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Abstract

Nonhomogeneous Poisson process (NHPP) with Weibull intensity has been widely
used in modeling reliability growth (RG), and some elegant results are available for sta-
tistical inferences. However, a key feature of this model, namely, the intensity changing
continuously over time regardless of the failure history, is not physically meaningful if
fixes or design changes for a system improvement take place only after the observation
of failures. For a test-fix-retest setting, we propose a simple stochastic model of RG,
called a piecewise exponential (PEXP) model, which assumes that, after the (i — 1)st
failure, a homogeneous Poisson process with intensity A\; = (u/8)i'=%, 1 < §, 0 < p,
governs the event of the next failure. The step intensity with this particular parameter-
ization provides an alternative to the NHPP as a stochastic formulation of the Duane
plot. By an analogy with the NHPP, closed-form estimators of the model parameters
are constructed and are compared to the maximum likelihood estimators (MLE) in
terms of asymptotic efficiency as well as finite sample simulation. The development of
asymptotic properties of the MLE’s involves some modifications of the standard argu-
ments due to the singularity of the covariance matrix. The proposed model is applied
to two data sets which were previously analyzed using the NHPP model.



1 Introduction

Modeﬁng reliability growth has received considerable attention in the statistical and engineering
literature over the past three decades. At the initial stage of any production involving complex
systems, prototypes are put into life test under a development testing program, corrective actions
or design changes are made when failures occur, and the modified system is tested again. As this
test-redesign-retest sequence contributes to an improvement in the system performance, failure
data become increasingly sparse at the later stages of testing making it more difficult to assess the
current reliability. A reliability growth (RG) model provides a structure through which the failure
data from the current as well as previous stages of testing could be analyzed in an integrated way
in order to make inferences on the current system reliability.

A major thrust to RG modeling rose from certain empirical findings of Duane(1964) from exam-
ination of the failure data of a variety of systems such as complex hydromechanical devices, aircraft
generators and jet engines in the course of their development. When plotted on a log-log scale, the
cumulative number of failures was typically found torproduce a linear pattern of relationship with
the cumulative operating time. This phenomenon, later came to be known as the “Duane postu-
late”, was given a concrete stochastic basis by Crow(1974) who assumed that the failures during
the development stage of a new system follow a nonhomogeneous Poisson process (NHPP) with an
intensity function A(t) of the form p6t°~1, The corresponding cumulative failure rate A(t) = utf
is linear on a log-log scale. Incidentally, an NHPP formulation was proposed by Ascher(1968) in
modeling the reliability change of a bad-as-old system, and was later used by Bassin(1969, 1973)
with the Weibull intensity to obtain optimal overhaul intervals for various machines. A large body
of literature has evolved thereafter in the areas of statistical inferences as well as applications of
the NHPP model in RG analysis (see, for instance, Crow(1974), Bell and Midouski(1976), Finkel-
stein(1976), Lee and Lee(1978), Bain and Engelhardt(1980, 1982), Durr(1980), Lee(1980), Higgins
and Tsokos(1981), Crow(1982), Rigdon and Basu(1988), Guida, Calabria and Pulcini(1989)).

For single-mission systems such as missiles or torpedos, the test results are binary in nature as
opposed to time-to-failure in a continuous-time framework. The NHPP model in the continuous-
time case has yielded a natural counterpart for the discrete case, which is called a Logarithmic
Growth model or a nonhomogeneous binomial (NHB) model. Some estimation procedures were

suggested by Finkelstein(1983), and asymptotic properties were studied by Bhattacharyya, Fries



and Johnson(1987) and Bhattacharyya and Ghosh(1988).

In the continuous-time case, the NHPP has gained vast popularity due to its empirical fit to
a variety of data vis-a-vis its conformity to the Duane learning curve, and availability of elegant
distributional results concerning statistical inferences. While empirical fit, nice mathematical prop-
erties and tractability of statistical inferences are very important aspects of a stochastic model, a
clear physical interpretation is also of paramount importance. Duane(1964) indicates that a learn-
ing curve is used to monitor developmental progress and plan for reliability improvement. One
point of concern with the NHPP model is its continually changing intensity function irrespective
of the failure history, which is in direct conflict with the concept.of the Duane learning curve as
well as the conceptual framework of a test-redesign-retest course of development testing. If system
improvement is assumed to be effected only after a failure is observed, a realistic model should be
flexible enough to incorporate a change in the failure rate at the occurrences of the failures. Thomp-
son(1988) expresses the same concern by saying that “. .- some provision needs to be present for
altering the process of failures when modifications or corrective actions are applied to the system”.

This is however, not to imply that the NHPP is inappropriate in all cases. Much depends on
whether failure occurrences and fixes or design changes are synchronized in the real operational
setting. Even if they are, an NHPP can be thought of as an approximation or “idealization” of
a step-intensity model, as mentioned in Benton and Crow(1989). Our goal here is to formulate a
model that avoids the approximation and also to make a comparative study of the two approaches of
modeling. The discrete model which assumes that the probability of a failure decreases from stage
to stage irrespective of the outcome of a trial, also needs to be modified for an operational setting
where no design changes are made until a failure is observed. The continuous-time model described
in this paper yields a discrete analog which handles this concern in a physically meaningful manner.

A continuous-time RG model, called Piecewise Exponential (PEXP), is formulated in the next
section as a stochastic version of the Duane learning curve. In Section 3 we describe estimation
procedures for our model and derive large sample inference results. In Section 4 some simulation
results are reported along with a comparative study of the different estimation procedures. Finally,
in the same section, we fit the PEXP model to two data sets which were previously analyzed under

the assumption of NHPP, and compare the results.



