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Abstract

A nonasymptotic lower bound is derived for the per symbol expected redundancy
based on n observations from a continuous dth order Markov source. The bound is
minimax over a Lipschitz class of such sources. The constant in the lower bound is
explicitly described in terms of d. By making d go to infinity with n at an appropriate
rate, 1t is shown that no universal rate of expected redundancy exists for the class of
Markov sources of all orders, and this provides an alternative and simpler derivation of
a similar result by Shields. Similar results are obtained for the Kullback-Leibler esti-
mation error for the joint density of d-tuples based on n observations from a continuous
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1. Introduction
By means of Kraft’s inequality, any probability distribution p on a finite set (alphabet) A of
symbols corresponds to a binary prefix code, i.e., a map C} from A to strings of 0’s and 1’s
(codewords) with the property that no codeword is the prefix of another codeword. Then
roughly speaking, for any z € A, —log, p(z) gives the code length of z, i.e. the count of
0’s and 1’s in Cp(z). For example, let A = {a,b,c}, p(a) = 1/4,p(b) = 1/4,p(c) = 1/2,
then p corresponds to the prefix code C), such that Cp(a) = 00,Cp(b) = 01,Cph(c) = 1
and —log, p(z) = length of Cp(z) for all z in .A. When z is generated by a probability
distribution pp on A, it is not surprising that its corresponding prefix code is the best on
average. This code assigns short codewords to frequent z’s and long codewords to rare
x’s, and it follows from Jensen’s inequality E,,[— log, p(z)] > Ep,[— log, po(2)], which is
the entropy of pp. The difference E, [—log, p(z)] — Epy[—logy po(2)] is called expected
redundancy of the code (corresponding to) p if the symbol z is generated from py.

Similarly, for any positive joint density s(z") = s(z1,22,...,2,) on n-tuples of real
numbers we may regard — log, s(z™) as the code length of a binary prefix code, cf. Rissanen
(1986). Its expected code length is bounded from below by the entropy of the joint density
J that generates the sequence, that is, H,(f) = — [ f(a™)log, f(z™)dz".

Definition
Ej(—logy s(2™)) — Hn(f) = Elog[f/s] is called expected redundancy of s, and
nHE(—logy s(2™)) — Ha(f)] = n~1E;log[f/s] is called per symbol expected redun-
dancy of s.

Redundancy measures the loss in terms of expected code length when the true density
S is not known. s is called a universal code if the per symbol expected redundancy of s

goes to zero as n tends to infinity. Since s(z™) can always be factored into a product of



predictive or conditional densities [], s(z;|z'=!), we have

Ey(~log, s(e™) = Ha(£) = 3 [log(f(adla™)/s(aile')f(a)da’.  (0.1)

Then expected redundancy can be viewed as the accumulated prediction error measured
by the Kullback-Leibler divergence. In the iid case, f(a™) = [, f(2:) and H,(f) = nH(f),

and (0.1) simplifies to the accumulated density estimation error:

By(~logy s(a™)) =l (f) = ¥ Eps [ log(f(0)/s(ailo') fa)da. (0.2)

In particular, when f belongs to a parametric family {fz,0 € @}, we may choose s(.|z'~!)
as the plug-in predictive density fép] (.) where 0,_1 is the MLE estimator, say, of 8 based on
the first ¢ — 1 observations. If the parametric family satisfies certain regularity conditions,

(0.2) becomes

Es(—logs(z™)) — nH(f)
= 3 g [loglfae0/fa,_, (sl
> O(E(b1-1 - 6)*) = 03" 1/(t — 1)) = O(log n). (0.3)

R4

That is, the rate n™! of estimating # based on n observations translates into the rate of
n~llogn in terms of universal average expected redundancy, cf. Rissanen (1986) and Clarke
and Barron (1990). Both n~! and n~!log n are the best possible rates, in the sense that
lower bounds of the same order are given by the Cramér-Rao inequality and by Rissanen
(1986) respectively. On the other hand, in nonparametric density estimation based on iid
observations, if we restrict our class to smooth densities of a certain degree, the minimax
rate for global deviation measures like L? and Hellinger distance is n™2% with o < 1/2.

In contrast with the parametric case, the per symbol expected redundancy has the same



minimax rate in this case, as shown in Yu and Speed (1992). This is because instead of ¢!
in (0.3), we have t2* and 1 30172 = O(n2°).

