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Abstract - A discrete reliability growth model (appropriate for
success-failure data) whose derivation parallels that of a popular
nonhomogeneous Poisson process model (appropriate for continuous failure time
data) is considered. Following Finkelstein [1], continuous analog estimators
are defined for use with the discrete model when there is a constant prespe-
cified number of test trials between system configuration changes. The
large-sample properties of these estimators, including s-consistency and
s-normality, are established. Large-sample standard error formulas and

confidence interval procedures are also developed.



1. INTRODUCTION

A reliability growth methodology (including a model specifying the
pattern of reliability growth and accompanying statistical procedures) is an
evaluation tool for estimating the current reliability of a system that has been
repeatedly tested, redesigned, and retested. During the course of a reliability
growth testing program, each redesign defines a new configuration of the system.
As the testing progresses, more failure modes are observed and more fixes are
implemented, thereby increasing the reliability. At the completion of testing,
an estimate of the reliability can be obtained using only the data for the last
configuration of the system., However, the sample size for the last
configuration may be small (particularly if testing is expensive) and the
resulting estimate of reliability may be very imprecise. The motivation for
using reliability growth methodology is to increase the precision of the
reliability estimate by utilizing all of the available test data =-- from the
last configuration tested as well as from all previous configurations.

A nonhomogenous Poisson process (NHPP) reliability growth model (also
known as Duane model) is often used for planning and monitoring growth for
- systems whose reljability is characterized by mean-(operating)
time=between-failures (MTBF) [2-5]. In this continuous-time-model, the
time=-varying MTBF is proportional to a fixed power of time. In other words, the
model assumes a linear relationship on a log-log scale of the s-expected
cumulative number of failures versus the cumulative time on test. The
continuous Duane model has been extensively developed [2-22].

This report concentrates on a particular discrete reliability growth
model suitable for reliability data on the performance of one-shot systems
(e.g., a missile or a torpedo). These data typically consist of discrete
(success or failure) observations. Finkelstein [1] and Crow [23] derive this
model by assuming that, on a log-log scale, the s-expected number of

cumulative failures is linearly related to the cumulative test trial number.



This assumption is identical to the assumption underlying the derivation of the
Duane model except that "time-to-test" is replaced by "test trial number". The
resulting model therefore can be viewed as a discrete analog to the continuous
Duane model.

Finkelstein [1] considered estimation of the two parameters 8 and A
in this discrete reliability growth model under the premise that one item is
tested for each system configuration. Among the estimators examined in his
simulation study, the continuous analog estimators (CAE's) are particularly
appealing because of their simplicity and an intuitive motivation drawn from the
structure of the maximum Tikelihood estimators (MLE's) under the continuous NHPP
model, The other competing estimators were either artificial or found to be
numerically unstable, and none emerged as superior to the CAE's.

Aside from an intuitive motivation, 1ittle is known about the properties
of the CAE's. Even the s-consistency property has only been conjectured from a
simulation study, and no sound procedures for constructing large-sample
~confidence intervals are available. The object of this article is to fill this
void. In addition to proving s-consistency, we also establish the asymptotic
s-normality of the CAE's B* and X* and thus set the basis for computing
large-sample confidence intervals. One important finding of our study concerns
the individual rates of convergence to normality for g* and A*, They are
different, parameter dependent, and are quite unlike the rates for the
corresponding estimators under the continuous model. These results should serve
as a warning that inference procedures developed for the continuous model may be
inappropriate for the discrete model even though the estimators may be
structurally similar.

Section 2 describes the discrete reliability growth model. Section 3
presents the CAE's and reviews what is known about their small-sample properties.

Asymptotic properties and approximate confidence interval procedures are



provided in Section 4 for the case of a constant prespecified number of test
trials between system configuration changes (detailed proofs are given in the

Appendix). The examples in Section 5 illustrate the confidence interval

procedures.
Notation
MTBF mean-(operating) time-between-failure
NHPP nonhomogeneous Poisson process
CAE continuous analog estimator
MLE maximum Tikelihood estimator
A, B parameters of the discrete reliability growth model
Ri system reliability for configuration i
n; number of trials for configuration i
i
‘T1 jflnj’ cumulative number of trials through configuration i
N number of different system configruations tested
m constant number of trials per configuration
", 8" CAE's of A, B
¥ total number of observed failures
f(3) configuration at which the j-th failure occurred

Other standard notation is given in "Information for Readers & Authors" at the

rear of each issue,

2. DESCRIPTION OF THE MODEL

For the discrete reliability growth model examined in this article, the

reliability of the system under test increases with the configuration number i

according to



Ry = 1= - (-0, 4= 1,2,00000, (1)
where A >0 and B8 > 0 are unknown parameters, and a new configuration

of the system occurs after every m trials when system design changes are
implemented. Although Finkelstein [1] only treated m = 1, multiple trials are
more common in practice, and the properties of the estimators can be handled
analytically just as easily provided that the number of replications is equal
for all configurations. This situation could arise, for example, when the
system producer delivers equal-sized batches for sequential phases of testing.
The model (1) can also be obtained from Crow [23] whose more general formulation

accommodates unequal numbers of test trials per configuration. Beginning with

his model

i "'1 BI_ Bt i = see
Ry = 1= Mng l{Te} " =(Ty 407 1, 1 = 1,2,+%5,N, (2)
and identifying n; = m and T1 =im, i = 1,2,°++,N, the correspondences B = B'

i
and X = A'mB -1

follow directly.