2 The PEXP and related models

We incorporate the philosophy of learning curve into building a simple model for reliability
growth. At the initial stage of testing, we consider a unit to have a constant failure intensity
A;. At the first failure, fixes or design changes are made, thereby decreasing the rate of failure
to a constant Ao, and the modified unit is tested again. In this process we consider observations
until » failures (failure truncated scheme). Then the data would consist of n ordered failure times
0 < Ty < Ty < ... <Tyn A constant rate of failure prevailing at each stage of testing and
the rate decreasing at each failure (after the corrective actions are taken) would amount to the
assumption that the inter-failure times 7; — T;—; are independent exponential random variables
with means 1/X;, i = 1,...,n. As for the pattern of change of failure rate in the successive stages,
we assume the parameterization

1 (it

;o =[G/t w>0 ¢ 1 (2:1)
and call the resulting model Piecewise Ezponential, abbreviated as PEXP. Here A; is parameterized
in a way that makes the model a stochastic version of the Duane postulate. To this end, we recall
that the NHPP intensity A(t) = ,uﬁt‘s‘ll was already formulated as a reflection of the Duane curve.
Therefore, it would be appropriate to have a structure for A; that would bring it in line with the
NHPP intensity.

To pursue this idea of “parameter matching” we observe that the cumulative failure rate at
the nth failure time, [, A(t) dt, equals pT¢ and Y7, M\(Ti — Ti-q) for NHPP and PEXP,
respectively. Since both quantities equal n in expectation, they form a common basis for matching
the two models. Equating pT? to its expectation m amounts to setting the correspondence of
T, with (n/p)/® = n%/u', where y' = p'/and 6’ = 1/6. Consequently, T; — T;—; would
correspond to [i¥ —(i—1)%]/y/. Finally, we replace the random variable T; — T;_; by its expectation

under PEXP model, and arrive at the relation

1 ==

A u
For large i, the right hand side can be approximated by (é'/p' )i¥'~1 which yields (2.1). Alternatively,
we can directly motivate (2.1) as a model of “logarithmic growth” of the failure rate. Henceforth,

for clarity and notational convenience, we shall drop the primes attached to the parameters.



A continuous-time Markov chain with a step-intensity is termed as a “Pure Birth Process” in
the stochastic processes literature. Two special “Pure Birth” models, namely, the Yule Process
for which A\; = ¢\, and an epidemic model for which \; = (m —1)iA, i < m — 1 have
received considerable attention. Jelinsky and Moranda(1972) formulated a step-intensity model
which assumes that the inter-failure times T; — T;_; of a software are independent exponential
with parameters A; = (N — i+ 1)¢, where N denotes the unknown number of faults in the system
and ¢, the rate of occurrence of the faults.

Discrete Analog of PEXP

Concerning the test-redesign-retest cycle of development program for single-mission systems, a
discrete analog of the PEXP is readily apparent. At each stage (configuration), independent trials
are repeated until a failure is observed. Fixes or design changes are then made, and the modified
system is tested again according to the same inverse sampling scheme. Then N;, the number of
trials to the first failure under the ith configuration, can be modeled as a geometric (¢;) random
variable where g; denotes the system failure probability. As for a reasonable structure for ¢; that
mimics the Duane postulate, we consider each trial to take a unit amount of time. Then the number
of trials N; between consecutive failures in the discrete case would correspond to the inter-failure
times in the continuous case for which the PEXP model is appropriate. Thus taking ¢; to be of the
same form as the A\; for PEXP, we arrive at a Piecewise Geometric model with logarithmic growth.

Specifically, the failure probability at the ith configuration is given by
TR ) v T (ST R T R

An alternative parameterization, namely, ¢; = wué*, yields the discrete RG model due to Dubman
and Sherman(1969).

A Generalization of the PEXP

The PEXP model assumes that the failure rate remains constant between failures. A natural
generalization of the model would be to incorporate into the intensity function another component
that changes continually with time. The role of the second component would be to account for
such factors as wear out or other contributors to failure that are not affected by design changes.
Essentially, we assume that the failure process has two components : one relates to the step intensity
indicating reliability growth following an intervention, while the other pertains to reliability changes

(i.e. degradation) not associated with the intervention.



To formalize this idea in a concrete physical setting, we consider observing the failure time of
a two-component series system where the components are subject to two kinds of failures. As for
the mechanism of the test-analyze-fix program, we assume that every time the system fails, fixes
or design changes are made to component A while component B is replaced by a good-as-new unit
(see Ascher(1968)). Consequently, component A undergoes reliability growth, while the clock for
the failure process of B is reset to zero at each system failure. If Ty; and T,; denote the lifetimes of
A and B, respectively, at the i-th stage of the development program, then the system inter-failure

time T; — Ti—1 equals min(Ty;, Tbi), i=1,...,n. We further assume the following :
1. For all i, T1; and Ty; are independent (independence of the components).

2. Ty;'s are independent exponential random variables with parameters A; (step-changing pat-

tern) while T;’s are i.i.d. copies from a Weibull distribution W(A, 3).