It is well-known, however, that no rate exists if the class is sufficiently large. There
are at least two ways to enlarge the class: a) Devroye (1983, 1987) fixed the iid structure
between observations and made the class large by including enough marginal densities of =
in the class to show the nonexisitence of any density estimation rate, hence nonexistence of
a universal redundancy rate. b) Recently, Shields (1991) used the technique of cutting and
stacking from ergodic theory to show the nonexistence of a universal per symbol expected
redundancy rate for the class of ergodic sources on a finite alphabet .A. He enriched the class
by allowing dependence structure between observations while holding the class of marginal
densities of @1 parametric. It is difficult, however, to figure out what type of dependence
Shields uses since his argument is closer to an existence proof than a construction proof. He
showed that for any density s() on A" (or equivalently a prefix code on .A™), there exists an
ergodic source for which the per symbol expected redundancy rate of s is not faster than
a predescribed rate p(n) = o(1) . On the other hand, we believe that the class of Markov
sources of all orders is large enough. This is because a Markov source of order |A|¢ has
number of parameters of order J% and |.A|? appears in Rissanen’s lower bound in front of
the rate n=!logn. Formally taking d = d, = logn in the bound gives the nonexistence of
the universal rate for class of Markov sources of all orders; hence no rate exists for the class
of ergodic sources. Of course, this is not legitimate since other terms negligible for a fixed
d might become dominant when taking d = log n.

In this paper, aiming at the nonexistence of universal per symbol expected redundancy
rate for the class of Lipschitz Markov sources of all orders, we first provide a nonasymptotic

minimax lower bound on the expected redundancy over a Lipschitz class of (d — 1)st order



Markov chains. In Section 2, we extend from the iid case to the Markov case, the Assouad-
type construction of a hypercube subclass within the Lipschitz class, cf. Assouad (1983),
Birgé (1985), Devroye (1987), Donoho, McGibbon and Liu (1990). The construction is
intuitive and geometric. The lower bound is given in Section 3 where the constant in the
lower bound is found explicitly in d and the Lipschitz constant ¢4 of the class. When
we fix ¢g while letting d go to infinity at the rate logn, the lower bound gives a rate of
(log n)~°, namly, the per symbol expected redundancy rate cannot be faster than (logn)~°.
Modifying the hypercube class slightly and letting ¢g = (log n)s/ % pives the nonexistence
of of the per symbol expected redundancy rate over the class of Markov sources of all
orders. Similar results are then obtained for the Kullback-Leibler density estimation error
for the joint density of d-tuples. We end the paper with a brief discussion (section 4) on
the appropriateness of a class over which a minimax result should be sought.

2. A Lipschitz Markov Class and Its Hypercube Subclass

In this section, we introduce a continuous Lipschitz class of Markov sources of order (d —1)

and its hypercube subclass. Let us start with some notations. For any integer d > 2, let

z¢ = (21, ...,24) and denote [—1/2,1/2] by J. Write

Daz={f20: [ fla")=1, 1Y)~ S| S calla’ =9l ¥ 2, € J%).

Dy is a Lipschitz class of joint densities of d-tuples on J¢ with a Lipschitz constant cg.
In order to generate a unique (d — 1)st order stationary Markov source from a density
f in Dy, f has to further satisfy, for any ¥ # I, t < min(d — 1,d — k,d — 1), and any

yt = (y11y21“'9yt) € Jt:

i
/Jd—: f(ml, oo The1,Y s Thgty - wd)dml...dﬁk_1d$k+t...d$d

: t .
= /Jd_t FUmA 550 B 5 B bsnee T )DL o 00 BTt
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that is, all {th order marginals of f have to coincide. Denote the set of all such f’s by M,.
This is the Lipschitz Markov class over which minimax results will be sought. From now on
we use the same f to indicate a density in M, and the joint density of the Markov chain it
generates.

The hypercube subclass F, g of Mg is a collection of densities in My which are suitably
perturbed uniform densities on J* = [~1/2,1/2]%. The construction of F, 4 can be divided
into three steps.

