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Abstract

' The problem of using the “direct” variational methods in a statistical model that merges
data from different sources with unknown relative weights is considered. The model is
initially proposed for data assimilation in numerical weather prediction, but could also be
useful in other scientific fields where data from different sources need to be combined. To
carry out this merging optimally, it is necessary to provide an estimate of the relative weights
to be given to data from different sources. In Wahba, Johnson and Reames (1990), two
nrethods are suggested to estimate the weighting parameters and the smoothing parameters
simultaneously. These two methods are the generalized maximum likelihood estimate and
the risk cross validation estimate. We denote these two estimates by GML-r and RCV,
- where 7 represents the weighting parameter. In this dissertation, a new form of generalized
cross validation estimate is developed to simultaneously estimate the weighting parameters
and the smoothing parameter. We name this new estimate GCV-r. We prove the weak
consistency and the asymptotic normality of all these estimators. The convergence rates for
these estimators are obtained under some conditions. We also conduct some Monte Carlo
experiments that simulate meteorological realities. It is shown, both theoretically and by
simulation, that the GCV-r is substantially better than the RCV estimate in estimating the
weighting parameter 7. Also from the simulation results, the GCV-r appears to be more
robust than the GML-r when there is model misspecification, which is often inevitable in
practice.

Key words and phrases: smoothing spline, weighting parameter, GCV, GML.

'This report incorporates all of the results of Technical Report 894. Chapter 5 is a joint work with
Professor Grace Wahba, Dept. of Statistics, and Professor Donald Johnson, Dept. of Atmospheric and
Oceanic Sciences.
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Chapter 1

Introduction

1.1 Introduction

The problem of sithultaneously combining data from many different sources with un-
known relative weights in a variational analysis is considered. This is a very important prob-
lem in data assimilation in numerical weather prediction, where information from forecast,
direct data, indirect data (such as satellite radiances), and prior meteorological information
of various sorts, e.g. the frequency spectrum of a parameter decays at a certain rate, etc.
are available and need to be combined to get a good initialization for numerical weather pre-
diction. See Wahba (1982a), Wahba (1985b), Wahba et al. (1990), Lorenc (1986), Parrish
and Derber (1992), and others. In this dissertation, we consider a model that combines data
from two different sources. The methods and results derived here can be easily extended to
models that combines data from more than two sources. This technique can also be very
useful in other scientific fields where data from different sources need to be combined.

The model we will be using in this thesis first appears in Wahba et al. (1990) and Bates,
Reames and Wahba (1990). It is of the following form:

i = Ly E1i

n uf + e (1.1.1)
Yaj = Laj f + €35

whete ¢ = 1; ooy 7 = 1 cotiag £ 118 8 smooth fapetion, ‘which for'example, could rep-

resent the true but unknown state in meteorology, for instance, the 500 millibar heights of

the atmosphere. We may assume this f to be a function in a reproducing kernel Hilbert



space H. Ly; and L,;, ¢ = 1,...,ny, J = 1,...,n,, are bounded linear functionals on H.
&1 = (€115 s€1n,) ~ N(0,070), €3 = (€21,...,E2m,) ~ N(0,03I), where o? and o? are
unknown, €, and ¢, are independent. '

The ultimate goal is to estimate f. If we knew o} and ¢, we would do this by solving

the following variational problem:

i (y2j — Laj f) ) + AJ(f) (1.1.3)
J=1

fEH Ny + N O =y or

min - ( 5 Z(yh - Lllf) P :

where J(f) is a roughness penalty and A is the smoothing parameter that controls the
trade-off between the weighted residual sum of squares (1/(n; + n3))((1/07) 52,
(Y1: = L1 f)? + (1/03) 72, (y2; — Lo; f)?) and the penalty J(f). The solution f is called a
spline in a general sense (see Wahba (1990)).

In meteorology, f is often a function on the sphere, and can be approximated by a finite

Fourier expansion, for example the spherical harmonic expansion

M
f=foo+) Z fu:Yis,
=1 s==1
which is the analog of a trigonometric expansion of a periodic function, i.e. function on
the circle. Here Y}, are the spherical harmonics and f;, are the Fourier-Bessel coefficients.
For simplicity, in this thesis in Chapters 3 and 4, we only consider the cases where f is a

function on the circle, and we assume n is even, i.e. f has the expansion

n/2-1 nf2-1
f=ay+ Z a,,\/§cos 2rvt + Z b,,\/§sin 27vt + anyy cos TRL.
v=1 v=1

The result for function on the circle can be easily extended to function on the sphere.

After approximating f by a finite Fourier expansion, the model (1.1.1) can be written

as
=X €

(3t 1f -+ (1.1.3)
Y2 = Xof + &3

where y; is of dimension n;,¢ = 1,2, f = (fo, fi,..., fa—1)' is of dimension n and contains the

Fourier-Bessel coefficients of function f, X; are n; x n matrices, 1 = 1,2 and ¢; ~ NV(0,077),

t = 1,2 and they are independént.



If we let fol(f("‘)(u)):'du be the penalty, then the variational problem (1.1.2) becomes

one of finding the minimizer f of

! T 2 2) r5-1
(Gl = XA+ ol = o) 4 A5
or, equivalently
s {5 = X7+ rllvs = X1 + a5 (114
8(n: +7g) L7 ¥ 1 2 2 1.

where = 0,0, is a nuisance parameter, r = ¢;/0, is the weighting parameter, « is the
smoothing parameter and I is such a diagonal matrix that for cases where f is a function
on the circle, ¥ = diag[é,],¥ = 1,...,n, & — 00, & = [1/2]72,v = 2,...,n, where [z]
is the integer part of z; for cases where f is a function on the sphere, ¥ = diag[&,],s =
~lyerodil =0, M, fo0 — 00, &, = [l + V)" 8 = =1,...,5il=1,..., M.

This is so because the eigenvalu‘es-of the reproducing kernel of the Hilbert space of
periodic smooth functions are all of multiplicity 2 and are A, = (27v)~*™. Similar result
is also true for functions on the sphere. See page 21-27 of Wahba (1990). m > 1 is the
number of continuous derivatives f is assumed to possess. m is assumed to be known.

If we know r and a, we can get the estimate:
- 1 ' ' ) [t i ‘ . 4
frms (;Xle + rX,X; +al7") (;lel + rX,y2) (1.3:5)

So, finding a good estimate of r and a becomes very important.
Finding a good estimate of r alone is also of interest, because it will give us some
knowledge on the relative accuracies of different instruments from which we get the data.
In order to derive the generalized maximum likelihood estimate, we need to look at
the problem from a Bayesian point of view. The stochastic model behind the maximum
likelihood estimate is
f ~ N(0,bY), (1.1.6)

where b > 0.
In meteorology, the data from real life usually behave as if they were from such a
stochastic model with some m > 1. See Figure 5.1.3 in Chapter 5. Also see Wahba (1982b)

and Stanford (1979) for more examples. So, it is appropriate to assume such a stochastic



model as prior information on f. The log of posterior distribution is proportional to
1 -2 1 B A s
-l =X flI* + === Xafll* 4= T " F¢,
ai o3 b
and finding the maximizer of it is equivalent to finding the minimizer of
1 1 2 2 =1
7119 = XS +rllye = X fI° + af' 27 f (1.1.7)
where & and r are as before and the smoothing parameter @ = o,0,/b is the noise to signal
ratio. Since minimizing (1.1.7) is the same as minimizing (1.1.4), we get the same form
of the estimate j':r_(, as in (1.1.5). For more discussion on the relationship between spline
smoothing and Bayesian estimates, see Wahba (1990), Kimeldorf and Wahba (1970) and
Wahba (1978).
Our interest is in estimating 7, @ and finally f. We will describe several estimation
methods and study their properties in the later chapters. In order to study the properties

of different estimators, we need to specify certain conditions on the “design” matrices X,

and X, in (1.1.3). We will do this in the next section.

1.2 Several Interesting Cases

In this thesis, we will consider several models that describe some of the most interesting
situations arising in meteorology. Our y; and y, are data from different sources. These
sources could include i).direct observations; ii).satellite soundings; and iii).forecast data
from a forecast model. Now let us look into these three different sources in a bit more
detail:

i). If one data set, say y,, is from the direct observations of the true state at certain points
in the spatial domain, for example, the 500 millibar heights observed from the radiosonde
stations all over the world, then L;;’s in (1.1.1) are the evaluation functionals. If we assume
the observational points are uniformly distributed on the sphere or on the circle, then after
approximating f by a finite Fourier expansion with n = n,;, the columns of X; would be
perpendicular to each other, and we have X, X, = nI. We will prove our main results under
this assumption. For more general cases, we believe that similar results are still true under
some regularity conditions.

ii). If one data set, say y», is from remote soundings at a satellite sensor, then L,;’s



in (1.1.1) can be approximated by an integral equation, which, in an idealized situation,
can be expressed in a matrix form as in (1.1.3), where, if we assume n = n;, X, can be
written as X, = /nT'K, where T is an orthogonal matrix and K is a diagonal matrix of
eigenvalues of the kernel function in the integral equation. Since the kernel function is
squared integrable, k,, the vvth entry of K, should satisfy 307, k2 < co. For simplicity, we
may assume that for cases where f is a function on the circle, K = diaglk,],v = 1,...,n,
where k, = [v/2]7?,v = 2,...,n, for some p > 1/2; for cases where f is a function on the
sphere, K = diag[k;,],s = —!{,...,5;1=0,...,M, where k;, = [I(I+ 1)]"?,s = =l,...,};l =
1,..., M, for some p > 1/2.

iii). If one data set, say ., is from a forecast model, then in our Monte Carlo studies,
we .o the data in the frequency domain, i.e. we have the vector of Fourier coefficients
as data. In practice, the forecast errors in the spatial domain are usﬁally correlated. See
Hollingsworth and Lonnberg (1986), Lonnberg and Hollingsworth (1986) and Wahba (1989)
for examples. In Wahba (1989), a mathematical model is used to describe the forecast error
correlation. According to this model, the forecast error can be viewed as a stochastic
process. This stochastic process should be “rougher” than the signal if we also view the
signal f as a sample function from some other stochastic process. By “rougher” we mean
the eigenvalues for the error, which correspond to the energy spectrums in a Karhunen-
Loeve expansion, decay at a slower rate than that of signal f. For example, we may assume
n = n, and for cases where f is a function on the circle, we may assume the forecast error
has eigenvalues K~? = diaglk,],» = 1,...,n, where &k, = [¢/2]"%,v = 2,...,n, for some
0 < p < m; for cases where f is a function on the sphere, we may assume the forecast
error has eigenvalues K = diag[k,,],s = -1,...,l;1=0,...,M, where k;, = [{(I+ 1)]77,s =
—l,...,;1l=1,...,M, for some 0 < p < m. Thus, we have § = f + £, where the vector
f contains Fourier coefficients and é ~ A(0,0%K ~?). Multiplying both side by K, we get
y= Kj=Kf+e, where ¢ ~ N(0,0%I). The model with this kind of correlated error is of
practical interest, but has not been studied in this context before.

In all the 3 cases above, we have y = Xf+ ¢ with X of the form 'K, where T is an
orthogonal matrix, K is a diagonal matrix, and ¢ is i.i.d.. Multiplying I' on both side, we

get the model:

{ n=HKf+e (1.2.1)

Yo = Ko f + ¢,



where &', and I, are diagonal matrices.

In Chapters 3 and 4, we will only consider cases where f is a function on the circle. We
will assume n = n; = n, and (1.2.1) to be our model. We will consider the following 3
cases of practical interests:

case 1: K; = /ndiaglk;,),v = 1,...,n ki, = [v/2]%,v = 2,...,n, where p; > 0, i =
1,2. This approximates cases where we have direct observations and/or satellite soundings.

case 2: I = y/ndiaglki ],v = 1,...smiky = [p/2]72% 0 = 3, ..., 5, where gy > 0.
K, = diaglks,],v = 1,...,n;kqs, = [v/2]P2,v = 2,...,n, where 0 < p; < m. In this case,
data set one could be direct observations or satellite soundings, data set two is from a
forecast model.

case 3: K; = diaglk,),v = 1,...,mk, = [0/2Pv = 2,...,n, where 0 € p; < m,

t = 1,2. In this case, the two data sets may be from two different forecast models.

1.3 Models with More Than Two Sources

We can extend our model to models that combine data from more than two sources. In
this section, we will see how to do this.

We can consider the following model that combines data from J sources:
=il ey, 4 =1 0T (g1

whore £; > A1) F = 1,0,

Then we can estimate f by finding the minimizer f of

J

1 1
Do s~ E P PR T (1.3.2)

gi=1 5

or equivalently

J
Z% ly; — K; fII* + af T f (188)

where r; = o?/([]]_, 0?)"/? are the weighting parameters and a = ([}, 02)/7/b is the
smoothing parameter. Note that Hj=1 r; = 1. For more on models that combine data from

more than two sources, please see Wahba et al. (1990).



1.4 Outline of Thesis

We now give an outline of the remainder of this thesis. In Chapter 2, we first give
the formula of the generalized maximum likelihood estimate and the risk cross validation
estimate for estimating the weighting and smoothing parameters simultaneously. Both
of these two estimates appezir in Wahba et al. (1990). We then introduce a new form of
generalized cross validation estimate for estimating the weighting and smoothing parameters
simultaneously. We also give formula for calculating the confidence intervals in our model.
In Chapter 3, we study the properties of all the estimators described in Chapter 2. In
Chapter 4, we report some results from simulation studies for functions on the circle. In
Chapter 5, we present Monte Carlo experiment results for functions on the sphere. We

conclude the thesis in Chapter 6.



Chapter 2

Estimation of Weighting and

Smoothing Parameters

As we have seen in Chapter 1 that in order to estimate the underlying unknown function
[ 1t is necessary to provide a good estimate of the weighting parameter r and the smoothing
parameter «. In this chapter, we will first introduce two methods for estimating r and «
simultaneously. These are the generalized maximum likelihood estimate and the risk cross
validation estimate, both of which were proposed in Wahba et al. (1990). Then we will
develop a new generalized cross validation method for simultaneously estimating r and «a.
Later on in Chapter 3, we will show that in theory, this new generalized cross validation
is better than the risk cross validation, and in Chapters 4 and 5, we will demonstrate by
simulation studies that this new generalized cross validation is significantly better than the

risk cross validation in estimating r.

2.1 GML-r Estimate

In this section, we derive the generalized maximum likelihood estimate under the stochas-
tic assumption (1.1.6).