These amount to the assumption that the successive failures arise from a composite intensity

function
Mt) = Ang + A8,

where N(t) stands for the number of system failures in the time interval [0,t). Bain(1978, pp 421-
426) discusses a model where the failure rate is a polynomial in t. Note that our formulation is a
generalization of the polynomial hazard function model in that it allows the constant term to be a
function of the cumulative number of failures, and the power of t to be a positive real number. This
model yields the PEXP as a limiting case when A — 0 (or when only component A is present). In
the rest of this paper we confine our investigation to the PEXP which itself is physically meaningful

and serves as a simple alternative to NHPP for reliability growth modeling.

3 Parameter Estimation foi‘ PEXP

In this section we develop estimation procedures for the parameters of PEXP. We first study
_ maximum likelihood estimation (MLE) which requires iterative solutions and also gives rise to an
interesting non-standard situation of asymptotic theory. This will be followed by the development
of an alternative simple estimation procedure which is motivated from the connection between the

PEXP and the NHPP models.



3.1 The MLE and its Asymptotics

The likelihood of the failure times 7} < T; < ... < T, under a failure-truncated sampling scheme
can be written by using the fact that ¥; = T; — T;_; are independent exponential random variables
with means 1/A; = (§/p)i®1, i=1, ... n. For simplicity of exposition, we write the mean in the
log-linear form (exp(3'x;j)) where 3’ = (81,82), 1 = log(6/p), B2 = é6—1 and x! = (1, logi).
The log-likelihood is then:
logl, = — 5'ix; - Zn:Y,- exp(—03'%x;)
=1 1=1

and we have

Pa(8) = 81(;};14 = =) xi + Y ezp(—B'x)x; (3:1)
=1 1=1
9*logl & , ,
AB) = — Gaog = LY eonl-Fxa (3.2)

Expression(3.2) shows that A,(3) is positive definite so v, (3) is strictly concave. However, the
likelihood equations ,(3) = O do not seem to have a closed form solution. Numerical solutions
can be obtained through standard iterative methods such as the Newton-Raphson or the scoring
method. We proceed to derive the large sample properties of the maximum likelihood estimates.
In our subsequent discussion all limits will be taken as n — oo unless otherwise mentioned. Also,
the symbol ~ placed between two functions of n will indicate that the ratio of the two tends to 1
as m —> 00,

Denoting the true parameter point by 3,, we define

w-n. = 'llb'n,(ﬁ(])! An = Aﬂ(ﬁO)
Yo = Y;emp(_ﬁé)xi)} e; = Yio — 1, i = 1!27"'7”'

and note that e;’s are i.i.d random variables with zero mean and unit variance. Using (3.1) and

(3.2) we can then express %, and A, in terms of e;’s as :

llbn llna !211.) Ze X4

! !
Sxid + e
=1 i=1

An



These in our special case, have the components

n n
in = Y €, lwm = ) elogi
=1

=1
m n n

anl = Ze,- + n, a2 = Zeglogz’ + Zlogi
i=1 =1 =1

wn = Y elogit + Y (logi) (33

=1
We state a general asymptotic result for the sum of powers of logt which will be repeatedly used

in the sequel. The proof is easy and hence omitted.

n
Lemma 3.1 For all fired nonnegative integer k, n~(logn)™*> (logi)* = 1 — k(logn)~'ex, where
=1

€xn converges to 1 as n — 0.

Let
. .
Ur = n'l’lz(logn)_kZe.;(logi)k B =012 (3.4)
i=1
Zn = (Zin, Zan) = (00, 0% (logn) Han)' (3.5)

Lemma 3.2 Asymptotically Z, is bivariate normal N2 (0,X), where & = 11/ ¢s singular.

Proof : From (3.4) and (3.5) identify Z;, and Z3, to be Ug and Uy, respectively. By the central
limit theorem the asymptotic distribution of Up is standard normal. Also, Up — U1 = 0p(1)
because E[Ug — Uj] = 0 and Var[Up — Uy] converges to zero by virtue of Lemma 3.1. The
stated result then follows. //

The singularity of £ poses a problem in doing the usual Taylor series expansion proof for the
MLE’s. This situation is very similar to one encountered by Bhattacharyya and Ghosh(1988) in
the context of a nonhomogeneous binomial model. In order to use their line of arguments we will
show that although the scaled matrix of second derivatives of the log likelihood is asymptotically

singular, the probability that it is positive definite tends to 1. To this end let us denote

a11(3) a12(B)/(logn)
a12(B)/(logn) azz(B)/(logn)®

Cn(B) = n7!

Cn

I

Cﬂ(ﬁﬁ) = (Cij)a dp = l Cnl (36)

7



Lemma 3.3 (i) C, E 2, (ii) (logn)%d, sy,
Proof : (i) From (3.3) and (3.6) we obtain,

c11 = n—l/zUo + 1

c1g = n'l’lel + (nlogn)‘IZlogz'

=1

cz = n VU, + n‘l(log’n)'Qz:(logi)2 (3.7)
=1

Hence (i) follows from Lemma 3.1 and the fact that Uy = Op(1).
(i) Note that  d, = (nlogn)~%(ajjazz — a?,), where (using (3.3) and (3.4)) :

a1 = n(l + n_1/2Ug)

n
a1z = n(logn)[(nlogn)™> logi + n/?U;]