1. Off-diagonal cells or cubes of size h? in the positive quadrant
For h small let 7o = (2h)~1 and I; := [(i — 1)h,ih] for i = 1,2, ...,70. Then divide [0,1/2]¢
into 7o¢ = (2¢h%)~! cubes of size h: ody e By v 1 £ 9050950 < )
For technical reasons which will be explained later, we only take the cubes H such that
H =1I; x1I;; x..xI;, where 11,1,...,44 are dll different. Denote the collection of these
Hsby R:={A;,i=1,2,.,r}withr:=|R|=r0 X (ro—1) X ... X (ro — d + 1), and denote
the centers of A; by «;.

2. The pyramid perturbation
The following pyramid function ¢ is the basic "perturbation” added to the uniform density.
It sits on the base [—h/2,h/2]? with a height hcg/2 (hcg/2 < 1); or more precisely, for
0% := (0,0,:.0) € BY, E i= {72 = (0,...,%,..0) € RY, 25 = hf2 ot — hf2}= facet set of
the hypercube [—h/2,h/2]%, define ¢(0%) = hey/2, and q(z4) = 0 for all z; € E. For any
z? € [—h/2,h/2]?, there exists a zg € E such that z4 is the intersection of the line connecting
0% and 2% with the facet set E. Since the line segment between 0% and any z; € F belongs to
the hypercube and any point in the hypercube belongs to such a line segment, it is sufficient
to define ¢ on this line segment as the linear function connecting (0¢, heg/2) and (z4,0).

For any A; € R with a center a;, define the pyramid function sitting on the base A; as



gi(z?) = g(2¢ — a;), and define the hypercube subclass on [0,1/2]% as

Fra = {fo(z?) =1+ Ia0iq(x® — a;) : 2* € [0,1/2)%, 0 = (61,05, ....8,), 6; = £1}

i=1

3. Extension from [0,1/2]¢ to J? = [-1/2,1/2]%
Observe that for any z¢ = (21, zo,... ,24) € J%, there exist 1 < k) < kg < ... < k; < d
such that z*? := (15 evey =Ty ooy =Ty o0y Tg) € [0,1/2]%. Define ¥ : J?¢ — [0,1/2]? such
that ¥ (z%) = 2*¢. For any set A C [0,1/2]? define A* := {z : Y(z) € A}. Any function g
defined on A C [0,1/2])¢ can be extended to A* as follows:
If 7 in the definition of 2'* is odd, define g(z?) = —g(Y(x%)); If j is even, define g(z%) =
g(Y(z%)). Every function in F, 4 is now extended to J¢ by the extension rule just described.

By the symmetry of the pyramid and by the symmetry of the functions in F, 4 introduced

by the extension rule, the tth order (V ¢t < d—1) marginal density of f; is the uniform density:

Jol Bk ns B )= f

s Fol 21y 0505 Bty ssos D) QBB Ry A pppe- .0y = 1.

Hence F, 4 C My. Note that fy’s in F, 4 are flat (= 1) on all the cubes not in R and
pyramid perturbations are added only to those cubes in R. In the case of d = 2, fy = 1
on diagonal cubes I; x I; (i = 1,..,79). This construction makes fs closer to the uniform
density than what we would have obtained by adding perturbations on all cubes. It also
makes possible the calculations of the lower bounds in the next section.

3. Nonasymptotic Minimax Lower Bounds on Redundancy: the Continuous
Case

In this section, we derive a minimax lower bound on the expected redundancy of any joint
density (or prefix code) s over the continuous Lipschitz Markov class M,. We bound this

minimax redundany from below by the minimax redundancy over the hypercube subclass

Frq and then mimick the Assouad argument to obtain a lower bound involving two char-



acteristic quantities of the subclass F, 4. and the calculation of one of them is rather tricky
in the Markov case.

For any joint density s(z") on J¢ = [—-1/2,1/2]",

maxsem, [ f(a")log(f(a")/s(a"))da"

> maxjer,, [ f@")log(f(e")/s(")ds"

= maxjer,, 3 By log((als' ) a(edla' )

> ST By [ ala' ) og( s sl
=

Q_TZZEJ;;—I/ {\/fg (| 1)—\/ (2¢]2t=1)} o da,.
t 8 =

The validity of the last step is due to the following inequality (cf. Devroye, 1987, p. 16): for
any two densities f and g, [ flog(f/g) > [(V/f - \/§)2 Also recall (1.2) and note that in
this Markov dependent case, although the expected redundancy still equals the accumulated
prediction error, but it is no longer the accumulated density estimation error.