We can write model (1.2.1) as y = K f + ¢, where

W , K, &y
Y= , K= y €= .
Yo K, €2



After rescaling it, we can write the model as y" = K" f + ¢, where y" = I"!(r)y, K™ =
I\, & =TYr)e and

to

or

Let

and

This A™(r,a) is the rescaled influence matrix, i.e. we have §" = A"(r,a)y".

where

I(#) = Vrh, .
T

min{ly’ - K" S| + af'£71f)

The solution to (2.1.1) is

P i T

r 1 »! ‘ f I THER ]. [ 1
Jeia I(;K1I‘1+TK2K2+0‘E 1) 1(;K191+TK2?12)-

:

M= (;K;K1 4 rK, Ky +aZ™Y),

(1/r)K\M-'K, K\M-'K,
Al(ra)= ! oy
K;M-'K, rK,M~'K,

Under our model,

e ( Z* ) ~ N(0,0W (r, @))

- ’ ’ In
W{w)zl(hlzfg K12K2)+(r was )
(01

K.ZK, K,IK, 0 {1/e)f,,

It can be shown that

W(r,a)= I(r)[I - A"(r,a)]I"(r))"".

In this rescaled model, " ~ A(0,6I) and the minimization problem (1.1.7) is equivalent

@2.1.1)

(2.1.2)

(2.1.3)

We find the Generalized Maximum Likelihood (GML) estimate of r and a by letting
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£ — o0 or £y — oo in ¥ depending on whether f is a function on the circle or on the

sphere.

Let

i’

Q2

Ny

= Y,

(1/VE)T

where T' = (K10,0,...,0,k20,0,...,0) is the first column of matrix (K;, I(;)’ and Q; is any

€

" (n1 4 na — 1) X (n; + ny) matrix satisfying Q;Qz = I, 4n,=1 and Q,T = 0. For example,

0 Liiai 0 0
s = kw/VEki+ k3 0 —kwo/ VK + kS, O
0 0 0 Fnait
Then z is a n; + n, — 1 dimensional random vector and
z ~ N(0,6v(r,a)) (2.1.4)

where v(r, @) = Q,W(r,a)Q,. It is easy to see that

lim Ezw' =0,

§1—o0
élim Eww' = b(T'TYT'T).
1—00
Following the argument for one data source case as in Wahba (1985a), we claim that

since the limit distribution of w does not depend on r and a, it is appropriate to define
the GML estimate of r and a as the usual ML estimate based on the distribution of z
in (2.1.4). For more details, also see Wahba (1990). A straightforward calculation gives the
GML estimate of 7 and « as the minimizer of

(1/(n1 + ma))2'v}(r,a)z _ (1/(m1 + 72))y'Qav="(r, 2)Qyy
(detv=1(r,@))/(m+na=1) 7 (det v=1(r, a))/(m+na=1)

Mir,.o) =

and the GML estimate of @ is égml = (1/(n1 + ng — 1))2'v™Y(F gty Ggmi) 2.

Since the null space has dimension 1 in this case, it can be shown by straightforward
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calculation that ,
Qv (r,@)Qy = I (r)[I = A(r,@)]I ()
det v~ (r, @) = det (I~ }(r)[I — A" (r, a)][I7(r))

where det® means the product of the nonzero eigenvalues. Thus the GML estimate of r

and « is the minimizer of

(1/ (7 + )y I-H ()T = A7(ry )}~ (r)y
(det*(I-1(r)[I — A7(r, @)]I=1(r)))H/(mi+na=1)

Mrya)= (2.1.5)
We call this estimate GML-r estimate, where r represents the weighting parameter.
Generally, this function has a bowl shape'near the true (r, a). Figure 2.1.1is an example

of the contour plot of the generalized likelihood function. The data are from the following

model for function on the circle:

n=Kf+e
Yo = Kyf 4+ €9

where f ~ N(0,bX),b =1, L is the same as the one appears in section 1.1 with m = 2 for
functions on the circle, and n = n; = n, = 400. K; and K, are of the form described in
case 1 of section 1.2, with p; = 0 and p, = 0.6.- So ¥, could be direct observations and y,
could be satellite soundings. &; ~ N(0,0?I),¢ = 1,2, and o, = 0.5, 0, = 0.4. Thus the true

ris ro = 0 /0y = 1.25 and the true a is ay = 7,0,/b = 0.2.

2.2 RCYV Estimate

To derive a generalized cross validation (GCV) estimate in our problem with two data
sources is not as easy as it looks. A “direct” generalization of the usuall GCV estimate goes
as follows:

Using the same notation as in the previous section, we can write our model and the
rescaled model as y = Kf+eandy = K" f +¢".

Now, let f,“; denote the spline estimate of f using all but the kth data point of y. We
denote the kth data point by y,, and the kth row of K and K" by K, and K[, respectively.

Then a direct generalization of the ordinary cross validation (OCV) from one data source
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1.0

12



13

model would be

l ni+ns; " ”
OCW(ra) = o= 3 (i - Kifi)" (2.2.1)
k=1

This OCV] function measures the overall predictability of the spline estimate f,'a.

[t is then not hard to see that the leaving-out-one lemma (Lemma 3.1 of Craven and
Wahba (1979), also see Wahba (1990)) is true here, i.e. we have:

Lemma 2.2.1 If we let A, ,[k, z] be the solution to (2.1.1) with the kth data point yi
being replaced by z, then h, o[k, K fI¥l] = fi}. O

Then following the same argument as in Lemma 3.2 of Craven and Wahba (1979), it

can be shown that h
(P Krf
Fo ey HE kJra
e
where aj,(r, «) is the kkth entry of the rescaled influence matrix A"(r,a). Thus, we have
the following OCV identity.

Theorem 2.2.1

R L "% (- Kifo)?
yr — KL fH)? = OCVy(r,0) = ——— et
o & W~ KLAD) e s L A b P

Then we get the generalized cross validation by replacing a},(r, a) by

(1/(ny + na)) 02" ali(r, @) = (1/(ny + ny))trA™(r, @) to achieve certain invariance prop-

erties that OCV does not have (see Wahba (1990) for more details), and we have

_ (1/(n + m))II(L = A"(r, @)y
[(1/(ny + n2))tr(I = AT(r,))]*

GCV(r,a)

Unfortunately, this function is not usable because it will decrease when r tends to zero
or infinity. So when searching for minimizer of this function, we often end up at some point
far away from the true r. :

The above claim can be verified most easily by assuming that n = n; = n,, and K; has
the forms in one of the three cases in Section 1.2, so that K;, M and ¥ are all diagonal
matrices, therefore they are interchangeable for matrix multiplication. Then it is easy to

I 0
lim A"(r,a) = y
o 0 0

see that
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0 0
lim A"(r,a) = .
r—oo ( ) ( 0 In )

1i_r.r(1] b Ly, = A (v a)) = tr

So

>
o
o
S
I
=

1,0
lim tr(lz, — A"(r,a)) = tr i ) =i,

On the other hand, it can be shown that
Iin}](Ig,, - A"(r,a))y" =0, (2.2.2)

,_Ii.n;)(f2n i Ar(r’a))yr =0. (223)

So the above claim holds. To prove (2.2.2), notice
(fon = A™(r, ))y"

_ [ U= (U EIM) (VP ~ K KMy
—K KoM= (1) /mynm + (1, - TKZZM—I)\/F:UQ

= (rK3 4+ aZ )M~ (1/V/r)y — K1 KM~ /rys
K KMV (/P + (Ur) K2+ aS~ )M~ /ry, |

and

lirnM'IL =10,

r—0 \/;
hng(%f(f f+ax M= L.
So (2.2.2) holds. Similarly, we can prove (2.2.3).

To overcome this difficulty, a risk cross validation (RCV) estimate of r and e is proposed
in Wahba et al. (1990). It is the minimizer of RCV(r, a) given by

7 1 s = &ull? lly2 — 32|l
Revtn) = e T = AT * el (429

where A7, and A}, are the diagonal blocks of A™(r, a).



RCV function has a bowl shape near the optimal point. Figure 2.2.1 is an example of

this function using the same data from the example described in the previous section.

2.3 GCV-r Estimate

The RCV function RCV(r, a) is somewhat asymmetric, and is therefore somewhat un-
natural. If we let 7., denote the RCV estimate of r and so forth, we will show later that the
convergence rate for 7., is very slow compared with that for #,,,. See Chapters 3, 4 and
5 for more details. These drawbacks impel us to seek a better formula for cross validation
esﬁmate.

To find a better GCV function, let us take another look at the OCV. OCV is a measure-
ment of the predictability of data points by the estimate f,,,,. Since data should be known
to us completely, there should be no unknown parameters in the data. So, the data should
be y instead of 3", which contains the unknown parameter r. For OCV7, which leads to
the generalized cross validation that does not work in the previous section, every time r
changes, the leaving-out-one criterion also changes. That is perhaps one of the reasons why

it does not work. Therefore it is only appropriate to define OCV as

ni+ng
V. = - K, fi2 2.3.1
OWlGe)=eome O W =dtif) (2.3.1)
Now, consider the following identity:
gy U Kl 4

e — I(kfra = e - ’
' I (r) — afe(r, @)

where I;'(r) is the kkth entry of I~!(r) and

Bifu= K7 fiH
Yk — kai.kc;

age(r, @)=

Since y" = I7}(r)y and K" = I7}(r)K, if we let ] = K fl¥], then g, = K, fl*]. By the
leaving-out-one lemma, we have
I(;h‘r,a[k! y;] 5, I(;hr,a[kv gﬂ

af:k(Tva) = T ]';'k .
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Figure 2.2.1: The RCV function RCV(r,a)
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Since I(;j:r‘u is linear in each data point, we can replace this divided difference by a deriva-
tive. So, we have shown that:
_OKifra _O0Kifr .0y

gl a) = = = af,(r, a)I;\(r),
wx(ra) i Dyl Oy, ex(r o) I (r)

where af, (7, @) is the kkth entry of A"(r,@). So we have:

(fy = ADIM(r)y
(1 —ap )5 ()

b € i 0 i )
(r)d = A ()

I
- K, fl] = =k
Y Ucfr,,, I

where Iy, I7'(r) and Aj} are the kth row of matrices I, I='(r) and A", respectively. The

i

last “=" is obtained by multiplying the numerator and the denominator by I '(r) in an
attempt to make the denominator symmetric. Then we have the following OCV identity.

Theorem 2.3.1

A - 1™ (7N () — AT)-Y(r)y)?
- Ko fB1)? = 0CVy(r, @) = —— .
Al o e Ay i(ne)= T & T = )

In order to achieve some invariance properties, we define a new GCV by replacing
L) = AL (r) by (1/(na 4 g)) 2™ ()T — AN (r) =
(1/(ny + na))tr(I=Y(r)(I = A")I7(r)"), and we have:

(L/(n1 + na)) [T~ 2(r)U = A"(r, @) I~} (r)yl[®
((1/(ra + na))tr(I=1(r)(I = A7 (r, )17 X(r)))?

This new GCV function is also a natural generalization of the GCV function defined for

V(r,a)= (2.3.2)

one source data problem if we look at the problem from a Bayesian point of view.

For a one source data problem, we can write the GCV function as

V(O:) = (1/1’1) Z:;:M(zun/(’\un + a))z
(U n) T2 (1) (Aun + @))?

where, if we assume a stochastic model for the problem, z,, ~ A(0,b()\,, + @)), for v =
l,...,n— M. See Chapter 1 and (4.6.2), (6.3.4) and (6.3.6) of Wahba (1990) for more
details, and notice that @ = ?/b = nA.

For our two source data problem, if we assume that f is from the Bayesian model (1.1.6),
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then from (2.1.2) and (2.1.3), we know that
y~ N8I (r)[I = A (r,a)) I~} (r)~h).

Now, it becomes clear that the new GCV is a generalization of the usual GCV for one source
data model from a Ba,yesiah point of view.

We call this estimate GCV-r estimate, where r represents the weighting parameter.

The GCV-r formula looks more symmetric. This function also has a bowl shape near its
minimum. Figure 2.3.1 is an example of contour plot of this GCV-r function using the same
data from the example described in the end of section 2.1. We can see that this bowl-shaped
function is much “sharper” in the r direction. Therefore it is expected to give a “tighter”
estimate of r. Later on we will show both theoretically and by simulation that indeed, this

GCV-r is substantially better than the RCV in estimating r.

2.4 Bayesian “Confidence Intervals”

It can be shown that the posterior covariance matrix for §" if the stochastic model is

correct, is 0,0, A"(7, @), see Wahba (1983). We can estimate o} by

s =gl
: tT(Iﬂk 5 A;k)

where A7, is the kk-th block of A", k = 1,2. Once we have &, and &5, we can calculate the

95% Bayesian “confidence intervals” by

§ui £ 1.9651, /A7,
§a; £ 196651/ A3,; 5.

We got very good interval estimates in Monte Carlo experiments in Chapter 5.

and
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Figure 2.3.1: The GCV-r function V(r, )

19



Chapter 3

Properties of GML-r, GCV-r and
RCV Estimators

In this chapter, we study the properties of GML-r, GCV-r and RCV estimators 7y,
Ggmi, etc.. We will obtain the convergence rates for these estimators under certain con-
ditions. We also study the properties of the predictive mean-square error criterion to be
defined in Section 3.4. We will give a weak convergence theorem for the GCV-r. And we
will briefly discuss the robustness of the estimators.

In this chapter, we always assume (1.2.1) to be our model with n = n; = n,. When
ny # ng, it is still possible to obtain similar results, but the derivations and the formulas
would become much more complicated. We only study cases where f is a function on the
circle. The results can be easily extended to cases where f is a function on the sphere. For
example, in Section 3.1 we will get the following result: for cases where f is a function on .
the circle, and under the assumptions of case 1 described in Section 1.2 and model (1.1.6),

we have that as n — oo,

/(8o — 60) 2 0 0
(P = Fo) SN, 0 2 0 |)
n”“”‘“”(dam e ag) 0 0 Cag

where p = min{p;,p.}, p1 and p, are the decay rates of eigenvalues of matrices K, and
I{;. Now when f is a function on the sphere, & = diag[¢,,], where &, = [{({ + 1)]~™, for
s=—l,..,1=1,...,M,and n = 71 7! __, 1, see Chapter 2 of Wahba (1990). Roughly

20
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speaking, in this case the vth entry of ¥ would behave like =™, v =1,...,n. So, once we
replace m with m/2, and similarly, replace p; with p;/2, we will have the following result

for f on the sphere:

V(Bgmi — 60) 6 0 0
V(Fomi = To) SN0, o 2 oo |,
nl/(’_’m-l-'_’p)(dgm! - O!g) 0 0 C33

Generally speaking, it is not very easy to get estimators of the smoothing parameter with
fast convergence rate. There have been some results on the convergence rates of estimators
of the smoothing parameter in the literature, all of them are very slow. See, for example,
Hardle, Hall and Marron (1988), Stein (1989), Stein (1990), and Hall and Johnstone (1992).