1=1
a2 = n(logn)*[n~"(logn)=23 (logi)* + n~'/20}]
=1
Using these expressions, (logn)%d, equals

n T 2
(I - n-lfog) [n“IZ(Iogi)z - n'l"?(logn)zUz] - [n_lz(logi) + nY%(logn)Uy

=1 i=1

n n 2 m
{n_lz:(logi)2 — A (Zlogi) } + 2~ 3g, [n—IZ(logi)z} + n~Y2(logn)*U,

=1 =1 =1

— 2072 (logn)Us[n™'Y " logi] + n~'(logn)*UoUz — n™'(logn)*U}

=1

{n—l i‘(logi)? £, (n_lzn:logi) } + 0p(1) (3.8)
=1

=1

The last equality follows by observing that 3" ,(logi)* ~ n(logn)* and n~'/%(logn)*U; = o,(1).
Using the identity n=' 3%, A2 — A% = n~ ', A2 — h*? with A? = h; — Ay, the nonrandom
term in the braces in (3.8) can be written as

1 ' ) 1> ' 2
~>_[log(i/n)? - [Ezlog(%/n)}

i=1 =1

2
which converges to [, (logu)? du — [fol(logu) du] =riat Y
Part(ii) of Lemma 3.3 yields the crucial result that P[d, > 0] = P[(logn)*d, > 0] — 1.

8



Therefore, defining the set G, = {d, # 0}, we form the perturbed inverse of C, as
F, = C;'I(Gn) + LI(GS) (3.9)

where I denotes the the indicator function and I, the 2x2 identity matrix. Assume that,(3) = 0
has a solution E,; == L 31,1, Egn). The appropriate neighborhood of 3, in which the solution exists

is specified in Lemma 3.5. A Taylor expansion of 1[7”(5;) = 0 around [ yields

$a(Bo) = An(Ca)(Bn — Bo) (3.10)

where (,, is on the line segment joining ,C"}; and Bg.

Defining,
Win = 0/%(logn) ™ (Bin — B10), Wan = n'/*(Bon — Ba0), Wn = (Win, Wan)'
we observe from (3.5) and (3.10) that

Zn = (logn)Cn(¢, )W (3.11)
K, = (logn) 'Fp2, = Fp.Cn((,)W, (3.12)

Lemma 3.4 Asymptotically, K, is bivariate (singular) normal N5(0, ;) with
1 -1
Proof : We observe that on the set G,
1 c22 —C12 Uy
Fuly = —
dn [ =C12 ‘1 Uy
where, using (3.7) and Lemma 3.1, we write

en = nVp 4+ 1
2 = n YU + 1 — (logn) e

n‘1/2U2 + 1 - 2(!0gn)‘162n

C22
Denoting K = dn(logn)’K,, we have
K;n = (lOQ‘ﬂ)(ngUo = Clel)
= (logn) [(n"20; + 1 = 2logn) e ) Uo — (7201 + 1 — (logn)™e1n) Uh]
= (logn)(Uy — U) — Up + Op(].)



The last equality follows from the fact that (Up, Uy) is asymptotically distributed as N(0,11"). By

similar steps, it follows that

K3, = (logn)(Ui — Us) + Us + op(1)

= -Ki, + 0p(1)

By characteristic function argument for exponential random variables it can be shown that
(logn)(Up — Uy) — Up has an asymptotic standard normal distribution. The stated result then
follows by observing that (logn)*d, converges to 1 in probability (by part(ii) of Lemma 3.3) and
the fact that on G5, K, = (logn)™'Z, = o0,(1) (by Lemma 3.2). // (

Lemma 3.5 Define a sequence of neighborhoods of 8g by :

Ma(Bo) = {(Br, B2) : b1 = Bro + m(logn)n™, By = oo + mn™", ||7|| < h},

where v and h are fired numbers, 0 < v < 1/2, 0 < h < oo, and 1y, T, are real. Then
Fo[Cu(8) — Cn] = 0 uniformlyin B8 € M,(By).

The proof rests on showing the uniform convergence of certain exponential functions that arise in
the expressions for the mean of the elements in C,(3). The details are outlined in the Appendix.
The main results concerning the existence and asymptotic normality of a consistent sequence

of roots of the likelihood equations are stated in the next two theorems.

Theorem 3.1 (Existence) With probability tending to 1 as n — oo, there exists a sequence
of roots E,; € Mn(By) of the likelihood equations. Furthermore, such E);’s correspond to local

mazima of the likelihood function.
Theorem 3.2 (Asymptotic Normality) Wy, is asymptotically bivariate (singular) normal No(0, ).

The proof of Theorem 3.1 follows along the same lines of the proof of a corresponding result in
Bhattacharyya and Ghosh(1991) and is outlined in the Appendix. As for the proof of Theorem 3.2

note that
Fncn = I2I(Gn) i Cn(ﬂO)I(G;‘;)

By Lemma 3.3 we have, P(G,) — 1 and C, L, 9. We can then conclude

F.C, S B (3.13)

10



Equation (3.12) gives
Kn = Fncn(Cn)Wn == Fn[cﬂ(Cn) - Cﬂ(ﬁﬁ) + cn(ﬁO)]Wﬂ

For ¢, € Mu(Bo), Lemmas 3.4-3.5 along with equation(3.13) then yields the result. //
Consequences
(i) Noting the parameter relations 3y = log(6/p), B2 = 6 -1, wecan translate the results of

Theorem 3.2 (via delta method and Slutsky’s theorem) in terms of the original parameters as :
2 d LA d
VA = 80) 4 N(0,1), Vallogn) (R — po) & N(0,43)

(i) The current system reliability under the PEXP model is a 1-1 function of the current intensity
of failure. The intensity A, at the n-th failure can be expressed in terms of the parameters 3, and
B2 as :