For simplicity, we take out for analysis the {th term in the above expression, which is
the prediction error in Helling distance (or the estimation error for the predictive density).
We use the following notation z] := (z;, Zi41, ..., Z;), @l = mi = (B v 2 )y H0d. Oy End
¢ are two vectors which differ only at the ith coordinate. The following arguments are
essentially the same as Assouad’s in the iid case except for the step where Lemma A has to

be called for to deal with the dependence.,

Z_TzEfé‘l /1/2 (\/f6($t|93t_1) - \/3($t|mt_l))2d9’t
2 —-1/2
= B [} Gade) = ool st
20 Z/A S ol 1) = \fs(aifet1)Y dat_prda’-

J




= 7y [.x o2l @O o (o) = ofsarfatD)?
+f fg(_(zt"l)(\/fak_(mtsmtul) — /s(@ilat=1)")de!_yyqdat
Y [ A0 [ o Gl e x

min( fy;, (&°71), fo,_("1))}dal_ gy dz'™

= Tl Z{Z/ ¢ (%i-441)dT1g41 ¥
g =1

(=h/2,h/2]¢

v

f . min( fy,, ('7%), fo_(2'™%))dz""? by Lemma A in the Appendix
Jt=
= 972.9%.9" .ps / qQ(:};d)da;d %
[-h/2,h/2]4
'f{/ : ) t—d,. t=dyydpt—d
infg, S min( fo., (2%, fo. (2*7°))de
= 2¢.(r/4). / ¢*(z%)dz® - infy ; / min( fg,, (%), fo._(z"~%))dz* 2.
[—h/?,h/?]d [_1/231/2}t_d
Recall that 7 = r§ H;—1(1 j/re) = (2¢A%)-1 H?;%(l—j/?"g), and let ap := fi_p/9 /904 4 2(z%)da?
and assume for any 6 and 4, [;,_q min(fs,, (2*), fo;_(2*))dz* > Bj(¢). Then the last expres-

sion is bounded below by (4h%)™! ay, B(t — d) Hrl(l 7/7ra). To deal with 5, we note

that for any fixed ¢ and ¢

: t—d pt—d t—d t—d pt—d =
min(f¢, fi=H)dgt4 > 1 - 2-2] S fdggt-a. (0
~/[—1/2,1/2]3—d 1n(f9:+ i ) & = M _1/2’1/2]r—d f3‘+ f@,_ z ( )

Define @; := f[—1/2,1/2]‘ A /fg‘_+ f;l._da:t = f[_1/2‘1/2]t \/ng_ (zt) fo,_(at)dz'. Then Q; = 1 for
B0

yeeend— 1, and for t > d,

g = /
[=1/2,1/2]t

(fouy 9“t|33¢ d+1)fi9l_(mt|$f. al+1)d"m ( by (1) and (2))

f9L+(37t d41s - ,mzjfgl._(mt_dﬂ,...,mt)dmt, (by (3))

t
L1
-

(-1/2,1/2]* 1;[

because (1) the sequences corresponding to fy,, and fs,_ are (d — 1)st order Markov,

(2) by our construction of fps fo,, (21,...,24-1) = fo,_(®1,...,24-1) = 1, and hence (3)

f0€+ ($z|$§:i§+1) = f0,+ ($t—d+1, ---,ilft), fﬂg,(mtlx§:é+1) = fﬂ;_($t7d+lu ceey It)-
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Without loss of generality, for any A; € R we may assume A; = Iy X Iyj_1 X ... x I;.

A; = I x1I;, x...x I;,. Observe that f3i+(:r;d) = fo,_(2%) on A := (L7 xI;_;X...xI{)¢ and

(fory (2 a?) — 1) = —(fa,_(2%) — 1) on A;. For simplicity denote u( \/fg‘_i_ ) fo,_(z9).
The next few lemmas calculate oy and ;. Their proofs can be found in the appendix.
Lemma 1 (i) an = [_j /0 /904 ¢°(2%)da? = c3h¥+?/(64).

(i) G4 = f[—1/2.1/2]d u(z®)dz? = 1 — ¢y, where ¢j, 1= fA. Ddat < 2%cFh 2 /(6d).
(iii) f[_1/2,1/2]t-d f]; f]; u(a')dzy...dey = Qg - Qt—a-

Lemma 2 Fort > d, Q; = Q¢—1 — cr@i—d-

Lemma 3 Fort>d, Q; > 1—(t —d+ 1)c.

