guestions remain open to future investigation. The first
one concerns the validity ol the approximation to the marginal
log-likelihood described in section 3. All estimation results de-
pend heavily on the accuracy of that approximation, and further
study is necessary Lo evaluate its properties. Numerical tech-
niques, such as Gaussian quadrature (Smith, Skene, Shaw, Nay-



lor and Dransfield, 1985; Davis and Rabinowitz, 1984), or Monte
Carlo methods, such as the Metropolis algorithm (Metropolis,
Rosenbluth, Rosenbluth and Teller, 1953) or importance sam-
pling (Rubinstein, 1981), could be used to evaluate the marginal
log-likelihood and compare the results with the approximation.
We will consider replacing the approximation by more exact
methods, such as these, in future implementations of the code.
The estimation method described in section 3 would be used to
obtain good initial estimates for the final iterative process, in
which the approximation would be replaced by the exact log-
likelihood. The software design allows for that sort of upgrading
without major modifications in the code.

Another issue that deserves a more thorough trealment is that
of choosing which parameters should be random effects and
which purely fixed effects. Comparison of nested models can
certainly be done using a likelihood ratio approach, as illustrated
in the Loblolly pine tree example. For that matter, the use of an
exact log-likelihood would certainly give more accurate results.
One of the problems with this approach is deciding which way
to construct the nesting; from smaller to larger models, or the
other way around. Starting with a model where all parameters
are random effects and then removing unnecessary lerms sounds
templing, but has the major disadvantage that convergence may
not be achieved if the model is overparametrized. In these cases
the D matrix may become seriously ill-conditioned, making it
difficult or impossible to converge. The smaller (o larger ap-
proach seems preferable, but has the disadvantage of the large
number of models that may have to be fitted before the desired
one is found. There is yel another important aspect that is over-
looked by the model nesting approach. Somelimes, as in the
Loblolly pine tree example, a linear combination of random el-
fects can be considered fixed, but none of the individual terms
can. A good strategy (o detect random eflects overparametriza-
tion is to examine the eigenvalues of the estimated D matrix and
see when one, or more, are close enough 1o zero. The associated
eigenvector(s) would then give an estimate ol the lincar com-
bination of the random effects that could be taken as fixed. If
more than one eigenvalue approach zero, rotations of the corre-
sponding eigenvectors could be used o give more meaningful
random effects combinations, similarly to what is done in factor
analysis. Of course, the question that remains open is what ¢lose
enough means. More research is needed on this.
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