—log An = P1 + [Balogn
An estimate of this can be obtained by replacing the parameters by their MLE’s. By viftue of
Lemma 3.5 and Lemma 3.3 we have C,(¢,,) £ s uniformly in the neighborhood M,(3,). Also,
71, has an asymptotic standard normal distribution by Lemma 3.2. Using these two facts in (3a1);

we deduce
% d
vr(log A, — log An) = —(logn)(Win + Wa,) — N(0,1)

3.2 Simple Estimators — Weibull Process Analog

We have noted in Section 3.1 that the MLE’s for the parameters in the PEXP are not available
in closed form. Also, the simulations described in Section 4.1 indicate that for small sample sizes,
the MLE of u often falls far off the true parameter value. Here we construct an alternative set of
estimators by exploiting the link between the PEXP and NHPP models. To this end, we note the

following correspondence between parameters of the two models :

NHPP PEXP

pt/e p
1/6 6
The fact that the MLE’s under the NHPP model are given by § = n/¥ 0, log(T,/T;) and
fi- = nj T,f then motivates the following set of estimators for the PEXP :
* 1 - * n‘S'
& = ;;log(Tn/Tg), po= : (3.14)

11



Since these estimators stem from the NHPP model with Weibull intensity, we call them Weibull
process analog estimators (WPAE). The main advantage of (3.14) over the MLE’s is the simple
closed form expressions of the estimators. Simulations demonstrate that p* behaves better than
the MLE /i for small sample sizes.

If the true model is PEXP and one wrongly assumes the model to be NHPP, then the WPAE’s
constitute a set of estimators for the “misspecified” model. From this point of view of misspecifi-
caton, it is worth comparing the properties of the WPAE’s with those of the MLE’s.

We denote the true parameter values by pg and 69 and define,
Wi, = n'(logn)™(u" — po), W3, = n/*(8" — 60), Wi = (Wi, W5,)  (3.15)

The following theorem shows that the WPAE’s are consistent and asymptotically normal (CAN)

estimators of the parameters under PEXP.

Theorem 3.3 Asymptotically, W7, is bivariate normal N(0, XT) where

. 2
x _ 2 _ Ho Ho

To prepare the groundwork for proving the theorem we define

.
X; = o =0 s

and express the WPAE’s in terms of these random variables as :

§* = log(T,/n%) - n‘lilag(ﬂ/iﬁf’) + 5on"1ilog(n/i)

=1 =1
= n“lzlog(Xn/Xi) + éo[logn — (logn!)/n] (3.16)
=1
logu™ — logug = Iog(n‘s“/,ung) + (logn)(6™ — 6o)
= (logn)(6* — &) — logX, (3.17)

The next lemma provides some results concerning the random variables X; which will be used in

proving our main results.

Lemma 3.6 (a)n/2(X, — 1) -5 N(0, 62/(260 — 1))
B X, - o) % N0, 82/(26 — 1))
(C)n—l/g i=1 log(Xn/Xi) = nllz(Xn =i :) + o0p(1).

12



Proof : (a) Noting that X, is a linear function of the independent exponential random variables

Y, = T, — Ti-y, ¢ = 1,...,n, the result follows from an application of the Lindeberg-Feller

central limit theorem.

(b) We first write X,, — X, as alinear function of ¥;'s. Using the fact: 3_i_, Z§'=1 aib; = Yo, 2= biaj,

we write
n n 1
DX = i
=1 1=1 j=1
= wdY; (Zj—5°)
i=1 j=t

Also, nX, = ponl™® Y0,V = pon'~% TL, ¥ (n—i+ 1)

Thus, we have

B = n'”?Z(Xi - X,)

=1
n
= oYY, din
i=1
where
A | n
dn = 3|5 - o
=i (j6° nfo(n — i+ 1))
By using the relations
§G+1) > G+ - 5 > 60 (3.18)

we obtain bounds for E(Y;) and correspondingly for E(S,) as :

—on~ Y2y i%(i 4+ 1)%1 < E(S,) < dont/*%(n + 1)

=1
Since the lower bound is O(n~'/?logn) and the upper bound is O(n~1?), we have E(S,) — 0.

Also, from the expression of S, we readily obtain

8n = Var(8y) = 62n¥0T) (ifn)?~2 4,

=1
W TS B dl, = 2464n4%078Y (ifn) ot db,
=1 1=1 :

Setting a correspondence of d;, with a Riemann sum, we observed that as n — 0,

2 [1 2502 Ll 1 : 2
N 0— =T Ly .
Sn g /{; u {fu (v50 T u) dv} du 65/(26¢ 1)

n 1 1 1 4
un S E(Y)di,  ~  n~12468 fu u45°-4{/ (1% - — u) dv} dy —s 0

=1

13



These facts in conjunction with the result that £(S,) — 0, enable us to use the central limit

theorem to conclude part(b) of the lemma.

(c) Let
Uin = log(Xa/Xi) = (Xn— X))
Since (z=1)/z < logz < z—-1 forz > 0, we have
<-1- - 1) n_1/2i(Xn - X)) < n*lﬂimn < n—lfzzn:(xn - X)) (—-1- - 1) (3.19)
X r: 7= X

=1 t=1 =1
We use Slutsky’s theorem in conjunction with the results in parts (a) and (b) to conclude that the
lower bound in equation (3.19) is 0,(1). The upper bound equals

Y - 1) - (% - ) (5 - 1)

=1
= X, - 1) {n_lg (% - 1)} - n—l/zg(X,- - 1) (Xi - 1)

Denote the first and second terms on the right hand side by By and Bj, respectively. By pa.rt(a;)
of the lemma, we have By = o0,(1). The proof is completed once we establish that B, = o,(1).