For ¢t > 2d, by (0.1) and Lemma 3,

. j ] 1+d/2
o ™ ) 2 L= a2 1)l

Hence
Lemma 4 For ¢ > 2d, B4(t) > 1 — ¢g(20)+¥2\ /1 —=d +1)/v/6d. O
Plugging Lemmas 1(i) and 4 back into (3.1), we obtain the following minimax lower bound

on the per symbol redundancy over Markov sources induced by F, 4 and hence over M :

n 1h —d Zhd+2
n! Z - (1— eq(2R)1*942, /(2 — 2d + 1)/V/6d) H(l—J/TD)

t=2d
=1

> 47'cih?/(4d) (1 — 2d/n - (2/3)v/ncy(2R)+/% [v/6d) H(l ~ 1) (0.2)
i=1
where rg = (2h)71. Choosing h such that (2/3)/nca(2h)'*%?/+/6d = 1/2, the redundancy
lower bound is
c2/(48d) n= (42 (1 — 4d/n) 1:[ 1-j/ro),
where 7o = 18 - (c¢2/d)!/(4+2) . p1/(d+2), .

Similar arguments give a minmax lower bound on the Kullback-Leibler density estima-

tion error for the joint density of d-tuples over the class M,. Hence we have



Theorem 1 There is an ng > 0 such that for n > ng, any prefix code s on 2™ and any

density estimator g based on 2",

maxfeMd/[' - f(z™)log(f(z™)/s(z™))da™ > Ag - (1 — 4d/n)n_2/(d+2}, and
—1/2,1/2]"

o 410 d 42\ J g™ . =2/(d+2)
masiemy | J@ [ SG R sy " 2 (Adf2) 7

[=1/2.1/2
where A4 := ¢3/(32d) Hf;ll(l — j/ro) and 7o = ((8/27)c3/d)}/(4+2) . p1/(¢+2) O

Remark: We may choose ng to be the smallest n larger than 4d such that
cgh/2 = [(27/8)d/(ct)n~1]1/(4+2) < 1. Tt is believed that the rates in the theorem are
optimal and can be achieved by a histogram estimator g and a code s based on histogram
predictive densities, cf. Yu and Speed (1992).

If our class is so large to include Markov sources of any order, it would also include My
with d = d,, := logn. Suppose that the Lipschitz constant ¢y is independent of n. Note that
Hf;ll(l —§/10) > (1 = dpro)®™ = (1 = 2hpdy)* and limp_eon~2/(@+2) > 0. In Theorem 1
we take h, = 1/d% = 1/(logn)? to obtain:

Corollary 1 For d, = logn, and ¢4, = ¢; < 00,  ¢g > 0, and np > 0, for any n > ng,

any code s on 2™ and any density estimator g

maXfeMd/ f(z™)log(f(z™)/s(z™))dz™ > co(logn)~®, and

" J-1/21/2

maxses, [ f@) [ ) log(f(r)/g(vs" My da" 2 (co/2)(logn) . O
[-1/21/2]" [-1/2,1/2]*

The above result says that there is no universal redundancy or density estimation rate faster

than (logn)~® over the class My,. We now change the classes My, and F, 4, slightly by

5/2

relaxing the finiteness of ¢g4 to ¢y = ¢y, := (logn)>? and replace ¢ by min(q,ap) where

10



ap < 1in order to avoid f’s in F, 4, being negative. Note that ¢} h2 = d, and

o = ] min(qZ,ag)dmd:(2/3)hic§n/(4dn)hi[l—(1—4@%/(e§nhi))d“]
[~h/2,h/2]4

(2/3)hie, /(4du)hi[L = (1= 4ad/dy)™] = h3[1 — e4%].