In Wahba (1989), a different kind of method to estimate r is given. Roughly speaking,
that method requires that ¢, and ¢, have sufficiently different covariance structures and

assumes that there exist two matrices B, and B, such that By K, = B,K,. Then if we let
w = Bays — Biyy = Byey — By (3.0.1)

r can be treated as “smoothing parameter” in the above model, where B,e, is the “signal”
part and B,e; is the “noise” pa,r't. Since we know, generally, it is not easy to estimate the
smoothing parameter, and if we assume B,¢; has mth continuous derivatives, it is expected
that the estimator of r from this model would have convergence rate n!/(*™),

. I'rom what we shall see about the GML-r and the GCV-r estimators of r, we know that
actually we can do better in estimating r without requiring that ¢; and e, have different
covariance structures. Certain amount of information is lost by subtracting data set 1 from
data set 2 in the above model (3.0.1).

We will present properties of GML-r, GCV-r and RCV estimators under the three cases
described in section 1.2. Since the methods to prove these results are similar, we will only

give proofs under case 1.

3.1 Properties of GML-r Estimators

Case 1:

The main result for this section is:



Theorem 3.1.1 For case 1, suppose f comes from the stochastic model (1.1.6), and let
p = min{p;, pa}. Then the GML-r estimator (,f:gm; = (égmj,-f-gm,,&gm;)’ is weakly consistent
and asymptotically normally distributed; that is as n — oo, qggm; ~ N(¢,Z7'). The con-
vergence rates for #ym; and @, are 1/y/n and 1/n'/(4m+4) respectively. In particular, as

n — oc, we have:

V1 (Bymi — 80) 22 0 0
V(Fgmi = 7o) SN@O,| 0 2 0 |) (&11)
nll(4m+qp)(dgmi’ o QO) 0 0 Ca3

where 6y = 0,0, is the true 6, 7o = 0,/0, is the true weighting parameter, g = 0,0,/b is
the true smoothing parameter and c33 is a constant which depends on 8y, 7o, @g, p1, p» and
59

The GML-r estimate of r and a is based on the distribution of z of (2.1.4), the com-
ponents of which are not independent. So the standard results on maximum likelihood
estimators cannot be applied directly. However, we can use a similar method used by Stein
in Stein (1989) and Stein (1990). In Stein (1989), a result from Mardia and Marshall (1984)
is used to investigate the properties of maximum likelihood estimators in a linear model
when residuals are correlated and when the covariance among the residuals is determined
by a pirametric model like our case here.

In order to use the result in Mardia and Marshall (1984), we first calculate the Fisher
information of model (2.1.4). We have the following:

Lemma 3.1.1 Let T be the expected Fisher information matrix for (#,7,a) in the
distribution of z in (2.1.4), and let

Iﬂﬁ I.‘Jr Iﬂa
I = I&r I-rr Ira
Iﬂa Ircl ICICY
Then we have:
% 1 (2r —1)
08 = Gpz\n ’
1 1 il g =1 .;' - -1
Lo = 59—7‘?:7'[—;.[&11\134 + 7‘[12]\2M ]7
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1 g Vg m
Ton = go=(1 = tr[> K KnM ™! 4 1Ko Ko M7Y)),
]. ! ! 1 !
T, = 2}{2 (2n +tr(C K K M7 = 1K M)~ 2(%1{11(1114-1 + rK K, M~Y))),
1 1 ’ ]
o= gtrl=~ K i M0 M~ 4 rK KoM~ aS™ MY,

1 s ’
Iaa = Qa2 ("'l % tr[(;ﬁ,lﬁvlﬂfql + TI(2K2M_1)2])’

1 i i
where M = (;I(lﬁ'l +rK,Ky + aZ™t).

Proof: The derivations of the above results are straightforward, but very lengthy. We
discuss the details in Appendix A. O

Note that the above results are true for all the three cases.
For the purpose of evaluating the Fisher information in all the 3 cases described in
section 1.2, and also for later use, we need the following lemma:

Lemma 3.1.2 Suppose 0 < p < ¢, ¢ > 1, I; and I, are integers satisfying [, > 0 and
[ 2 0. Then as n — oo, we have:

n

R UPLY O(n'/?) ifl, >0
1) ST ——
i=1 (n.i_zq)fl'f"’n O(n) if 11 = 0,

n Ly O(nl—h(q—p)). if i(¢g—p) <1
" 1 : :
). Z(n+i¢> ={ Ollogn) fhlg~p)=1
e 0(1) ifli(g—-p) > 1,

s Ofn'2) if0<p<
iii). Z P Oflogn) ifp=1
ok By - itasd

Proof: Using some quadrature formulas to approximate the sums, we will get the
results. A similar kind of calculation appeared in Cox (1988), where a result similar to part

of our results in the above lemma was given. Details of the proof will be shown in Appendix
A. O
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By applying Lemma 3.1.1 and Lemma 3.1.2 to case 1, and letting

1'99 Isr Iaa
7=t = Iér gt re ;
Iﬂa Ira oo

we have:

Lemma 3.1.3 In case 1, letting p = min{p,, p,}, we have:

I,qg = (2?'1. — 1)/(292), Ig,- = O(n1/(2m+2p)), Iga. = O(n”(z"‘”p)),
I = 2n+0(n)j(2r%), T..=0(n"3n0)

Laa =0 (RH ™R,
And therefore

T8 — HZ/TL 1 o(n‘l), Tor = O(n-2+1/(2m+2p))’ Tl — (D(n—l)1
Irr = 7‘2/71 £ o(n'l), Ire — O(n-l),
Toe — O(n—1/(2m+2p)).

Proof: According to Lemma 3.1.1, all the entries in Z are traces of certain matrices,
and these traces can be seen to be equivalent to the sums in Lemma 3.1.2. Also notice
that under our model (1.2.1), the matrices K;, K, and ¥ are diagonal. This makes the
multiplication of the matrices interchangeable. For more details, please see Appendix A. O

Now we are ready to prove our main result, Theorem 3.1.1:

Proof: We can apply Theorem 1 of Mardia and Marshall (1984) directly. Using our
Lemma 3.1.1 and Lemma 3.1.3, we can verify conditions (3.1) and (3.3) of Theorem 1
of Mardia and Marshall (1984). We do not need to check condition (3.4), because the
mean function is identically 0 here. . These conditions are sufficient for the asymptotic
normality and weak consistency of qﬁgm;. These conditions actually guarantee the growth
and convergence of the Fisher information. For more details on the verification of condition
(3.1) and (3.3) of Theorem 1 of Mardia and Marshall (1984), please see Appendix A. O

If we had only one data source with direct observations, then there would be no weighting

parameter, and p = 0, the convergence rate for the smoothing parameter becomes n!/(*m),
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which is exactly the same rate Stein (1989) and Stein (1990) get.

In our result here, we see that the smaller the p, the faster the convergence rate is for
&. This is intuitively correct, because if we define the energy of signal in a set of data by
(b/n)tr(KTK'), then the smaller the p is, the slower the decay rate of the energy spectrum
in the signal would be, and therefore the more information about the signal we will have
from that data set, and the better we can estimate c.

In the above result, the asymptotic variance of § is 2. This is similar to the simple case
when y ~ A(0,0?), the ML estimator of o? satisfies \/7(52 — 02) % A/(0,20%). Here we
have 2 data sets of n observations, so n becomes 2n, and hence we have the above result.

We have not been able to get a closed form for the constant cz3 in the asymptotic
covariance matrix. However, we can get approximate values of it numerically by using
Lemma 3.1.1 once we know 6, r, o, p1, p; and m. l

Case 2:

Applying Lemma 3.1.1 and Lemma 3.1.2 to case 2, and using a similar method, we can
get the weak consistency and asymptotic normality results for case 2. We have:

Theorem 3.1.2 For case 2, under the stochastic assumption, we have:

i). If 1 —4(m — p,) < 1/(2m + 2p,), then as n — oo,

(Bt = o) gE - 0
VA(Fomt = To) ANE| 0 2 0 | (3.1.2)
n”(“"‘*'“”‘)(dgm; % C!o) 0 0 eas

This is similar to case 1.

ii). If 1/(2m + 2p;) < 1 — 4(m — p,), then as n — oo,

V1 (8ymi — bo) €11 €12 i3
: d
V1 (Fgmi = Ta) =N, | e12 e cs |), (3.1.3)
n1/2—2(m—P2)(dgm’ = QO) Ci3 Ca3 C3s

where ¢;; are constants depending on 6y, o, @9, p1,p2 and m. O

We have a different kind of result here. Asymptotically, 8, #, and & are not independent
any more, and the convergence rate of & depends on p, in a different manner. Now recall
that in case 2, the “design” matrix for data set two has a different form (see section 1.2), so

the larger p, is, the slower the decay rate of the energy spectrum in the signal, and therefore
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the more information we get from data set two, and the better we can estimate @. That is
why the larger is p,, the faster is the convergence rate of &. However, on the other hand,
intuitively we know that if p, is too close to m or p, = m, then in the second data set,
the signal and the noise will have covariance structures that are too close to each other or
even exactly the same. In this case we can not tell the signal from the noise in a sensible
way. Therefore it should be impossible to estimate a. In fact, it can be shown that when
p2 /" m, those constants ¢;; will increase and become very large. So, in order to have a
good estimate of @, we should not only look at the convergence rate, but also should require
that the constants ¢;; be not too large, that is, p, should not be too close to m.

We have not been able to get closed forms for those constants ¢;; in the asymptotic
covariance matrices. However, we can get approximate values of them numerically by using
Lemma 3.1.1 once we know 4, r, a, p;, p, and m. Below, after the theorem for case 3, is a
simplified example in which the closed forms for these c;;’s are obtained. It can give us
some idea on how these ¢;;'s would change along with p,, p, and m.

Case 3:

Similarly, we have:

Theorem 3.1.3 For case 3, let p = max{p;, p2}. Then under the stochastic assumption,
we have:

i) fm—1/4 = p, then as n — o0,

V1 (8mi — 6o) g3 0 @
V(P gmi = 7o) SN0 0 2 0 ) (3.1.4)
v IOg n(égml S QO) 0 0 Caa

ii). f m—-1/4 < p<m, then as n — oo,

\/H(égml - ) €11 Ci2 Ci3
\/E(T:gnﬂ = TD) _d) N(Oy Cia Cp2 Co3 )- (315)

e JI Wy -~
pLld=am p)(agmf e an) Ciz Cy3 Ca3

This is similar to the second result in case 2. O
We do not consider the case when p < m — 1/4, because if p < m — 1/4, then 7°* does
not go to zero as n — oo. Therefore &,,, does not have the weak consistency. This is

because when p is too small, the energy spectra in the signal decay too fast, so we do not
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get enough information about the signal from the data, and therefore we cannot get a good
estimate of a.

So, in order to have a good estimate of @, p has to be big enough (at least p=m—1/4)
to assure enough information, and hence a good convergence rate of &. On the other hand,
as p /" m, the constants ¢;; will increase.

We are unable to get closed forms for those constants ¢;; in the asymptotic covariance
matrices. However, the following simplified example illustrates how those ¢;; in the sim-
- plified situation change along with p and m. This example can give us some idea about
how the ¢;; in our Theorem 3.1.3 might change when p changes from m — 1/4 = p to
m-1/4<p<m.

Suppose

w=f +e,

where f,’s are independent, ¢,’s are i.i.d., f,’s and ¢,’s are independent, and f, ~ AN(0,b/v7),
g, ~ N(0,6). Then the ¢ in this example corresponds to 2m — 2p in our Theorem 3.1.3.
We will only consider cases where 0 < ¢ < 1/2. It is easy to see

w~ (0,6 (FE22)),

19

where a = 4/b.
The log likelihood of y = (y1,...,ys) is

2
Yus

1+ ar? 1 i ay?

T 29 1+ av?

n j
o= 2ogn~2 371
B 2§°g avt 20

r=1

where C' is a constant. By definition, the Fisher information is

o _ [ —E(6°L/66*) -E(6*L/63)
~ \ —E(8°L/0%a) -E(9°L/0a%) |

It is not hard to show that

L n

~Ew) = g
0*L j G 1
_E(aeaa) = T 2%a Z 1+ avt’

v=1



FL, 1.8 1

1
5 = 2w L vy

For simplicity and without loss of generality, we assume a = 1. Then

- n/(287) (/) Tie Y1+ |
~(LAIN Tpa (A +v7) (42 Lo 1/ +12P
Now let s 10 )
s v=1 + Vq
5 s Y e
= sl (LR pl)
)= E:—_q 1
Then . .
2 1 S
; m = azn(Q)z_:l 3"

It can be shown that for any 0 < ¢ < 1/2, we have
Jim ann(a) = 1,

ljrrolo danin) = 1.

We also have

il R T L e 1
— = = —_ = b < =
n ( ) n n ln(q)a 0< q= 9

i 1 = { Ay () (L R) o { i, ), 0gg< 12

logn + C, (lognibss, g=1/2
where
: = 1 1
lim bl,,(q)zf 2 ide = vOFOL g S 2
n—oq 0 1. e 2

1
yfor0< g« =

1
mmM@=szM= .
0

n—o0

1
1-2¢q
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and

lim b3, =1, for ¢ = %

n—oo

So, we have

s ( n/(26%) ~(1/(26(1 = q)))n'= ) el
~ , for g = =
—(1/(26(1 - g)))n'~* (1/2)logn 2
s ( n/(26%) —~(1/(26(1 ~ g)))n*~1 ) il
—(1/(20(1 — g)))n'~1  (1/(2(1 - 2¢)))n'~% 2
and as n — oo, “~” will become “=",
Therefore, we have
i ( 26*/n 20/(1-q)alogn) | 1
~ , forg==
20/((1 - q)\/nlogn) 2/logn 2

T-1 oy ( 20%(1 - q)*/(¢*n) 20(1 — 2¢)(1 — q)/(g*n'~9) )
26(1 - 2q)(1 - ¢)/(¢*n*~1) 2(1 - 29)(1 - q)*/(¢*n*~%) |

1
for 0 -
or0<g< 3

"

and as n — oo, “x” will become “=".
So, as n — o0, we have:

i). For ¢ = 1/2, which corresponds to m — 1/4 = p in Theorem 3.1.3,

V(8 ymi — 6) & jon |90
(\/logn(dym,—a)) A ’( 2 )),

if). For 0 < ¢ < 1/2, which corresponds to m —1/4 < p < m in Theorem 3.1.3,

Vil =0) \ 4 o [ #0-0/0 26(1—2q)(1—q)/q2))_
n!2=9(Gymy — ) "\ 26(1-29)(1-q)/a* 2(1-29)(1-q)*/q?