Now, by the Cauchy-Schwarz inequality,
2 = 2 15~ (1 :
By < E X; -1 =i E — -1
CA i:l( ) (n ] ("Y’: ) )

Again part(a) of the lemma implies that n=? 3% (1/X; — 1) = o,(1). To show that
Yra(Xi = 1) = 0y(1) we note that

83 _(1/®) Yo (i/iy

=1

iVar(X,-)

=1

n 1 £ 1
62,”—1 '. = j/i)250—2
c ;(z/n) i ;(
5 1 T gres 2 5
- 50j —/ w2 gy du = §2/(280— 1)
o u Jo
Using equation (3.18) we also have,

0 < Z{E(Xt) - ]_}2 < Zi"25°{6§(i+1)25°_2 _ 250(i+ 1)60—1 £ 1}
i=1 t=1

Since §p > 1, all the terms in the sum on the right hand side converge to finite numbers. Thus,

> (X; = 1)% is bounded in expectation and hence is O,(1) which implies B, = o,(1). //
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Proof of Theorem 3.3
From (3.15) and (3.16), we have

Wi = noVITRlog(Xa/X:) + nlf?6ollogn — (logn!)/n — 1]
= nMX, — Xn) + nt/%[logn — (logn!)/n — 1] + 04(1)
= (X - T + o1)
The second equality follows from lemma 3.6(c) and the last equality obtains from Stirling’s formula,
logn — (logn!)/n — 1 = —(logn)/2n + O(1/n)

Then Lemma 3.6(b) entails that W3, is asymptotically distributed as N (0, 62/(260 — 1)). Finally,
from (3.17) we have,

n1/2(logn)—1(logy" — logpo) = nl/z(é* — &) — n/%(logn)~* logX,

Since Lemma 3.6(a) along with an application of the delta method yields the fact that nl/ Y(logn)~'logX,

converges to zero in probability, we obtain
Wi, = poWs + 0p(1).

which completes the proof. //
Calculation of ARE’s

In view of the asymptotic results derived in this section, we summarize the comparative features

between the MLE’s and the WPAE’s.
e The rates of convergence for both sets of estimators (i, #*) and (6,6*) are identical.
o Both sets of estimators (properly scaled) have an asymptotically singular normal distribution.

e The WPAE’s incur a loss of asymptotic efficiency compared to the MLE’s. In fact, for both
u and & the
200 — 1

ARE (WPAE : MLE) = —— < L
0

The ARE decreases with an increase in §, becomes close to 1 as § gets close to 1. For large §

the ARE tends to 0. Also note that the ARE does not depend on the parameter p.
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4 Simulation and applications

Summary of simulation results

Monte Carlo simulation techniques were employed to study the performances of the maximum
likelihood and the Weibull process analog estimators in both small and large samples. Three pairs
of (u,8) values, (0.5,1.5), (1.0,2.0) and (2.5,2.5) were used for the study, and for each case 100
realizations of the MLE’s and the WPAE’s were obtained with the sample sizes n=10, 25, 507 and
100.

Exponential random variables were generated using the inverse cdf transformation on uni-
form(0,1) random numbers obtained from the Uniform Random Number Generator (UNI) residing
in the Fortran Library CMLIB. The MLE § was obtained through a single-variable Newton-
Raphson iteration procedure using the WPAE 6* as the initial value. The MLE f is then calculated
from the relation

p = nd/Tr, i,

where Y;’s are the generated values of the inter-failure times which are independent exponential
random variables under the PEXP model. Table 1 gives the estimated bias and mean squared error
of the MLE’s as well as the WPAE’s.

The MLE for p has a tendency to overestimate as is evidenced from positive bias in all cases
in Table 1. Also, it shows a substantial variability especially for small sample sizes (e.g. n=10).
By contrast, the MLE for § appears to be quite stable. Although it exhibits a positive bias in
most cases, the magnitudes of the bias as well as the MSE’s are substantially smaller compared to
those for i. The WPAE’s for both the parameters show a tendency of underestimation in almost
all cases. With respect to the MSE’s the performances of the estimates of § are comparable ( with
the MLE behaving slightly better for larger 6 values ), while the WPAE of p performs better than
the corresponding MLE in all cases. Even for n as large as 50 or 100, the finite-sample efficiency
of u* relative to ji as measured by the ratio (estimated) MSE(2)/MSE(y*) is quite different from
the value of the asymptotic relative efficiency (26 — 1)/6%. Specifically, the ARE values are 0.88,
0.75, and 0.64 for the three cases § = 1.5, 2.0, and 2.5 respectively, while the corresponding
finite-sample relative efficiencies are found to be 2.04, 3.068, and 2.89 for n=>50, and 2.10, 1.49, and
1.62 for n=100.