Similar arguments as used to obtain Theorem 1 give
Corollary 2 For d,, = logn, and cq, = (logn)®/2, 3 ¢ > 0, and ng > 0, for any n > no,

any prefix code s on z™ and any density estimator g.

max e, ., /[/ e TV OB () (& da" 2 o, and

MAXfeMay,c, ][_1/2.1/2]n

@) [ e OB 05 )y " 2 cof2. ©

4. Discussion

All the Markov sources corresponding to densities in class My, with ¢g, = (log n)sf 2 have
bounded transition kernels and hence are ¢-mixing, Doob (pp. 215, 1953). Thus the class
M = U3Z, My is a smooth subset of continuous Markov sources of all orders. Not only
the ergodic theorem holds for this class, but also the CLT. Therefore we reach a similar
conclusion in a nonparametric setting as by Shields (1991) in the finite alphabet parametric
setting. (In fact, the same technique can be used to obtain a similar result even in the finite
alphabet case, cf. Yu, 1992). Our proof is more direct and the explicit construction of the
hypercube subclass F, ; provides something more concrete than a proof of non-existence
of the universal redundancy rate. For fixed r, it is those well-separated elements in F, 4
that make the universal coding task so hard: no code can be good simultaneously for all of

them. For any fixed sample size n, 7 has to be chosen accordingly to make sure that the

complexity of F; 4 resembles M’s.

11



Corollaries 1 and 2 also illustrate a well-known fact or drawback of minimax results,
that is, although in many nonparametric estimation problems, minimax lower bounds are
the only existing criteria against which we may compare estimators, they depend heavily
on the classes chosen a priori. If we may assume that researchers agree that the smoothness
conditions on the density in iid case are reasonable, then how about the dependent case?
Which of the two classes in Corollaries 1 and 2 is more appropriate? Should we relax the
uniform boundedness condition on the ¢4, ? Intuitively, the more homogeneous the class,
the more meaningful the minimax result. In other words, if all densities in that class are
close to be equally likely, the worst case becomes an average case. In fact, the minimax
redundancy (or density estimation error) was bounded below by the average redundancy
over a homogeneous class F, 4 or the Bayes redundancy with the uniform prior on ¥, 4. The
other hope is to rely on the consensus on smoothness conditions. In the case of a Gaussian
process, dependence measured by a certain (f) mixing condition is equivalent to smoothness
conditions of the spectral density. The smoother the spectral density, the less dependent the
process. And this connection is true in general at an intuitive level. Hence we may compare
the two classes in terms of the smoothness of the their spectral densities. Roughly speaking,
for the class F; 4, the smaller ¢, is, the closer the density is to the uniform density so the
Markov sequences generated by the densities should be closer to the uniform independent
sequence. How much more dependence is introduced when we increase ¢4 to (log n)®/2? Will
this extra dependence alter the smoothness of the spectral density? It turns out, however,
that it is no easy task to calculate the mixing coefficient even in the Markov case and even

when the explicit formula of the transition kernel is known. Further investigation is needed.
Appendix
Proof of Lemma 1: (i) Observe that the surface of ¢* is a curved (inward) pyramid with

12



the height ¢2h?/4 and we may write any point on the facets of our hypercube [—h/2.h/2]¢
in terms of the polar coordinate system as (¢,ly) for some ¢ € ®. (Note that & = (0,27)

when d = 2 and ¢ is a vector for d > 2.) Then by Fubini’s theorem

Vg := volume of the curved pyramid
l
= f ¢*(zh)dz? = / /%d,z?dqua = (1/3)/ byl dep;
[h/2,h/2]4 @ Jo o
V, := volume of the pyramid sitting on[—h/2, h/2]? with the height ¢3h*/4

2 f@ /0 l¢bfj,zdzd¢:(1/2) jp b412ds,

where, to match the height of the pyramid and the curved pyramid, bﬂi = byls. Thus

¥, = (1/2)[}5;1@@5 and V, = (1/2)Ab¢lzd¢,

which gives, using V, = c3h4*+?/(4d), V, = (2/3)V, = c2h*+?/(6d).

(i) ¢y = (2h)° —] u(z?)dz? = (2h)% - Qd/ u(z?)da?.
A* A
On A7, uw(z%) = /1 - ¢% > 1 — ¢°. Hence

1_2ddd:2d/ 2(28) Jp?.
(A-fahiat =2 [ et

en < (2h)% — 2df

[—h/2,h/2]¢
(ii) is proved by plugging (i) into the last expression.