We can see that when ¢ = 1/2, 26%(1 — q)*/¢* = 26?, 26(1 — 2¢)(1 — q)/¢* = 0. However,
when ¢ = 1/2,2(1-2¢)(1-¢)*/q* = 0 # 2. Also notice that when ¢ — 0, which corresponds

to p /" m in our Theorem 3.1.3, ¢;; will increase.
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Finally, according to the above theorems and by Slutsky’s Theorem, we have:

Theorem 3.1.4 For all the cases considered above, as n — 00, we have

- 2 % P
Temi — To, Qgmi — Qg. (316)

3.2 Properties of GCV-r Estimators

In this section we study the properties of the GCV-r estimators. The method of proving
these properties is similar to the method used by Stein in Stein (1989) and Stein (1990).
As before, we will only prove the results for case 1. A similar method can be used to get
the results for case 2 and case 3.

Case 1:

The main result for this section is:

Theorem 3.2.1 For case 1, suppose f comes from the stochastic model (1.1.6), and
let p = min{py, p2}. Then the GCV-r estimators 7,., and &, are weakly consistent and
asymptotically normally distributed. The convergence rates for #,., and &,,, are 1/y/n and

1/n!/m+4p) respectively. In particular, as n — oo we have:

VA(Fgen = o) = N(0, 1)

(3.2.1)
ﬂll(4m+4p)(dgcu = aﬂ) —d> N(O, Cg)

where ¢, and ¢, are constants depending on 6y, rg, @, py, p2 and m.

WWe are unable to get closed forms for the constants ¢, and c,. It is expected that when
the stochastic model is true, these two constants would be larger than the constants in the
covariance matrix for GML-r estimators (see Stein (1989) and Stein (1990)). However, in
Chapters 4 and 5, we will show some simulation results, which indicate that in some cases,
c; and ¢, are not much bigger.

Sketch of proof of Theorem 3.2.1: Here and afterward, we will use # for Tgev and &
for é&,,, whenever it will not cause ambiguity. Also notice that under our assumptions, the
matrices i';, 'y and ¥ are all diagonal matrices, and therefore the multiplication of these

matrices are interchangeable.
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Our GCV-r function can be written as

eI, )yl
VN @) = G/ @m)er(W=1r, a))

where W=(r,a) = I7'(r)[I — A"]I(r). The GCV-r estimators (#, &) must satisfy

2V(i,é&) =0
ZV(#a)=0

which, by straightforward calculation, can be shown to be equivalent to
w,(F,é&) =0
we(f,a) =0
where . ;
w,(r,a) = Y (W EW-Hr(W-1) = W-2tr(ZW-1)}y
(3.2.2)
Wwo(r,a) = y{W-LEZW-lir(W-1) - W‘ztr(g%W‘l)}y

By mean-value theorem, we have:

= wr(ra d) = ’L[J,-(T‘g, a(}) S %wr(ru&)(f (. TO) + %wr(TOQ at)(d T aﬂ)

0 = wa(F, &) = wa(To, o) + Ewe(res, @)F = o) + Zw,(ro, au)(& — ag)

where 7, and r.. are points between r, and 7, and @, and a., are points between a, and

&. This gives us (provided that the matrix is non-singular):

T =7y Zw,(r., &) é%w,(ro,a.) w,(To, @)
& — ag ZWa(Ten, @) Zwa(ro, au.) Wa(To, ap)

We then need the following two lemmas:
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Lemma 3.2.1 In case 1, as n — oc, we have:

L.;lrw,('r'., G} = E(E‘i;wr)(l + 0,(n™*)), %wr(rn,a_) = E(;—aw,)(l + 0p(n~¢)),

%wn(r-ﬂ&) = E(Eaiwa)(l + 0,(n7%)), %wa(rmah) = E(%wa)(l + 0p(n7°)).

where € is some positive number, and 0,(n~¢) is some random variable, say z, such that
G ap
n‘c — 0, as n — .
Proof: See Appendix A. O

Lemma 3.2.2 In case 1, as n — oo, we have:
Efw,(r.,&) = O(n?), EZw,(ry,.) = O(n!+1/m+20)),

EZwy(r..,&) = O(n'*Y/Cm+w))  ELay (ry, a,.) = O(ni+1/Gm2)),

Proof: See Appendix A. O

From those two lemmas we can see that when n is sufficiently large, the above matrix

is (with probability 1) non-singular. And as n — oo we have:
- To O(l/nz) O(l/ﬂz) w,.('rg,au)
& — o Q1 /x¢) Q{1 in'TY/ Brtin) Wa(To, o)
By definition, w,(rg, @) and wq(r, @) are quadratic forms, which can be written as
wr(rﬂa Ot(]) = y’v;-?l
and
wa('fo,‘lo) = y'Voy

where ¥ = (%11, -+, Y1ns Y21, - - -, Y2n)'y and V; and V, are some 2n by 2n matrices (see (3.2.2)
for closed forms of V; and V). Notice that since we assume K, and K, to be diagonal

matrices, matrix A" is of the form:

A7, Af
- i 11 :2
Ay Ajy
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with each block being a diagonal matrix, and so are the matrices V, and V,, i.e. V, and V,
743 IR 7gE:
I/r = ( r r
v oy

Vll ’ 12
Va21 I/'Z'.I

where each block is a diagonal matrix. Also notice that

can be written as

and

Y~ N0, AT )T~ AP )Y

where (I='(r)[I—A"]I=*(r))~! is also a 2x 2 block matrix with each block a diagonal matrix.
This means (y11,y21)", (Y12, ¥Y22)' - - - (Y1ns Y2n )" are independent of each other. Therefore

w,(ro, @) and ws(ro, ap) can be written as

w; (Tg, @) = Z(ymyz: ( o (t) X (z) ) ( ih ) Eiz,i

VE() V()

and

wa(ro, ap) = i(yliayzi) ( a (I) - (%) ) ( < ) ZIQ'

Yo VD Yai
where V(i) is the ith diagonal element of the diagonal matrix V!! and so forth, and
Zri; © = 1,...,n are independent and z4, i = 1,...,n are also independent. So, we see
that w,(ro, ap) and w,(re, @) are sums of independent random variables. We can apply
Liapounov’s theorem (see Chung (1974)) to w,(rg, @) and w,(rg, @) to get the following
lemma:

Lemma 3.2.3 In case 1, as n — oo, we have:
302 w,(ro,au) N(0,¢,),

n~ (1 @mtae)y, (ro ag) 5 N(0, c3).

Proof: See Appendix A. O

Using this lemma and assuming that p > 0 and m > 1/2, which is usually true, the
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result of Theorem 3.2.1 will follow. O
Case 2:
By the same methods, we can get the following:
Theorem 3.2.2 For case 2, under the stochastic assumption, we have:

). If 1 —4(m — py) < 1/(2m + 2p;), then as n — oo,

; d
{ V(Fgew = 7o) = N(0,¢1) (3.2.3)

nl/(4m+4p|)(dgw —~ Gg) 4 N(0,¢,)

i) If 1/(2m+ 2p,) <1 —4(m — p;), then as n — oo,

( Vit : ) 4 Mo, ( e )). (3.2.4)

1/2=-2(m- ~
bl / ( Pﬁ)(agcu yeey an

Case 3:

Similarly, we have:

Theorem 3.2.3 For case 3, let p = max{p,;, p,}. Then under the stochastic assumption,
we have:

i). f m — 1/4 = p, then as n — oo,

V(Fgew — 7o) = N(0, 1)
3.2.5
{ Viog n(éye, — ao) 5 N(0,¢2) : ;

ii). f m-1/4 < p < m, then as n — oo,

( \/H('f'gcu s T'o) ) -iN(O, ( €11 Ci12 )) (3.2.6)

1/2=2(m- -
n / i p)(ag:u i Cto) C21 C22

Finally, according to the above theorems and by Slutsky’s Theorem, we have:

Theorem 3.2.4 For all the cases considered above, as n — oo, we have

P R P
Tgcu = Ty agcu — Oy. (327)
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The above results show that the GCV-r estimators have the same convergence rates as

those for GML-r estimators under the stochastic model.

3.3 Properties of RCV Estimators

In this section, we study the properties of RCV estimators. Since the method of proving
the properties is similar to the method used in the previous section, we will only briefly
outline the ..sic steps for proving the following Theorem 3.3.1.

Case 1:

The main result for this section is:

Theorem 3.3.1 For case 1, suppose f comes from the stochastic model (1.1.6), and let

p = min{p;,pa}. Then as n — co we have:

n1/(4m+4p)(7’:rcu g TO) d €11 Ci2
2 Ao, 3 (3.3.1)

1/(4 4 -3
n At p)(C’fﬂ:u T Ofo) Ca1 Ca2

where ¢;; are constants depending on 8y, rq, @, Py, p2 and m.

Proof: We will only loosely go through the basic steps in the proof, from which one
can see why the result in the theorem is true. A rigorous proof is possible by applying the
same method in the proof of Theorem 3.2.1. As before, we will use 7 for #,., and & for a,.,.

Recall that the RCV function is:

v, = ?1“2
((1/n)tr(l = AL,))?

_ o mo2
+ |ly2 = Bal| }

1
RCV(r,a) = o { ((1/n)tr(I — A3,])?

and
o= ALy + TAL Y,

g2 = (1/m) A%y + A%y
Also notice that (remembering that the multiplications of K, K, and M ~! are interchange-

able because they are diagonal matrices):

Ay dn (1/r)M-'K? M-'K,K,

A AL, MK\ K, rM-K?
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where M = ((1/r)K+ r K + aZ71),

So we have:
i 3}1 = [(Imo) =y (A’I-U rA;z)]y

= [Tﬂj—ll\rlg + a):_lM_l, = TM"iI{]_Kg] (

I(1f 4 €1

K,f €2

=l MK\ f+ [rMIKZ + oM7), —rM-'K, K] ( 4 ) ;
€2

and similarly,

Ya—th=al M K,f + [—%M-IIQKQ, %M”Kf +aM™IE (.E‘ ) 3
Ea

To get rid of the cross terms (of f and ¢) in the RCV function, and therefore to make

the argument simple, let us take the mathematical expectation of RCV with respect to f,

and we have:
ByRCV(r,0) = 5-{ir(ba® M2 KD)/(2tr(L, - 47,))*

Hr(b0?ME K (= tr(Ty = 43,))?

-+-£'[ 1 I, — 247, + Aﬁ —~F AL + TAIIAI'A
((1/n)tr(L = A1) \ —rAf, +rA} 4],  r2A7
=+ 1 (I/Tz)A;% _-].,:A;l 5= %AEI ’:.-’2 ]5}
((L/n)tr(L, — A%))? \ -1A35 + LA, A5, I, - 245, + A

= %{B‘(Ta @) +¢ V'(r,a)}

where B*(r, ) is the bias term and & V*(r, a)e is the variance term.
Now, the randomness only comes from the noise . Roughly speaking, (#,&) should
satisfy
2 E/RCV(#,&) =0

+E; RCV(#,&) =0
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which, is equivalent to

where
« Rr o) = {(%B“ + E'B%V'E}

Ro(r,a) = {ZB* +&' LV*e}.

da
By first order Taylor expansion, we have:

0= R, (7 &)= R.(ro,0) + E%Rr(rua ag)(f —ro) + %Rr(rﬂa ap)(a — ag)
0 = Ra('f:, d) ~ RQ(TQ,O!()) + %RQ(TQ, CIQ)(?: - To) + a—a;Ra(To,ﬂo)(d —_ ag).

This gives us

T —ry . . ' %R,(ro,ag) %R,(rn,ao) R.(r0, )

& — ag o Z Ra(ro,a0) ZRa(ro,20) R,(70, )
- EE‘%R,.(TQ,QU) E,;,%R,-(rg,ag) E R.(ro, @)
A E. £ Ru(r0, a0) E. & Ra(ro, ) Ro(ro, ag)

Now recall that in case 1, K; = y/ndiagk;,],v = 1,...,n; ki, = [v/2]"P, v = 2,...,n,

where p; > 0,4 = 1,2. Suppose p; < py, i.e. p=p;, and let “~” mean that two terms have
the same order as n — oo. It can be seen that

tr(A7) = tr(=M~K?)

To

i ni_zpl
gh

= (1/ro)ni=2P1 4 rqni=2p3 + aqi®™

2 n
~ ; n + .i2m+2p1
= O(n1/(2m+2p))_

The last *=" above is from i) of lemma 3.1.2. So it is easy to see that (1/n)tr(f, — A7)
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0(1), and similarly (1/n)tr([, A;E) = 0(1).

It is also not hard to see that E.ZR,(ro,a0) is a trace of some matrix that can be written
as ) tr((M~'L*)™), where m; are positive integers and K means either K, or K,. And
by i) of lemma 3.1.2, all these traces in the sum have order O(n!/(®*™+2P)), So E,aiR,(ro, ap)
has order O(n!/(?m+2r))  Similarly Bes R r(To,@0), EcZ Ra(T0,00), and E, 2 R, (1o, ap) all

€ar £ da
have order O(n!/(*m+2P)) So we have

Frg O(n=1@m+2))  O(n=1@m+20)) \ (R (r, aq)

& — Qg O(n-“lf(zm“'zp)) O(n_ll(2m+2p)) RQ(TO!QG)

[t is easy to see that the matrix V*(r,a) in the variance term above is a 2 x 2 block
matrix with each block being a diagonal matrix. The matrices V'(r a) and 3 V (r,a)

also have the same structure. So

) 2
€ EFV'(TO, a)E = ;Iw

.
3 E—V (To, a0)e = Zza,

r=1

where z,, and z,, are quadrati¢ forms of (&,,,£,,), v = 1,...,n, and therefore z,,, v =
1,...,n are independent and z,,, v = 1,...,n are independent.