For practical applications of the asymptotic results, it is important to examine how the normal
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approximation improves with increasing sample sizes. An investigation in that direction is made
through the normal scores plots of the estimates. Plots for both § and 6 (Figure 1) indicate a
fairly linear pattern in all cases of n, small or large. However, the corresponding plots for i and p~
(Figure 2) show a substantial departure from a straight line pattern, which persists even for n as
large as 50. This appears to be due toa considerable fluctuation in the estimated u values and also
the slow rate (y/n/logn) of convergence. However, logarithmic transformation on the estimates of
u is found to stabilize their variations substantially, and the agreement with the normal scores is
also considerably improved. Figure 2 exhibits these features for the case n=25. This indicates that
when setting large-sample confidence interval for s, one should first construct a confidence interval
fdr logy using the asymptotic normality result and then transform the result to u. Specifically, a

100(1 — a)% confidence interval for u constructed in this process would be of the form
i [n:tza,‘Q/‘/T-"] (4.1)

In the context of reliability growth, underestimation (or overestimation) of the parameters may
have serious implications to the physical interpretation of an assumed model. For instance, an
estimate of 6 less than (greater than) 1 will indicate a reliability decay (growth), while the true
parameter might demonstrate otherwise. Table 2 gives a summary of the proportion of times this
type of error happens for n=10, 20 and 25 for both the MLE’s and WPAE’s in the following two
situations: PEXP with § = 1.5 (a case of reliability growth), and PEXP with § = 0.5 (a case of
reliability decay), with u in both the cases taken to be 0.5. The proportion is calculated by dividing
the number of such “unwanted” occurrences by the total number of realizations (100 in our case).
The results indicate that for the reliability growth case, the performance of the MLE is better in
this respect, and the relative proportion of “error” decreases fast with increase in the sample size.
In the reliability decay case, the performance of WPAE is better than the MLE for small sample

sizes.

Applications

Here we fit the PEXP and apply the inference results of Section 3 to two data sets which were
previously analyzed under the NHPP model. We also employ some graphical checks for model
adequacy, and compare the inference results between the two models, especially with regard to

estimating the current system reliability.

17



FEzample 1 Tank failure data Fora tank system, the number of miles accumulated was recorded
for the first 25 failures : 1, 57, 252, 310, 485, 693, 720, 727, 779, 1028, 1561, 1766, 1793, 1938, 2030,
2065, 2289, 2423, 2560, 3086, 3458, 3626, 4252 and 4582 (Source : Military Handbook 189 (1981,

pp 111)). The objective of the study was to assess the extent to which parts improvement and
other design changes reduced the intensity of failure. From the PEXP fit, the maximum likelihood
estimators for the parameters are found to be & = 0.04699 and § = 1.6614. A large sample
95% confidence interval for § is given by § + 1.96/\/n = [1.27,2.05], and it indicates reliability
growth. Using (4.1), a 95% confidence nterval for y is found to be [0.17, 1.73]. The corresponding
WPAE’s (or the MLE’s for the misspecified model) are found to be pu* = 0.03027, é* = 1.5323,
with the associated large sample 95% confidence intervals [1.11, 1.95] and [.008, .116] for § and g,
respectively.
To develop a graphical model checking procedure we define the residuals

A T
6i6_1
where Y; denotes the miles between the ith and (¢—1)st failure. Note that these residuals correspond
to the standard exponential variates e; = (p/6)Y;/(i~1). Figure 3(a) shows a plot of of the points
(é), ai) where o; = 25.(25—j+ 1)1 is the expected value of the ith standard exponential
order statistic in a sample of size 25 and é(;) denotes the ordered residuals. The points lie roughly
along a straight line with unit slope — a pattern that supports the assumption of exponentiality and
hence the PEXP model. Note that é; is of the scale free form a;(8)/@(§), where ai(8) = Y;il~?,
For a corresponding graphical check for the NHPP fit, we define the residuals to be equal to
glog(tn/t;), i=1,...,n—1, t; being the accumulated mileage at the :th failure and & being the
maximum likelihood estimate of 6 under the NHPP model. Note that these residuals correspond
to a set of order statistics of size n — 1 from the standard exponential and are also of the scale free
form b;/b, where b; = log(t,/t;). Figure 3(b) shows a plot of (é(i)» @), where &) denotes the
ordered residuals and &; are the exponential scores in a sample of size 24.

As mentioned in Section 3, one aspect of practical importance in RG analysis is the estimation
of the current reliability of the system, as measured by the reciprocal of the current value of the
intensity. For our situation, this is also the common ground for comparing the two models. For
the present data “time” is identified with “miles” and the current “mean time between failures”

(MTBF), defined as the reciprocal of the current intensity of failure, is 297.21 and 292.78 for the
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PEXP and the NHPP fits respectively. An associated approximate 95% confidence interval for the
MTBF for the PEXP is provided by the formula A,[1 £ 1.96/+/n]~! and is calculated as : [213.51,
488.83). The corresponding large sample confidence interval for the NHPP is computed as [188.36,
657]. Therefore, if PEXP were indeed the true model, the current MTBF can be estimated with
more precision in this case.

Ezample 2 Mine explosion data Maguire, Pearson and Wynn (1952) provide the data of

the number of days between mine explosions in Great Britain involving more than 10 men killed
between December, 1875 and May, 1951. We want to see to what extent the safety regulations
and other necessary precautions decrease the intensity of the accidents. For a graphical check for
the PEXP fit, the residuals are plotted against the exponential scores (Figure 4(a)). Most of the
points lie around the straight line with unit slope thereby ensuring a reasonable fit. By contrast,
the corresponding residual plot for the NHPP clearly shows more departure from the line. It is,
however, evident from both the plots that a different model may be needed for the latter part of
the data. The MLE’s for the parameters are g = 0.08885 and 6§ = 1.6512 with associated
approximate confidence intervals [0.036, 0.214] and [1.46, 1.84] for x and §, respectively, thereby
indicating reliability growth. The WPAE’s are p* = 0.02719 and §* = 1.40068. The associated
95% large sample confidence intervals are [0.036, 0.22] and [1.20, 1.60] respectively. The estimate of
the current MTBF is 394.38 days with an associated approximate 95% confidence interval [332.04,
485.53]. For the NHPP fit which is demonstrated by Crow (1974), the current MTBF is estimated
as 337.51 days with the associated large sample 95% confidence interval [266.71, 459.51].