(iif) For 1 £ & < d, lot vp(Begs oo Bpk) 3= fI}: ---f[; B st s ovns o) BBl
Obviously; v = Qi Since WP diay s — By ses —80) = R Bpdpasnens Beksons ) 00 I %
... X I7, integrating out 4, ..., 2;_x41 and using symmetry of the integration domain /; x ... x
I{, we obtain that, for any fixed (z;—4,...., Z4—k—1), vx is an even function of z;_; on i,
namely, vg(Zs—g, ..., —Ti—k) = Vk(Zt—d, ..., T¢—k). On the other hand, e(i—g—g+1,..-, Ti—k) 1=

Wt ekl s -y Te—k) — 1 = fo,, — 1 is an odd function of 2;_; on I, 1, because z¢_k € I},
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SO (Tymdebt1, - Ti—k) & Ai = I X ... X I}. Therefore, vie is an odd function of 2;_; on

Ii,y, and _
f VE(Ttody oory To—k)U(Btmdmkt1y ooy Ti—k)ATo—k
T
= / vk(wt—da reey xt—k)[l + e(zt—d—k‘i‘lﬂ L xﬁ—k)]dﬂ:t—k
i
= /* Vil ooy T VR
Ik+1
Finally,

/ j / f u(:ct_dﬂ,...,art)dmtu(mt_d,...mt_l)dmt_l...dmt_d
[-1/2,1/2)—4 JT} nJn

2

= / f f Ul(mt—da caey .’Bt_'l)'ﬂ.(wt_d, ...$3_1)d$tm]_...dmt_d
[-1/2,1/2]t—4 /I3 iy

2

= / /Ud—l(fﬂt—d+1)u($t—2d+1=---wt—d+1)dmt7d+1---
[-1/2,1/2]t-4 J T}
’Ud_]_(.’.u"tu.d.i,l).,ﬂ?til)u(mt_d,...J?t_l)dﬂft_l...d.fﬂt—d
= ’Ud/ u(.’ltt_d)d:ct_d =@Qq -Qi—g. O
[-1/2,1/2]t-¢

Similarly to the proof of (iii) above, we can prove the following lemma.

Lemma A

~/J‘—d / ,.( V f0‘+ ("T:—d-ﬁ-l) ={ fé‘i—(mg—d+1))2min(f95+ (mt—l), f9;_(zt—l))d$§_d+1d$t—d
= [ (o ean) - (s elaa [ %

min( fo;, (2"7%), for_(z"~%))dzi_g (A1)

> Qd-/H/z hmdqz(md)d?cd-/ﬁ_d min( fo,, (2'™%), fo,_(2'7))d2,—y (A.2)

Proof: Note that for '~ . € It x ... x I, mt:j e AT= % x5 =1,...,d— 1.
t—d+1 € 14 23 g ey : d 1

Hence

fﬁ';’+ ($t'_1) = f@.‘+ (:':t—da sery mt—l) X f@.‘+ (Et—d—ls "'axt—2) X X
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flg“.i_ (3)3_2(1, SR zt—d‘l‘l) X f9|+ (mt_d)

= @iy s 1) X U(Bedt eeer Temz) X oo X WDty oy Tr—ar) X for, (275

Fi. 1071 = Bl gres®ea) X Jo (Biiay on Bea) K o %

fgi_(mi—?da veey mt—-d+1) X fei_(mt_d)

= W Pheidyovs Bhead) 7 Bt Big) ¥ v X B Brgdivvn Brdpr ) % Toi (mt_d).

o ] 0@l = (@) X min oy (2474, o (o))t g a s
= /:;t—d ./*(\,n‘ fg“.;.(:ci—d—f-l) - ( fg.'_(:ri._d_Fl))z X u(i:t—a!a -“axi—l) x

W(Ttmd—1y ey Te—z) X oo X W(Ti_2d, vy Te—gq1) X min( fo,, (m"‘d),fgi_(ast“d))d:cz

which, by a similar argument as in proving Lemma 1 (iii), equals the right hand side of

(A.1). (A.1) is straightforward after noting that on A;

(fa; (xt—d 1)_f0‘_(”"§~d 1))2
(v foiy (@h_ipa) =/ for_ (2} _ 1))2 = =Lt = —3
\/ i - \/ : & \/f9='+ (mi—d-u) 5= \/fﬁs_(mi—dﬂ))z

(\/f9e+ (ELLHJ) 7 (\/fe.-_(ﬂu'ﬁ_d+1))2 = foi, + Joio + 24/ o, Sor_

= 1+Qz+1“Q1+2\f1_q;2§45 and(f3g+_’f95_)2:4(h'2- t

Proof of Lemma 2: For any 1 < k < d, define

Ti(t ::/ /
k( ) * [—I/Z,I/Z]t_d{ Id_

U(t_2d42s ooy Ttmdp1) BT d g1 JU(T1—2dp 1y oey Ttmd)dTi—g X oo X (21, o0y Tg)dTgdTgy...dT1.