By lengthy, but straightforward calculation, it can be shown that
EeRr(TOsQO) =0,

Eerx(TOy aﬂ) =0.

This means
TU:GO Z(Iru E rru

and

RG(TOy aO) = Z(xav = Ezzay)-

v=1
It is then easy to see that Y _, E.(z,, — E.z,,)? can be written as sum of finite number

of sums of the forms as in i) of lemma 3.1.2 with {; > 0. So ¥)_, E.(z,, — E.z.,)? =



O(n¥/Gm+20)), Similarly, Y, _, Ee|zq — Ecz,,|> = O(n'/(*™+2)), This means that the sum

bl l WS

r=1

satisfies the conditions of Liapounov’s theorem (Chung (1974)), i.e.

Z E [n~YUmtin)p o — F.2.,)]* = O(1),

v=1

and n
Z Ec|n'”(4m+“”)(r,y — Egze)|® = o(1).

v=1

So by Liapounov’s theorem, we have that as n — oo
n'1/(4m+4p)R,(ro, O!'Q) —d’ N(O, Cl),

and similarly
n_1/(4m+4p)Ra(ro, ap) L N(0,cs),

and

n_”“m“p)[R,(ro, Qg) + Ra(r(}’ Clu)] —d) N(O’ 63)'

The result of the theorem follows. O

From this result, we see that the coﬁvergence rate of 7,.,.is much slower than that of

T

Case 2:

Similarly, we can get the convergence rates for RCV under case 2. Recall that in case 2,

we require that p, < m and p, be not too close to m, because in practice, noise should be

rougher than the signal. So we only consider the following two practically interesting cases:

Theorem 3.3.2 For case 2, under the stochastic assumption, we have:

i) f1-2(m-py) <1/(2m +'2p1), then as n — oo,

”UHme’)('f'f-cu - To) 2 €11 Ci2
— N(0,

1/(4m+4 -
e Pl)(arcu - ag) €21 Caa

(3.3.9)
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i), f1-4(m—p;) <1/(2m+2p,) <1-2(m — p;), then as n — oo,

nL—(l/(4m+4p1)+2(m"P2J)(T"rw —To) 5 €11 €12
— N(O, ) (3‘3'3)

1-(1/(4 4 2(m=— A
ni-t [(4m+4p,)+2(m P?))(a—re" = au) Cay  Cag

Note here that when 1-4(m-p,) < 1/(2m+2p, ), we have 1/2 < 1/(dm+4p,)+2(m—p.),
so 1 —(1/(4m + 4p;) + 2(m — p,)) < 1/2. We see that in case 2, the convergence rate of
f.., is also slower than that of Fev- Also notice if 1/(2m + 2p;) < 1 — 2(m — p,), we
have 1/(4m + 4p;) < 1 - (1/(4m + 4p,) + 2(m — p,)), that means when 1 — 4(m - pa) <
L/(2m +2p,) < 1 = 2(m — p,) is true, &,., has a faster convergence rate than Gois

Case 3:

For case 3, we also require that both p; and p; be not too close to m. So we only
consider the following case: ;

Theorem 3.3.3 For case 3, let p = max{p,,p,} and assume m — p = 1/4. Then under

the stochastic assumption and as n — oo we have:

(\/E/Viog n)(ircu = TD) d €11 Ci2
4, N, ) (3.3.4)

(vn/\1og n)(Grew — ao) €21 Caa
)
- The convergence rate of r is slower than y/n. Notice \/n/v/logn > /logn, so in this
case, G, has a faster convergence rate than é,.,.
IFrom the above results, and by Slutsky’s Theorem, we have:

Theorem 3.3.4 For all the cases considered above, as n — oo, we have

o P - P
Trey — To, Qpey = Qp. (335)

We see that, the GCV-r estimator 7., has a faster convergence rate than RCV estimator
Trew. S0 in this sense, the GCV-r is better than the RCV in estimating r. Later on in
Chapters 4 and 3, our simulation results confirm this.

Remarks:
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So far, we have proved all our results about the GML-7, the GCV-r, and the RCV esti-
mators under the assumption that the stochastic model (1.1.6) is true. A natural question
is how robust they are? Suppose f is a smooth function from a reproducing kernel Hilbert
space, how do these estimators perform under this situation? First of all, under this situa-
tion, there is no such a thing as the “true” ay. So, what should be the “optimal” smoothing
parameter a in this case? Our ultimate goal is to estimate f. Perhaps in this case, a more
interesting question should be: how do these estimators do in estimating f? To answer
these questions, we will give a weak convergence theorem for the GCV-r in Section 3.5. In
Section 3.6, we will briefly discuss the robustness of the estimators. In Chapters 4 and 5,
we will also try to answer some of the above questions by Monte Carlo studies. But first,

let us look at some properties of the predictive mean-square error criterion.

3.4 Properties of the Predictive Mean-Square Error Crite-
rion -

Our ultimate goal is to estimate f. To measure how good our estimation of f is, we use
the predictive mean-square error defined by
: 1 o ) oy
T,(r,a)= —— < —=|lih = K1 f|I> + —||i» — K 2} 3.4.1
(na) = ——{ g = Kl + Ll - Ko (341

Let (7, &) denote the minimizer of T,(r, @), and assume that the stochastic model (1.1.6)
is'true. Upon using the same method as in the previous section, we have:
Case 1:

Theorem 3.4.1 For case 1, letting p = min{p;, pa}, as n — oo we have:

nl/(4m+4p)(1:‘ e Tﬂ)
2 N0, ). (3.4.2)
nl/(4m+4p) (&, — ay) €21 €2

We see that in this case, 7, has the same convergence rate as that of 7,.,. Both are
slower than \/n.
Case 2:

Theorem 3.4.2 For case 2, as n — co we have:
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i), f 1 = 2(m - ps) < 1/(2m + 2p,), then

1/ (4m44p1 ) A
pléam P‘)(T‘: —rg) €11 Ci2

2, N(0, ). ¢ T

nt/(m+ae(G, — ay) €21 Co2

1/(4m+4p1) ¢ a
pliGimd: p‘)(Tt—T'o) C11 - €12

4 N0, i (3.4.4)

fn7-‘(1/(‘1""“*“@‘1)"‘2("""'!3"3))(&t — ao) €31 Cag

We see that in this case, the convergence rate of 7, is not exactly the same as that of
Trew, it is also slower than /n.

Case 3:

For case 3, for the sake of comparison, we only consider one case:

Theorem 3.4.3 For case 3, letting p = max{p;, p.}, and assume m — p = 1/4, then as

n — oo we have:

7t — 7o = Op(1/logn)

(3.4.5)
&, — ag = 0,(1/4/n)
O
We see that in this case, the convergence rate of 7, is slower than /n.
From the above results, and by Slutsky’s Theorem, we have:
Theorem 3.4.4 For all the cases considered above, as n — oo,
# 5 ro, & 5 ao. (3.4.6)
a

The above results indicate that the predictive mean-square error is not a good criterion
for estimating the weighting parameter r. Simulation results from Chapters 4 and 5 also

show this.

3.5 A Weak Convergence Theorem for GCV-r

In this section, we will study properties of the GCV-r estimators when f is a smooth
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function from a reproducing kernel Hilbert space. We want to see as n — oo, whether
the GCV-r estimate is efficient in estimating f, i.e. we want to know whether the relative

inefficiency with respect to the predictive mean-square error 7, defined by

Tp(f'gcv ’ dgcu) )

1L, GCV-p = T (e, &)

goes down to 1.
We will use a method similar to the method used in Craven and Wahba (1979), and
show a weaker result under some assumptions. First, let A = a/(2n), we shall use A instead

of @ as the smoothing parameter in this section. We will show that as n — oo,

1 BT, A)

P By L (3.5.1)

where E, means taking the mathematical expectation with respect to ¢, and (7, A) is the
minimizer of E.V(r,A) and (v*, A*) is the “optimal” (7, A), i.e. the minimizer of E,T,(r, A).

As before, we will only show it for case 1. From the previous section, we see that under
the stochastic model, 7, = ro and oo L o, as n — o0 (see (3.4.6) and (3.2.7)). We will
assume these still to be true for 7 and r* here. That is, we assume when n is sufficiently
large, 7'~ ry and r* = ro. Since E,T,(r,A) is a continuous function of r and A, and also

since T,(r, A) is very insensitive to r, we have, as n — oo,

R EeTp(T()’ ’\)

4o E.T, (70, A%)

Below, we will fix r = ry, and use r for r,.

Now, let
(L) M=K M KK,

(1/r)M-K\ K, rM-K?

where as before, M = (1/7)K2+7K2+2nAE"!. Then §j = Ay = K f, where K = (K|, K,)'.
Also recall that

(1/v/r), 0
0 L
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and r = 0,/0,, § = 0,0,. So we can write T,(r, A) as

T3 = 5 { 2l = KufI + Ll - Kaf )
= oI (K - KPP
and
Ty(r,\) = 5= BT (r)(K S = ACKS + )|
= (U = A+ BT () el
i Qinur‘(r)(r —DKSP + %tr(['l(T)AP(T)A'I‘l(r))
( )+ Opea(r, A)

where

bi(r, ) = 5=l (0T = AK SIF

and (sitice L5 )Al(r) = A")
1
Laa(T, A) = %tr(A"z)

are the bias and variance terms for E,Tp(r, A), respectively.
Since I, = M~'M = M~ ((1/r)K} + K3 + 2nAL~!), we have

rM~ K2 + InAM-1E? ~rMIK K,
Iy — A=
—(1/r)M~'K\ K, (1/r)M-1K? + 2nAM 1T

(1/y/F)2AM1Z1K, f
r)(I - A)K S =
VT2RAM I K, f

Now it is easy to see that for fixed r, b(r, ) is a monotone increasing function of A,

with Zb?|x=0 = 0, and us(r, M) is a monotone decreasing function of A, with Zfis|5=0 < 0.

ax
If f=(f,0,...,0), then because the first diagonal entry of ¥~! is zero (see Chapter
1), bi(r,A\) =0, so E,Tp(r,A) has a minimizer at A" = oo. '

If f #(f6,0,...,0), then E,T,(r,A) has a minimizer at A* > 0.
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Following the same argument as in Lemma 4.1 of Craven and Wahba (1979), it can be
shown that 67(r, A) < O(A). It is also easy to see that if f # (f5,0,...,0), and X is bounded
away from zero, then b7(r, A) is also bounded away from zero (as n — o). So, b3(r,A) — 0
(n — co) if and only if A — 0 (n — o0). In order to let E,T,(r,A) — 0 (n — o0), we should
let b7(r,A) — 0 and py2(r,A) = 0 (n — oc). That is, when f # (f,,0,...,0), we should
have A* — 0.

Now,

EV(r,0) = B ) 4 055 + 1) = 21, ) + pa(r, A))]

[5G+ 1) = m(r, V)Y

: S LR i e
= ey gt PRGSO S sl )0

H=5C+ 00 + GO + ) ml/ (GG + ) = )}

where
B(r, 3) = 5T = AT S,

it 35 %-;tr(f‘l(r)A"I_l(r)),

and
s 3 é};zr(rl(r)m?rl(r)).

Similarly we have

(L 2nXM = E= K, f
I“MrY(I = AN r)Kf =
rnAM-1S-1K, f

and it can be shown that yu; and w; are monotone decreasing functions of A.

By Cauchy-Schwarz inequality, we have p? < (1/2)(1/r 4 r)u,, where “=" is possible
only when I’y = 0 or K, = 0. Also notice that 0 < u;(r,A) < (1/2)(1/r + r). So for our
problem where K} # 0 and K, # 0, we have,

[*%(% +1r)8ui + (—;-(-} + T))ze,h',g]/(%(% +7)—m)?>0.
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And for any fixed n, it reaches its minimum at A = oo.
If f=1(f,0,...,0), as before, it is easy to see b>(r,A) = 0. So in this case, A = oo.
Therefore /; = 1.

Now for the general case when f # (fy,0,...,0), first notice that for 6% we also have
b < O(A) and b? — 0 if and only if A — 0 (n — o). So we have A =il

Also we have

{ET, = ClG( + VBV = 50 + D}/ ECT,

= 1= [C(5( + 1) + Opia) — O3~ + )]
J106 + 0) (5= + 1) = )
= E It S onnden e
= 1= (O + 812)/ 8 + O + /(G 4 7) = )]
O30+ O/ + O (5= + ) = )]

= [~ + P + 43+ (1= C(8 4 8a)/ (82 + Op)) (> + 7))

[5G #7) = wi)?

HOZ(E +1)8/(8F + Bl (5 + ) = )]

where C' is a constant to be specified later.
Now, using a similar method that has been used in Craven and Wahba (1979), and

letting p = min{p,, p2} in case 1, we have as n — oo:

= O(1/(nAY/Em+20)),

pa = O(1/(nAt/m42ely),

and
ez = O(1/(nAVEm+39Y))

So, we must have that as n — 00, A* = 0, A — 0, nA"V/(@m+2) _, o5 and pA/(2m+20)
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By the definitions of b?, b*, p,2 and us, it can be shown that

g Z0A) +0us(r A1) B A) + Ba(r, A)
n—=oo b3(r, A*) + Opea(r,A") ~ n=2 b2(r, X) + Opea(r, A)

Letting
b(r, A") + Bus(r, A°)
cl=1i ’ L0
nvco b2(7, A) + Optea(ry A7)

then 0 < €' < oo, and we have that as n — o0

G0 aig L sdid : _
0= R W=+l G +r) —m)" = o(1)
for)\zf\‘,or,\:f\,
Now we have
i 1.
BT, = Cl(5(= + 1)EV = 5(= + I/ ET,

< o(1) 4[5 + i+ Co (- + Pt al (5 +7) = )

= h(r, )

and it is clear that
nIingo i, Ay =0,

Jim A(r,) = 0.
And we have
! ; i1
—h(r,2) £ 1= Cl(5(= + 1))EV = 5(= + )8/ ET, < h(r, ).
r
So o
vt
ET,(1- 1) < Cl5(- + )P EV = 5(= + 18 < ETy(1+h)
and then

FIPEV (Y - 2 +1)6)

T
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<G +PPEY(rX) - 2(= +1)0)

o]

£ B Tsle X (14 Bl A0))-

So,

1 ED(r A  1+h(r, 1)
PRI NS T A

and therefore
I; {3 i

Similarly, it can be shown that for case 2 and case 3, the weak convergence theorem is
true.