5 Appendix

Proof of Lemma 3.5 : Observe that Fy, involves the fixed point 3, and is O,((logn)?). By virtue
of expressions (3.4) and (3.7), it then suffices to show that

n
Tny = (logn)’n'(logn)™* (logi)[e; — ei(Bo)]
=1
converges in probability to 0 uniformly in 8 € Mn(3,) for k = 0,1,2 where
ei(B) = Yiexp(—-B'xi) — 1, e = e(Bo), 1=12,...,n"

The result would follow by an application of the Markov inequality once we show that
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EBO(| Tnk |) — 0 uniformly in 3 € Mpu(3y). By Triangle inequality, we have

Eg (I Tak ) < (logn)*n™"(logn)™*) J(logi)* |1 — ezp{-(B — Bo)'x:} |

=1

For any real number z, we note .

INA
8

| 1—-exp(-z) | forz > 0

IA

|z | exp(—z), forz < 0
For B in M,(3,), we have
[(B — Bo)xi| £ 2hn™"(logn + logi)
Thus, we arrive at the inequality
Eﬁo(.l Tur|) < 4hn~"(logn)® exp(4hn~logn)

Since ¥ > 0 and (logn)™n~" — 0 for any fixed nonnegative integer m, we have the required
uniform convergence for Eg (| Tag ) /1
Proof of Theorem 3.1 : For 8 € M,(B,) we have B3 — B, = n~"(mlogn, ). Viewing 3 as

a function of 7, a taylor expansion of v, (3) around 3, yields

/\1,1(1’) = Iln(ﬂ) — lln — n_"'(an(C)nlogn -+ alg(C)Tg)
A2n(T) (logn)™Yan(B) = logn™tlan — 7™ "(az({)m + az2(¢)(logn)r)

I}

where (lin, l2n)" and a;;(€) are as defined in (3.3) and (3.2) respectively, with ¢ being a point
on the line segment joining B and By. Denoting An(7) = (A1a(7), A2n(7)), and referring to the
definitions of Z,, and C,(3) in (3.5) and (3.6), it follows that

A7) = n'?Z, — (logn)n!'="C,(¢)T (5.1)

Define,
gn(T) = (nl_’ylogn)annAn(T)a Bno = (nlﬂ""’logn)_anZn

Premultiplying both sides of (5.1) by 7/F,(n'/2~7logn)~!, we obtain the relation

e (1) = —7't + T'g o + [l - F.Co(7)]r

= 7't + 0,(1) (5.2)
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where the last equality follows from Lemma 3.5, the fact that v < 1/2, and
(logn)"'F,Z, = Oy(1) by Lemma 3.4.
Result (5.2) implies that, given an € > 0, there exists no = no(€, h) such that
P(sup T’gn(‘r)<0) >1—-¢€¢ Vn > ng
lI=l|=h

According to a version of Brouwer’s fixed point theorem ( see Smith(1985)), we have that g,(7) = 0
for some # < h. Thus, for all n > ng, the probability is atleast 1 —e that a 7, exists that satisfies
g.(¥2) = 0 and ||¥,4]] < h. The corresponding B, = By + n7(fixlogn,f2,) meets the

requirements of the theorem. //
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Table 1 : Comparative Study of MLE and WPAE

Sample Size

o = 0.5, 6o = L5

(n) Maximum Likelihood Weibull Process Analog
Bias(fi) | MSE(42) | Bias(é) | MSE(é) | Bias(u*) | MSE(x*) | Bias(6*) | MSE(6*)
10 0.500 8.718 0.147 0.242 —0.049 0.341 —0.233 0.162
25 0.107 0.218 —0.029 0.056 -0.171 0.067 -0.185 0.071
50 0.127 0.167 0.010 0.028 —0.084 0.082 —0.089 0.032
100 0.076 0.082 0.008 0.011 —0.075 0.039 —0.053 0.012
Ho = 1.0, 50 =20
10 2.143 64.438 | 0.160 0.250 —0.476 0.505 —-0.396 0271
25 0.567 4.1006 0.006 0.073 —0.324 1.033 —0.234 0.115
30 0.328 1.031 0.011 0.034 —0.282 0.336 —0.135 0.049
100 0.175 0.345 0.013 0.013 —0.196 0.232 —0.070 0.018
o = 2.5, &y = 2.5
10 1.970 38.785 0.067 0.180 -1.721 3.589 —-0.583 0.453
25 0.83 6.391 0.005 0.059 —1.356 2.481 —0.306 0.147
50 0.789 5.698 0.019 0.030 —0.955 1.971 -0.172 0.062
100 0.406 2.181 0.005 0.012 -0.619 1.345 —0.091 0.023
Table 2 : Relative proportion of misclassification
Proportion of times estimate of § less than 1
Sample Size o = 05, g = 1.5 Hoe=e0:5, 0 = 0.5
(n) Maximum Likelihood | WP Analog | Maximum Likelihood | WP Analog
10 0.08 0.22 0.76 0.88
20 0.03 0.05 0.93 0.94
25 0.04 0.04 0.96 0.98
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Figure 1: Normal Scores plots for é and 6~
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Figure 3: Residual checks for the tank data with (a) PEXP fit, (b) NHPP fit
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Figure 4: Residual checks for the mine data with (a) PEXP fit, (b) NHPP fit
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