{] . u(.’l‘,t_k_cH_l, ...,.‘L‘t_k)d$t_k] A e 2%
k 1

Moreover, let By := {(¢1,%2,...,%4) € R : ikp1 = d—k,...,14 = 1}, then By = {(d,d—1,...,1)},
|Bo| =1, By = {(4,d—1,...,1): j = 1,2,...,70}, |B1]| = r¢, and By N B; = §. In general,

|B| = 7§ and By Bi = ) for 344,
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For any (i1, g, ...,1q4) & Ug;})Bk, fo.y = fo,_ on I x ... x IT , by symmetry of f'sin F, 4,

14’

j:ﬁ_df‘ j* z')dzydz,_y...dxy = (2h) ]Jt d/‘ /* da?t 1e..dzy
i i

tg_1
= ...:(Qh)d-][ P e L CO ST

For any (41,12, ...,%q) € Br (k > 1), similar arguments give

/ : d]’ /~ uw(zt)dzdzsy...dzy = (Qh)k - Tx(1).
[-1/21/2]=4 /1, s

If (41,142, ...,%4) € Bo, (i1,%2,...,24) = (d,d—1,...,1). Then by Lemma 1 (i) and (ii),

/ f / (o ooy = Qi Qi = ((9R)P — £ )0
[-1/21/2]-4 /1y, i

On the other hand,

@t = / d_/ f w(zt)dzsdzs_y...dz,
. : -5, (-1/2,1/2' =4 J1 ¥

B / / / SE —_—
; Z 12,1 /2)—4 J 12 . Ty —1...421

d-1
= (r§ = > IBeD)(2h)*Qo-a + [(21)* — e4)Qi-a
k=0
+ / / / u(et)dzdz;_q...d2y
Z s 12'168 1/2'1/2]t—d ;1 '_yd tllg
d—1
= (15— rd = = 10)(2R)*Qumd — enQia + Y rE(2R)FTk(2)
k=1
d—1
= (rh—r67 = = 10)(21h)*Qu—d — enQeoq + D Ti(2).
That is,
d—1
Qt = (‘T‘g e Tg_l LN = To)(Qh)th—d = CthLd -|- Z Tk(t). (AS)
k=1
Similarly, T4(f) = Qp-q — (vt =282 — ... = 1)(2R)9-1Qy_yg — Ta(t) — Ta(t) — ... = Ta_1(t).
Hence Ei;% Te(t) = Qi1 — ( - Tg_l — . — 10)(2h)%Q_q4, which, combined with (A.3),

gives Q1 = Q41 — ¢ Qi—q. O
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Proof of Lemma 3:

e = Qt—l == Cth—d
= Qi3 —chQi—dg-1 — Cth—d since Q¢—1 = Qi—2 — chQi—a—1
= Qi3—crlli—d—2 — chQt-d-1 — chQt—q since Q—2 = Q1—3 — chQt—d—2

d—1

= (1—cn)@Qt-da— Z; Qt-d-;

= (1-ca)@t-d1 J——(1 —en)enQi-2d — ch(Qi—d-1 + Qt—d—2 + ... + Qi_2a41)
= (1-2c)Qt-d-1 — a(Qt-d-2 + Qimd-3 + - + Qr-24) + ¢} Q124

> (1-2cn)Qt-d-1 — cn(Qt-d-2 + Qt—a-3 + ... + Qt—24)

= (1-3ch)Qt-d-2 — ch(Qt—d—3 + Qt—d—a + ... + Qr—24-1) + QCﬁQt#M*l

> (1-3ca)Qi—a—2 — ch(Q@t-d-3 + Qi—d—a+ ... + Qt-24-1)

2

> [1—(t—2d+1)ep]Qa — cn(Qi—1 + Qa2 + ... + Q1)

= [1—(t—2d+ Den)(l—cp) = (d— 1)ex

> 1-(t—2d+14+14+d=-1)ep=1-(t—d+1)e;. O
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