From the above proof, we see that for case 1,
E,T,(r;3) € O(X)+ O(1/(nA /Gmtaely

If we let
N O(l/n(2m+2p)/(2m+2p+1)),

then
E;TP(T‘, ,\‘) S O(l/n(2m+2p)/(2m+zp+1))'

If f is very smooth and we have

bi(r,A) < O(A)
for some q € (1,2], then by taking

Xo= O(1/n(2m+2p)/((2m+2p)q+1))

we get
Bt A< O(l/n(2m+2p)q/((2m+2p)q+1))-

Similarly, we can get the convergence rates for case 2 and case 3.
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3.6 Comparison of GML-r and GCV-r for Estimating f

From the results in the previous sections, we see that under some conditions, as n
increases, 7ym; and 7,4, will be very close to the true ro. From the Monte Carlo results
in Chapters 4 and 5, we see that this is also more or less true for various misspecification
cases. Now, suppose n is large, then both #,,,; and 7, will be very close to the true ro.
The problem of finding the minimizers of the GML-r function and the GCV-r function will
then roughly be equivalent to the problem of finding the minimizers of the GML-r function
and the GCV-r function as functions of a alone with r fixed at the true ;. This problem is
similar to the problem of estimating the smoothing parameter by the GML and the GCV for
one data source pr.oblem, which has been studied in Wahba (1985a). It is shown in Wahba
(1985a) that if f is from a reproducing kernel Hilbert space, and satisfies some extra smooth
condition, then the GML estimator undersmooths relative to the GCV estimator and the
predictive mean-square error using the GML estimate goes to zero at a slower rate than
that using the GCV estimate. If f is “rough”, then the GML and the GCV estimators have
asymptotically similar behavior. Results from Stein (1989) and Stein (1990) indicate that
when the stochastic model is true, GML estimator is better than GCV estimator, however,
when the stochastic model is not true, GML estimator is not robust. Similar results should
be true for our problem with two data sources. In our Monte Carlo studies in Chapters 4

and 5, the GCV-r estimator appears to be more robust than the GML-r estimator.



Chapter 4

Simulation Studies for Functions

on the Circle

In this chapter, we study the performance of GML-r, GCV-r and RCV estimates under
a simplified setting, where the underlying unknown function f is a function on the circle.
We assume n = n; = n,.

We should keep in mind that there are two goals in our study: we are interested in
estimating both the weighting parameter r and the unknown function f. So, in section 4.2,
we will see how GML-r, GCV-r and RCV perform in estimating f. In section 4.3, we
will see how they do in estimating 7, and finally in section 4.4, we will see how they do
in estimating a. We study all these under the stochastic model as well as under various

misspecification cases.

4.1 Experiment Set-Up

We choose the following model

n=K/f+e
v = Kof + ¢,

where I{; and [, are of the form of case 1 (see section 1.2), with p, = 0 and p, = 0.6, so
p = min{p,,p,} = 0. Here y; could be direct observations and y, could be satellite data.

We take o, = 0.5, 02 = 0.4, so the true r = 1.25. If there is a stochastic model, we take

50
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b =1, so the true a = 0.2.

We first use the stochastic model (1.1.6) with m = 2 to generate f, and see how these
estimates do when the stochastic model is correctly specified. We choose n = 400 and
n = 800, and do 100 replications. For each replicate, f is a different realization from
(1.1.6), and so are the-noises.

We then look at the following five different misspecification cases that are likely to occur
in real life, especially in meteorology. These cases are:

Misspecification 1: The true f is from stochastic model (1.1.6) with m = 1, but fis
misspecified as from (1.1.6) with m = 2,

Misspecification 2: The true f is from stochastic model (1.1.6) with m = 2, but f is
misspecified as from (1.1.6) with m=1.

Misspecification 3: The true f is a deterministic function with the Fourier-Bessel
coefficients f = (1,1,-1,1,0,...,0), but f is misspecified as from (1.1.6) with m = 2. In
this case, for each replicate, f is the same. -

Misspecification 4: In meteorological data, the energy spectra often have such a
pattern that the first few eigenvalues (of ¥) will increase, and reach a peak, and then
decrease at a certain rate, see, for example, Wahba (1982b), Stanford (1979), and Figure
5.1.3. So, we consider the following misspecification case: the true peak is at the 2nd pair
of the eigenvalues (remember for functions on the circle, the eigenvalues are of multiplicity
2), but we misspecify the peak to be at the 10th pair.

Misspecification 5: The true peak is at the 10th pair, but we misspecify it to be at
the 2nd pair.

For each of the above five misspecification cases, we choose n = 400 and n = 800, and
do 100 replications.

Now, let us see how these estimates perform.

4.2 Estimation of f

For each case, we run 100 replicates. In each replicate, we use a grid search to obtain #'s
and @’s from GML-r, GCV-r, RCV and the predictive mean-square error T,. Then we get
the f We then calculate I,.GML-r = T,(fgmi, Ggmi)/Tp(F, &), and similarly, I,.GCV-r,
and /,.RCV. First, let us compare the GML-r and the GCV-r. We summarize the results
in Figure 4.2.1.
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In Figure 4.2.1, we only include plots for the correct model and for misspecifications 1,
3 and 4. For misspecifications 2 and 5, we have very similar plots as misspecification 1. We
also only include results for n = 800, because for n = 400, the results are similar. We see
from Figure 4.2.1 that when the stochastic model is true, GML-r does better than GCV-r
in estimating the function f. However, when the model is misspecified, GCV-r is superior
to GML-r. When reading the plots, please notice that they are on Log scale.

For Log(/,.GML-r) vs. Log(l,.RCV), the results are very similar to those for Log(I,.GML-
r) vs. Log(l,.GCV-r). So when the stochastic model is not true, RCV is also better than
GML-7 in estimating the unknown function f.

It is of interest to compare GCV-r and RCV, and we summarize the results in Fig-
ure 4,2.2. l

In Figure 4.2.2, we only include plots for the correct model and for misspecifications 1,
3 and 4. For misspecifications 2 and 5, we have similar plots as that for misspecification 1.
We also only include results for n = 800, because for n = 400, the results are similar. From
Figure 4.2.2, we see that GCV-r is slightly better than RCV in estimating f when the model
is correct and for misspecifications 1 and 3. For misspecification 4, RCV is slightly better.
In misspecification 4, the true f is smoother than specified. However, GCV-r undersmooths
a little bit for this particular kind of misspecification, while RCV gives an estimate of the
smoothihg parameter that is closer to the “optimal” smoothing parameter (see Figure 4.4.4
in Section 4.4). Although GCV-r ddes much better in estimating the weighting parameter
r for misspecification 4 (see results in Section 4.3), RCV is slightly better in estimating the
function f for this misspecification. Also notice that Figure 4.2.2 is in Log scale.

In Chapter 3, we show that asymptotically, GCV-r does a better job than RCV in esti-
mating the weighting parameter r, and in the next section, we will present some simulation
results that confirm this theoretical result. However, since the predictive mean-square error
function is fairly insensitive to r, and also since in some cases, RCV does a slightly better
job estimating the smoothing parameter a (see Theorem 3.3.2 and Theorem 3.3.3 compared
with Theorem 3.2.2 and Theorem 3.2.3, also see results in Section 4.4), so, RCV sometimes
may do slightly better in estimating f than GCV-7 in terms of the predictive mean-square

error criterion.
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4.3 Estimation of r

In this section we will compare the three methods in estimating the weighting parameter
r under different cases.

In the simulation study, we used a grid search to find (#,&). The range for search on
T was set to be very large to make sure we find the right 7. We do the plots in Log scale.
The true ry = 1.25, so Log(ry)=0.2231.

First, let us éompare GML-r and GCV-r. We summarize the results in Figure 4.3.1.

In Figure 4.3.1, we only include the correct model and misspecifications 1, 3 and 4. For
misspecifications 2 and 5, the plots are actually quite similar to that of misspecification
j. From Figure 4.3.1, we see that when the stochastic model is right, GCV-r and GML-r
do equally well in estimating r. For misspecification 1, where the true f is rougher than
specified, both GCV-r and GML-r estimators are biased, however GCV-r is better than
GML-r. For misspecifications 3 and 4, where the true f is smoother than specified, GCV-r
and GML-r do equally well.

Now, let us compare GCV-r and RCV. We summarize the results in Figure 4.3.2.

For misspecifications 2 and 5, the plots have the same pattern as those appear in Fig-
ure 4.3.2. From Figure 4.3.2, we see that GCV-r is always better than RCV in estimating
r. This is in agreement with our theoretical results in Chapter 3 that #,., has a faster
convergence rate than 7,..,.

We know that 7, has very slow convergence rates (see section 3.4), that means 7, is
very insensitive to r. To see how #; performs, let us compare #,., and #. We do this in
Figure 4.3.3.

For misspecifications 2 and 5, the plots look similar to that of misspecification 1. From
Figure 4.3.3, we see that 7, behaves poorly, and in some cases worse than #,.,. So the pre-
dictive mean-square error 7}, is not a good criterion for estimating the weighting parameter
Ty

Looking at histograms of these estimates side by side can also give us some idea on the
performance of the estimators. We put these histograms in Figures 4.3.4, 4.3.5, 4.3.6 and
4.3.7. From these histograms, we see clearly that GCV-r and GML-r are better than RCV
in estimating the weighting parameter 7. We also see that the predictive mean-square error
T}, behaves poorly for estimating the weighting parameter r. All these findings are in good

agreement with our theoretical results in Chapter 3.
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Finally, let us look at the histograms of #,,,; and 7., in their original scale. We put
these histograms in Figure 4.3.8, 4.3.9, 4.3.10 and 4.3.11. From these plots, we see that

i). When the model is correctly specified, the sample means for both estimators are
close to the true value of the weighting parameter r, the sample variances for n = 800 for
both estimators are about half as large as those for n = 400: This confirms the theoretical
result that the convergence rate for 7y, and 7., is 1/4/n.

ii). The magnitudes of the sample variance of #,., is almost the same as those of 7,
when the model is correctly specified as well as when it is misspecified. This shows that
even when the stochastic model is right, GCV-r does equally well as GML-r in estimating
r. So, estimating r is quite different from estimating «. When estimating a for the correct
model, the sample variance of &,,, is usually larger than that of @, (see simulation results
in the next section, also see Stein (1989) and Stein (1990)).

iil). When the model is misspecified, we get pretty good estimate of r by the GCV-r

estimator.

4.4 Estimation of o

In this section, we will show some results on the estimation of @. Remember that when
the stochastic model is not right, there is no “true” a. So when we did grid search for &, the
upper limit and lower limit for the search are different under different situations. However,
we did make the searching range large enough in each case to make sure that we find the
right one. We do the plots in Log scale. We will only present some of the histograms for é.

I'rom Figure 4.4.1, we see that when the stochastic model is right, the sample variances
of &y are smaller than those of &,., or &,.,. Also remember that when the model is right,
the true g = 0.2, Log(ag) = —1.609. So in this case, GML-r does a better job in estimating
a. That is why when the model is right, GML-r produces a better estimate of f.

From Figures 4.4.2, 4.4.3 and 4.4.4, we see that when the model is misspecified, G m,
is very different from the “optimal” smoothing parameter, i.e. &;, while &,., and &,., more
or less follow the optimal a, &,., follows more closely. That is perhaps why when the model
is misspecified, GCV-r produces a better estimate of f than GML-r does, and RCV also
produces a better estimate of f although #,., is not as good as 7,.,.

Histograms for misspecification 2 are like those for misspecification 3. Misspecifications

2, 3 and 4 all represent cases where the true f is smoother than specified. We see from the
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Figure 4.3.8: Distributions of # with 100 replicates when the model is correctly specified.

The true r=1.25.
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histograms that in these cases, the GML-r estimate undersmooths relative to the GCV-r
estimate. This is in agreement with our discussion in section 3.6.
Histograms for misspecification 5 are similar to those for misspecification 4, both cases

represent misspecification of the location of peak of the eigenvalues.

4.5 Comparing [, with 7 and &

[t is also of interest to find out the relationship between getting a good estimate of r
and a and getting a good estimate of f. In this section, we will look at some plots of I,
vs. 7 and [, vs. &. First, let us look at I, vs. 7, We put those plots in Figure 4.5.1 and
Figure 4.5.2. Again, we do the plots in Log scale and we only do them for n=800.

Irom the plots, we sce that although in some cases, there is a weak trend that better
7 corresponds to better [, this trend is not strong and clear. This is perhaps due to the
fact that the predictive mean-square error is very insensitive to r, and we are using I, to
measure how good our estimate of f is.

Now let us look at the plots of I, vs. &, again in Log scale. Since only when the
stochastic model is true, we know what the true a is, for the misspecification cases, we will
use the sample mean of the &; as our “optimal” a. We put the plots in Figure 4.5.3 and
Figure 4.5.4. :

From the plots, we see that in some cases, there is a weak trend that better & tends to
correspend to better I,.

So, if we use the predictive mean-square error as a criterion to measure the estimate of f,
getting a good estimate of the smoothing parameter o is also important. This is perhaps why
for misspecification 4, although RCV is doing badly in estimating the weighting parameter r
compared to the GCV-r estimate, it gets slightly better estimate of f in terms of I, because

it gets better estimate of the smoothing parameter «.
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Chapter 5

Simulation Studies for Functions

on the Sphere

In this chapter, we present results from some Monte Carlo experiments in a more realistic
setting, where f is a function on the sphere. We try to recover the 500 mb height surface

from simulated direct observations and forecast of the current 500 mb heights.

5.1 Experiment Set-Up

The 500 mb height surface is a function on the sphere. We can represent this
function by a spherical harmonic approximation of the form f(P) =
Z;‘:’O i:—i fi:Yi,(P), where Y, are spherical harmonics, P represents a point on the sphere
and f;, are the Fourier-Bessel coefficients. So in order to recover f, we only need to estimate
these coefficients fi,. In our experiments, we choose M = 30, so there are 961 coefficients.

We have chosen locations of 600 real radiosonde stations over northern hemisphere as
our “observation” locations. Figure 5.1.1 shows the locations. The (latitude, longitude)’s
in degrees of those 600 radiosonde stations are listed in Appendix C.

We assume the observation error to be white noise. Our direct observations can then

be modeled as

30 I
Y = Z ﬁa}/i'a(}:,i)+51i (511)

1=0 s=-1

o



" Figure 5.1.1: Locations of the radiosonde stations over northern hemisphere
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where P;,i = 1,...,600 are the observation locations, fi, are the true but unknown Fourier-
Bessel coefficients and ¢,; are 7.i.d. random variables, e;; ~ A(0, o7).

We can write (5.1.1) in a matrix form:
TR A R (5.1.2)

where y; is a 600 dimensional vector of observations, f is a 961 dimensional vector of the
Fourier-Bessel coefficients that need to be estimated, £, is a 600 dimensional random vector
of noise and K'; is a 600 by 961 matrix containing the values of spherical harmonics.

The forecast errors in spatial domain are usually correlated and some work has been car-
ried out to study the statistical structure of the forecast error correlation. See Hollingsworth
and Lonnberg (1986), Lonnberg and Hollingsworth (1986), Wahba (1989), Mitchell, Charette,
Chouinard and Brasnett (1990) and Goerss and Phoebus (1991). We use the model de-
scribed in Wahba (1989) to approximate the forecast error correlation. According to this
model, the forecast error in the ‘frequency domain can be approximated as independent

weighted normal random variables. More specifically, the forecast can be modeled as
F=f+s (5.1.3)

where ff is a 961 dimensional vector of forecast, f is a 961 dimensional vector of the true
Fourier-Bessel coefficients, &, is the forecast error in the frequency domain, £, ~ M(0,c2A),

where A = diag[A\],s = =1,..., ;1= 0;. ..,30, and Af, only depends on :

F =18
Ago = 1

(1-0)"1—=(1+6)""

(4m) =2m(1-6)

&' 4T 2
- 6!——1 T 9
T e = e 1

e

{ T
/\i's“'

where 6 = cos(2rL/3R,) — v/3sin(2rL/3R,), R, is the circumference of the earth and L
represents the half correlation length. Lonnberg and Hollingsworth (1986) found an L of
about 600 km. in their work.

This model approximates the forecast error correlation fairly well in the range of our

experiments, i.e. in the range of using only the first 961 spherical harmonics.
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If we multiply both sides of (5.1.3) by A~'/2, we get
Yo = Ifgf + &9 (514)

where y; = A2 fF K, = A=Y? and €, ~ N(0,021).

From (5.1.2) and (5.1.4), we see that our model here is

{ n=K/f+e (5.15)

ya=Kof + ¢

where y; is of dimension n;, ¢ = 1,2, f is of dimension n, K; is an n; X n matrix, i = 1,2,
g ~ N(0,07l), i = 1,2, they are independent and ¢, and o, are unknown. n, = 600,
ny = 961, n = 961.

For the true vector f for 500 mb heights we used spherical harmonic coefficients kindly
provided by Dr. Fred Reames v.vhich approximately described the Northern Hemisphere 500
mb heights at 00GMT for January 2, 1979 and at 00GMT January 14, 1979. Contour plots
of the Northern Hemisphere 500 mb heights for both days appear in Figure 5.1.2. Please
see Appendix B for a description of how the coefficients were generated.

Stochastic model (1.1.6) with m = 2 for functions on the sphere provides a good ap-
proximation of meteorological truths. Figure 5.1.3 shows the plots of log,,(f?) vs. log,,({),
where f2 = (1/(21+ 1)) .-, f2,1=1,...,30. The f,’s for the “prior” come from model
[ELb ) with m = 2,

In order to measure the performance of our estimates, we could use the predictive mean-

square error T,(r, a), or the solution mean-square error T,(r, @) defined by

Tlrvali= 50 3 (e =)’

We can calculate the relative inefficiencies with respect to T, and T, defined by

T
min T,(r, @)

5=

and
LR
" min T,(r, a)
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where 7 and & are estimates of 7 and a. For more discussions on the relationship between
T, and T, please see Wahba and Wang (1990).

5.2 Preliminary Experiment

In our preliminary experiment, we choose m = 2, g, = g, = 15m. So r; = 1. We did 10
replications. We summarize the results in Figure 5.2.1 and Figure 5.2.2.

Figure 5.2.1 shows that GCV-r is much better than RCV for estimating the weighting
parameter r in that GCV-r estimate not only has smaller variance, but also is unbiased,
while RCV estimates of r for January 2 and January 14 are biased.

Figure 5.2.2 shows that GCV-r is also much better than RCV for estimating the function
f in that GCV-r estimate has a much smaller relative inefficiency with respect to both the

predictive mean-square error T, and the solution mean-square error 7,.

5.3 More Results of Monte Carlo Studies

From the results of the preliminary experiment, we see that GCV-r is much better
than RCV in estimating r and f. So we should use the GCV-r estimate instead of RCV
estimate. In this section, we will concentrate on comparing the GCV-r and the GML-r
estimate in some further experiments. We also will study the effects of some possible model
misspecifications on the performance of GCV-r and GML-r estimate.

In our experiments, for the true vector f for 500 mb heights we used spherical harmonic
coefficients kindly provided by Fred Reames which approximately described the 500 mb
heights at 00GMT for January 2, 1979 and January 14, 1979. We also used a random .
number generator to generate f according to model (1.1.6) as our “prior” case. We used
Gaussian random number generator to generate the noises and added them to the signals
according to model (5.1.5) to get our “observations” and “forecasts”. According to Goerss
and Phoebus (1991), o, for 500 mb heights is approximately 9 meters, and o, for 500 mb
heights is approximately 11 meters. So in the following experiments, we choose o; = 9 and
ay = 11, therefore ry = 0.818. We have conducted the following three experiments:

Experiment 1, L = 600 km, m = 2. There was no misspecification.

Experiment 2, L = 600 km, with a misspecification m = 3. In this experiment, for

the “prior”, f was generated according to (1.1.6) with m = 2. We analyzed the data by a
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madel with m = 3.

Experiment 3, m = 2, with a misspecification on the forecast error half correlation
length L. \Ve generated the “data” with L = 500 km, and we analyzed the data with
L =600 km.

For each of the 3 experiments, we estimated r, a and f by GCV-r and GML-r. We
compared the GCV-r estimate Tgevy the GML-r estimate Tgmi With the “optimal” estimate
of r that minimizes T,(r, @) or T,(r,a). We also compared the performance of GCV-r and
GML-7 in estimating f in terms of I, and I,. We repeated these 10 times with different
noises in each experiment.

Next, we present the simulation results for the three experiments separately.

Experiment 1

Figure 5.3.1 shows the GCV-r and GML-r estimates of r compared with the “optimal
estimate” of 7 with respect to T,. We see from the plot that for cases where f is a meteo-
rological truth, especially for the case when f is the truth of January 14, 1979, the GML-r
estimate is biased. Even the “optimal estimate” is biased. On the other hand, GCV-r gives
excellent unbiased estimates.

Figure 5.3.2 shows the GCV-r and GML-r estimates of r compared with the “optimal
estimate” of r with respect to 7,. We see the same pattern as in Figure 5.3.1. The GCV-r
does a wonderful job estimating the weighting parameter r.

Figure 5.3.3 shows the relative inefficiencies of the estimates with respect to T and T,
We see that for the “prior” cases, the GCV-r and GML-r do equally well, while for the
cases of meteorological truths, GCV-r does much better than GML-7.

Figure 5.3.4 shows the box-plot of the 10 replicates of the coverage percentages of
the 95% Bayesian “confidence intervals” pn data points. Tlhe formulas for calculating the
Bayesian “confidence intervals” can be found in Section 2.4. The coverages a.re‘ very close
to 95%. These are very good results considering the fact that we know nothing about the
noise’s variances before we analyze the data.

Figure 5.3.5 shows the plot of &,/4, vs. 7, where &, and g, are calculated using the
formula in Section 2.4. We see a strong linear correlation, which shows that our estimates
of r and o, and o, are consistent.

The improvement over the direct observation or the forecast after combining observa-

tional and forecast data according to our methods can be easily seen by looking at the root
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mean-square error (RMSE). For example, we can calculate the RMSE for the estimates by

RMSE = %Z(f(P.-) - f(P))2.

Similarly, we can calculate the RMSE for the direct observations and the forecasts by

N
RMSE = J = D (R = SR

1=1

and

N
RMSE = \J ¥ X UAR) = SR,
respectively, where f(F;) is the true 500 mb height at location P; since we know the truth
in our experiments, f(P,) is the estimated value of 500 mb height at P; either by GML-r
or GCV-r estimate, f,(P) is the observed value, f;(P,) is the forecasted value and P,,i =
l,..., N is a set of points over our experimental region, i.e. the northern hemisphere. For
direct observations, we use the 600 radiosonde stations. For forecasts, we use the following
1224 regular latitude/longitude grid of 5 x 5 degrees: latitude from 0° to 80°, longitude
from —180° to 175°. We summarize the results in the following two tables.

Notice that the RMSEs for direct observations are approximately 9 (meter), which is
equal to o;. This is so because the direct observation errors are i.i.d. N'(0,¢?). The RMSEs
for forecasts are somewhat less than o, which is 11 (meter). This is so because the forecast
errors in spatial domain are correlated and Ev/X < vEX. Also notice that the RMSEs
for analyzed surfaces are smaller over the 600 radiosonde stations than they are over the
1224 grid points. This is not surprising because we have more information over these 600
stations, we should get better estimates over these 600 stations. :

From table 5.3.1, it is seen that after combining observational and forecast data ac-
cording to our methods, the improvement on average over direct observations is about 4
meters. From table 5.3.2, it is seen that on average, the improvement over forecasts is about

3 meters.
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Experiment 2

Figure 5.3.6 shows the GCV-r and GML-r estimates of r compared with the “optimal
estimate” of r with respect to T,. We see from the plot that when there is misspecification
of m, GML-r estimate is biased, especially for “data” of prior and January 2, 1979. GCV-r
gives very good unbiased estimate of r. '

Figure 5.3.7 shows the GCV-r and GML-r estimates of r compared with the “optimal
estimate” of r with respect to T,. We see the same pattern as in Figure 5.3.6. The GCV-r
is very robust against this misspecification of m and does a wonderful job estimating the
weighting parameter r.

Figure 5.3.8 shows the relative inefficiencies of the GCV-r and GML-r estimates with
respect to T, and T,. We see that when there is misspecification of m, the GCV-r is superior
to the GML-r in estimating the surface f, especially for “data” of prior and January 2, 1979.

From these plots, we see that when we use the model with m = 3, GML-7 gives better
results than it does in experiment 1. This is perhaps due to the fact that the 500 mb height
surface for January 14 is smoother than that for January 2. The model with m = 3 is more
likely to be the correct model for January 14.

Figure 5.3.9 shows the box-plot of the 10 replicates of the coverage percentages of the
95% Bayesian “confidence intervals” on data points. The coverages for the GCV-r estimates
are very close to 95% even in the presence of misspecification of m. The coverages for the
GML-r estimates for y, are somewhat off the 95% line due to the misspecification of m
here.

As before, we summarize the improvements after combining observational and forecast
data according to our methods in the following two tables. From table 5.3.3, it is seen that
on average, the improvement over direct observations is about 4 meters. From table 5.3.4,

it is seen that on average, the improvement over forecasts is about 3 meters.
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Experiment 3

Figure 5.3.10 shows the GCV-r and GML-r estimates of r compared with the “optimal
estimate” of 7 with respect to T,. We see from the plot that the misspecification of L does
not severely affect the performance of GCV-r and GML-r estimate. As in Experiment 1,
where there is no misspecification, GML-r is somewhat biased for cases when the “data”
are the simulated meteorological truths, while GCV-r gives good unbiased estimates.

Figure 5.3.11 shows the GCV-r and GML-7 estimates of 7 compared with the “optimal
estimate” of r with respect to 7,. We see the same pattern as in Figure 5.3.10. The GCV-r
does a wonderful job estimating the weighting parameter r.

Figure 5.3.12 shows the relative inefficiencies of the GCV-r and GML-r estimates with
respect to T, and 7,. We see that for “data” which simulate the truths of January 2 and
January 14 of 1979, the GCV-r is superior to the GML-7 in estimating the surface f.

Figure 5.3.13 shows the box-plot of the 10 replicates of the coverage percentages of the
95% Bayesian “confidence intervals” on data points. The coverages for the GCV-r estimates
are close to 95%.

Again, we summarize the improvements after combining observational and forecast data
according to our methods in the following two tables. From table 5.3.5, it is seen that on
average, the improvement over direct observations is about 4 meters. From table 5.3.6, it

is seen that on average, the improvement over forecasts is about 3 meters.
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Figure 5.3.10: Estimates of r for Experiment 3.
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Chapter 6

Concluding Remarks

6.1 Summary

In Chapter 2, we introduce a new GCV estimate for simultaneously estimating the
weighting parameter and the smoothing parameter in the model described in Chapter 1. We
name this estimate GCV-r, where r represents the weighting parameter. We also describe
two other methods of estimating the weighting and smoothing parameters simultaneously,
namely the GML-r estimate and the RCV estimate.

In Chapter 3, we study the properties of these estimators. We prove the weak consistency
and asymptotic normality of these estimators, and obtain the convergence rates for them
under some conditions. In particular, we show that the convergence rates for the GML-
7 estimator 7,,; and the GCV-r estimator 7,., are the same, and it is 1/\/n. We also
show that the convergence rate for the RCV estimator #,., is much slower. For example,
in case | if we assume m = 2 and p = 0, the convergence rate for #,., would be 1/n!/8,
So theoretically, GCV-r is better than RCV for estimating the weighting parameter r. In
Chapter 3, we also give a weak convergence theorem for the GCV-r estimate.

In Chapters 4 and 5, we present some simulation results. From these results, we found
that the GCV-r estimator 7, is better than the RCV estimator #,., in that f ooy HAS A
smaller sample variance than #,., does. From the two Monte Carlo studies that used the
“true” 500 mb heights of January 2 and January 14 of 1979 as the “truths” in Chapter 5,
we also found that the GCV-r estimator T4co DOt only has smaller sample variance, but also

gets rid of the bias that inflicted the RCV estimator #,,.
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In the simulation studies in Chapters 4 and 5, we also compared the GCV-r with the
GML-r. We found that when the stochastic model is right, the GCV-r appears to do equally
well as the GML-r in estimating the weighting parameter r, and the GML-7 is better than
the GCV-r in estimating the unknown function f. When there is model misspecification,
which is often inevitable in practice, the GCV-r gets slightly better results than the GML-r
in estimating 7, and the GCV-r gets clearly better results than the GML-r in estimating
f. So the GCV-r appears to be more robust against departures from the stochastic model
than the GML-r.

6.2 Future Research

In order to implement our method of combining data in real life, an efficient algorithm
needs to be developed. In our simulation studies in Chapters 4 and 5, since the original goal
was to see the performances of GML-r, GCV-r and RCV, and to compare these methods
under different situations, not much effort had been devoted to developing an efficient
algorithm. Therefore the computations in those simulations were quite costly, especially for
the simulations in Chapter 5. To evaluate GML-r, GCV-r and RCV functions in Chapter
5, for every value of r, we had to do an eigenvalue decomposition of a 961 x 961 symmetric
matrix. This was the most expensive part and took about 40 seconds on Cray Y-MP by
evoking EISPACK, since at the time when these experiments were carried out, the eigenvalue
part of LAPACK had not been installed on the Cray’s at San Diego Supercomputer Center
and at NASA Supercomputer center. To search for the minimizers of GML-r, GCV-r and
RCV functions, we used a grid search. On average, it took about 16 minutes on Cray
Y-MP to compute one estimate of (r,a) of GML-r or GCV-r or RCV for the problem in
Chapter 3, which was a much reduced version of a real problem. In meteorology, the M
in Chapter 5 is usually somewhere around 126, instead of 30. So the number of spherical
harmonic coefficients is in the range of 16000, instead of 961. And the number of data in
meteorology is usually in the order of 10°. So to develop an efficient algorithm to compute
these estimates is very important.

In real life, due to human error or other reasons, it happens quite often that in a large
data set, there will be a few “bad” data. To be able to detect these “bad” data is very
important. By checking residuals of the fits from our model, it is possible to detect those

“bad™ data. It is very interesting to find out how much can this method detect through
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some simulation studies. Also, this method might be used to detect system error for a

forecast model. We will carry out some Monte Carlo studies to find out these.



Appendix A

More Details for Proofs in Chapter
3

We will give some more details of the proofs in Chapter 3.
Proof of Lemma 3.1.1: Suppose y ~ A(0,V(8)), where 8 = (6;,...,6,), y =
(Y1y---,9a)". Let A(8) = log fs(y), where fy(y) is the density of y. Also let V; = 9V/d4,,

Ai = 0A[06;,1=1,...,k, etc. If we ignore a constant, we have
1 [ttt
A(G):-ElogdetV—§yV Y.

By definition, the Fisher information is Z(8) = (Z;; )k <k, where Z;; = EX);

e
It is not hard to see that

1 1
b= e (V= g V-V
86{ 2 T( 'I)+ 2y t y

Let @; = V-V, V-1, 8§ = tr(V-V,). Then Ey'Q.y = S; and

Zy= E(y'Qiyy'Qjy — S5:iS5;).

B(WQuw - S)(yQy-5) =1

W | =

Also let ¢ = V-iy J. = V2PV -1/2, Then = ~ AN(0,I); ¥Ciy = 2'Jix and
f,T(J,'} = S[‘.
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For = ~ N(0,7), and any n x n matrices A and B, it is easy to see that

E(z'Azz'Bz) = tr(A)tr(B) + 2tr(AB).

(A.1)

So, we have _
i %m(wv-lmv-l).

Now for our model, 6 =‘(9, r,a), z ~ N(0,0v(r,a)) as in (2.1.4) and z is of dimension

2n— 1.
Let £, M and K i= 1,2 be defined as

-(52)
0 X

( (1/r)k%+ Tk, 0 )

0 M
and
ko O
K,' = i = 3
0 K;
t=1,2. Then it is not hard to show that
LE\EK, + 1y 0 1K, %K,
v(r,a) = 0 (%kfu o+ Tk%o)/(kfu + k3p) 0 )
LK,8K, 0 LK, 8K, + L,
and
‘ oo Y 0 0
'”_1(7'1 a) = 0 (ki + k%n)/(%kfo + rk3,) 0
0 0 TIn..l

(LMK, 0 EME,
0 0 0
K:M-E, 0 rK,M'K,

Applying (A.1) to our v and v~!, we will get the results in the theorem. We only derive
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the formulas for Zys and 7., here as demonstrations, the formulas for other entries can be
obtained similarly.
Since v(r,a) does not depend on #, and V in (A.1) equals fv(r, @) in our model, it is

easy to see

1

Igg = tr( Ig,, 1) 292 1)

By straightforward calculation, it is easy to show that

v“l@ =
ar —
Mooy = LN 0 iR
0 ('I{'kfo + rk30)/ (k3o + r2k3;) 0
(1/r) K. MK, 0 -+ KoMK,
Then,
1 , OV
= =1
Lo 2 g 5?1) ar)

! i ] 1 i 7
(%I\"II(IM‘I — rK KoM ™) - 2K K M+ G K, M),

Proof of Lemma 3.1.2: We only prove i). The rest can be proved similarly.
Let

[nliq] =

ng nfl,ilgq nhz'i'gq

= e P
g (n 4+ 19)h+a Z; (n 4 19)hth f:[f§1+1 (n +49)h+h

where [z] means the integer part of z.

Let a, ~ b, mean there exists a constant ¢ such that as n — oo, a,/b, — ¢. Then we

have
1
oy e nhilae & n'iglag
N Z ik Z 190l +12)
izl i=[nt/e]+1
[n'/9]

-5 > (7))

i=1 i=[n1/9]4+1



Now
[nl/v] ll‘vl

% (5) s g =00

i=1 i=1

and

n n

Ok S T L 1
X 1) = 2 Thia

i=[ni/a]4+1 i=[n1/9]41 (z/n)?h n

1 1
~ =i+l =
al/e qu’:
n

{ et (gl=dle pi=eh = 1) | 50

O(Tl), ll =)
= O(n”"), l]_ >0
VoG, =0

The last equality is based on the fact that for ¢ > 1 and I; > 1 (since /, is an integer, I; > 0

implies /; > 1), we always have [; —gl; +1 < 1/q. The result of i) in the lemma then follows.
a

Proof of Lemma 3.1.3: We will only show Z,, = O(n'/¥m+P)) | the rest can be proved
similarly.

Let a, ~ b, mean there exists a constant ¢ such that as n — oo, @,/b, = c. By Lemma

3:1.1, and by the assumptions made on K, and K,, we have

1 ot Sl L
Ig, = Etr[—;ﬂlth 1+7‘I(2I12M 1]

ni~2P1 L ppi—2P2
~31
-m'zf’l + rni=?3 4 qi?m

=1 r

ni~2r

n
~ N
e ni—2P 4 32m

; n+ 12m+2p°

Then we can apply i) of Lemma 3.1.2 to the sum by letting /, = 1,/, = 0 and ¢ = 2m + 2p
to obtain Z;, = O(n!/¥m+e)), O

Proof of Theorem 3.1.1: We can apply Theorem 1 of Mardia and Marshall (1984)
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directly. In Theorem 1 of Mardia and Marshall (1984), sufficient conditions are given for
the asymptotic normality and weak consistency of maximum likelihood estimators. Those
conditions are (3.1), (3.3) and (3.4) there. We do not need to check (3.4) because the mean
function in our model is identically 0. (3.1) is lim,_o Z~! = 0, which is true by noticing
Lemma 3.1.3. So we only need to check condition (3.3).

Our model can be written as z ~ N(0,V(6,,8,,803)), where z is of dimension 2n — 1,
0 =8,60, =r,0; =aand V = fv(r,a), where v(r,a) appears in (2.1.4) and in the proof
of Lemma 3.1.1. Let T=! = (Z%);343 and V¥ = §*V~1/86;00;. Then condition (3.3) is

3
fim N BRIV PV =0,

ik =1

We will only show that

li TR (VP VI) =0

n—oo
as a demonstration. The other terms in the sum can similarly be shown to go to zero as n
goes to infinity.

Since V = fv(r, o) and v(r, @) does not depend on 6, it is easy to see
1du? gu  10u

: 1
712 = —_— = —= =
ina e e

By the last equation in the proof of Lemma 3.1.1, we have

12 12 _i —1@ —193 —_2_
tr(VV*VV )"92”(” e 81")_921"'

Now, by Lemma 3.1.3, we know Z,, = O(n) and I'2 = I = O(n~2+1/2(m+r)), Since m > 1,
p > 0, we have
lim T2T2%r(VV2VV2) = 0.

n—oo-

Proof of Lemma 3.2.1 and Lemma 3.2.2: We will need the following two results

about multivariate normal distribution:
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Suppose
( n ) ~ N(0, ( T11 O12 ))’
Y2 O12 O22
and let
=(yy)( ) (y)
a1 Q22 Y2

Then

Eyt = 30},

Eyly; = 3011015 (A.2)

Eyty; = 011022 + 207,
and

(4.3)

E(z) = a0y + (@12 + a21)012 + 2202
Va?"(z) = 2(EI)2 + ((ﬂ12 + 021)2 -— 4&11&22)(0310’22 == Ufg).

(A.2) can be proved through the use of characteristic function of multivariate normal dis-
tribution (see Chapter 2 of Anderson (1984)). (A.3) can be obtained by using (A.2).
We will only prove the result for dw,/0r as a demonstration. For other terms, the

results can be proved similarly. Note that w.(r, @) can be written as
w,(r,a) = y'Viy,

here V; is a 2 x 2 block matrix with each block being an n x n diagonal matrix. It is easy
to see that

Wpp = =W, = *Vﬂ‘s
G el

Vll Vl 2
Vrr Loy rr rr ;
|l

and each block is an n x n diagonal matrix. It is also not hard to see that (yi;,y,;) and

where

(Y15, Y2;) are independent for ¢ # j. So

e T T Y e
e = ;(3’1“3’2') ( V2(i) V2(i) ) ( Yoi ) Z )

rr i=1

where V'(i) is the ith diagonal element of V! and so forth, and z;, ¢ = 1,...,n are
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independent.
By Lemma 3.1.2 and Lemma 3.1.3, it is easy to see that
tr(I7H(r) A7 (r,@)I7}(r)) = O(n!/CGm+20),

and therefore
tr(W-Y(r,a)) = tr(I~(r)[I - AT)I"Y(r)) = O(n).

‘Similarly, 5
st s o
tr(aTW }.=0(n),
i
tr(zzW™") = 0(n),

and so forth.
For any fixed r and «, by taking expectation with respect to y, and using Lemma 3.1.2

and Lemma 3.1.3, it can be shown that
E(w,,) = O(n?).
Also, by using (A.3) and Lemma 3.1.2 and Lemma 3.1.3, it can be shown that
Var(V,,) = O(n?).
So

2
E (E"__%) = 0(n"Y).

Euw,,

Therefore there is an € > 0, such that

2
w
E L ~1 S )
(Jﬂwrr )n

So

d

é;wr) (14 0,(n~9)).
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Proof of Lemma 3.2.3: We will only show that as n — oo,
n~3 2w, (ro, 0tg) N(0,¢y).

The other result can be obtained similarly.

First, we show that
Ewr(r[),ag) =)

From (2.1.2), we know that y ~ A(0,8W). By definition

-1

(70 = y’{W"laW tr(W-1) - 2t'r( )}y
So i e
B ) = tr{(W'lapVT tr(W-1) — W‘ztr(ag ))eW'}
= atr(aw-l tr(W-1) - W‘lzr(ag_l))
=

Thus w,(ry, @q) can be written as

7‘01 aO) Z(a:f'l E‘T‘.fl

Then by a similar method used in the proof of Lemma 3.2.1 and Lemma 3.2.2, it can be

shown that

) Blog =~ Ez)® = On®),
i=1

Z E|z,; — Ez,|* = O(n*).

i=1
So n
> B(n™**(z,; - Ex,))* = 0(1),
=1

Z Eln—alz(zri = Exr:')'s = 0(1)

=1
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By Liapounov’s theorem, the result follows. O



Appendix B

Generation of “True” f’s Used in

the Experiments

From December 1, 1978 through December 31, 1979, there was an international exper-
iment known as FGGE (First GARP Global Experiment, GARP stands for Global Atmo-
spheric Research Program) or the “Global Weather Experiment”, during which nearly every
country on earth participated, including the USSR and China, in spite of the Cold War.
They agreed to collect and analyze an unusually large quantity of meteorological data. See
Johnson (1986) and Proceedings of the First National Workshop on the Global Weather
Experiment: Current Achievements and Future Directions, National Academy Press, Wash-
ington D.C. 1985 for an overview of this experiment and further references. The European
Center for Medium Range Weather Forecasting (ECMWF), in the so-called Level IIIB re-
analysis, based on both weather assimilation models as well as all of the data available,
provides estimates of the 500 mb heights on a regular latitude/longitude grid of 3.75 x 3.75
degrees. See Pailleux, Uppala, Illari and Dell’Osso (1986).

Considering only points on this latitude/longitude grid strictly north of the equator
results in 2209 (= 96 x 23 + 1) points. To obtain f as described in the text, these 2209
data points were selectively thinned down to 960 points by removing points in the more
“ northerly latitude circles so that the points retained were very roughly relatively equally
dense on the hemisphere, some trial and error was used until the resulting contour maps
as obtained in the text visually reproduced the ECMWF reanalysis contour maps. The
vector f from a particular set of 960 data points {y;, F;} was obtained by choosing the f,
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to minimize
960

Y= D0 Y fYu(P) A YU+ 1)) f

i=1 1=0 s=-1 I=1 s==1
Since the data had already been smoothed it was not desireable to use GCV to choose
A, this parameter was chosen by inspection to make the resultant contour plots match the
ECMWTF contour plots visually. We thank Dr. Fred Reames for providing these coefficients,
and Todd Schaack and Allen Lenzen for assistance in obtaining the ECMWF, FGGE IIIb
data.

We put the spherical harmonic coefficients for the 500 mb heights for January 2 and
January 14, 1979, which we have used in our experiments, in Table B.1 and Table B.2.
Spherical harmonic coefficients f;,’s have double subscripts. In the tables, they appear in
the following order: (I,s): (0,0),(1,0),(1,-1),(1,1),(2,0),(2,-1),
(2,1),(2,-2),(2,2),(3,0),.... The tables should be read column by column.
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Appendix C

Locations of Radiosonde Stations

Used in the Experiments

In our simulation studies, we chose 600 of the radiosonde stations over the northern
hemisphere as the locations of our “direct observations”. We put pairs of (latitude, longi-

tude) in degrees of those 600 stations in Table C.1.
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