From (1) it is apparent that the reliability is a decreasing function of
~both XA and B. The parameter A is the system unreliability for the initial
configuration. The parameter (1-8) 1is often referred to as the "growth
parameter" in the literature. Reliability growth occurs iff B < 1. Equation
(1) also shows that as the number of system configuration changes grows large,

the reliability increases towards the limiting value of 1, For large N, the

approximation

Ry = 1- X (3)

-1, f.e., Ne + 0,

can be used. The error ¢ 1in this approximation is o(N n

n



3. CONTINUOUS ANALOG ESTIMATORS
Generalizing the estimators originally proposed by Finkelstein [1], the

CAE's for the discrete reliability growth model (1) are

Y[ T In (WEGNTL,

d

B*

N~ =<

1

B*
o= Y/ (mNT). (4)

The reliability R, at the N-th configuration is estimated by direct

N
substitution into (1). Thus

RY =1 - I - -n P, (5)
or using the approximation (3),
Rp = 1= axeny L (6)
Although the CAE's (4) are structurally identical to the MLEs for the
corresponding NHPP model (with "configuration number" playing the role of "time-
on-test"), they are not the MLEs for the discrete reliability growth model (1).
The MLE's for (1) have no closed-form representations, and their determination
requires iterative computational procedures [1,23]. In the simulation study
[1], Finkelstein reports that all attempts to obtain MLE's were unsuccessful.
The simulation study [1] also investigated the properties of the CAE's
for the special case m = 1, It was observed that the CAE's, in general,
overestimate B and underestimate the system reliability. 1In an example with
the true B8 = 0.800, the average of the B8* values decreased gradually with
increasing number of test trials to 0.864 after 300 trials. Despite the
extremely slow approach, Finkelstein asserted the s-consistency of the CAE's.
The asymptotic properties stated in Section 4 and proved in the Appendix
confirm Finkelstein's conjecture. The Appendix also establishes the limiting
s-normality of B* and A*, Based on these results, 1argé~samp1e confidence

interval procedures are developed in Section 4.



To date, the only confidence interval procedures that have been
associated with the CAE's are purely ad hoc in nature and not based on any
distributional theory, either exact or asymptotic. For instance, an example in
MIL-HDBK-189 [2] calculates a lower confidence bound for system reliability
using the methodology developed by Crow [13] for the analogous continuous
reliability growth model. Without presentation of any supporting rationale, [2]
states that this approach provides a good approximation when each ey 1 =
1,2,+°*,N, is large and the system reliability (presumably the final reliabili-
ty) is high, The examples in Section 5 of this report illustrate that the
choice between methodologies can give rise to potentially critical differences
between computed Tower confidence bounds for the final system reliability. In
particular, the bound based on the large-sample results given in Section 4
differs from that based on the ad hoc adaptation of Crow's procedure for the

NHPP modeT.

4, ASYMPTOTIC PROPERTIESIAND APPROXIMATE CONFIDENCE INTERVALS
The asymptotic behavior of the CAE's is described in Theorems 1 and 2 (see
the Appendix for the proofs). Theorem 1 establishes the s-consistency of the
CAE's for the case of a constant prespecified number of trials per system
configuration, thereby confirming the conjecture of Finkelstein [1]. 1In the
same setting, Theorem 2 demonstrates that the asymptotic distributions of g*
and X* are s-normal. As the empirical evidence in [1] suggests, however, the

rates of convergence of the CAE's are slow.

Theorem 1: For the discrete reliability growth model (1), the CAE's (4)

are s-consistent.

Theorem 2: For the discrete reliability growth model (1), the normalized

forms of the CAE's (4), defined as



N2 (mag™2) /2 (gxapy |
H 8/2 A0 Bae sai0s (7)

are each asymptotically standard s-normal.

L
z

Theorem 2 indicates that the rates of convergence to s-normality for the
two CAE's B8* and X differ by a factor of 1n N. Moreover, both rates of
convergence depend on the unknown true value of B, If B = 1, corresponding to
no growth and i.i.d. observations, the rate of convergence for
B* 1is the usual YN. The rates of convergence for the CAE's behave quite
differently than the rates for the corresponding estimators under the continuous
time model (see [6,8,10,13]). Consequently, the inference procedures developed
for the NHPP model are not appropriate for use with the discrete reliability
growth model (1).

Confidence intervals for B and X can be reasonably based on the
approximate s-normal distributions of the standardized r.v.'s ZlN and Zoy
defined in (7). Beginning with B, we consider the coefficient g, = (mJtNB)l/2

of (B*=B)/B which involves the unknown parameters B and A, To determine if

asymptotic s-normality still holds when ay

1]

is replaced by g; (maxN ¥y 1/2

= N, write
L = Lipx- 1 * =
1n(gN/gN) = 2(8 8)In N +.7(1n X Tn 1)
and observe that the r.h.s. converges in probability to 0 as a result of

Theorem 1 and Theorem 2. Thus g;(s*-s)/s 4 N(0,1). As for A, a similar
argument shows that the coefficient hy = (mNB)llzl(B In N) in Z,y can be
replaced by h; = (mNB*)llzl(B* In N) with the result h;(k*nl)/klfz Y



8
Therefore, large-sample 100(1-a)% confidence intervals for B and A can

be constructed as

B*[l + ZG/Z/JY-]-I < B < 8*[1 o Za/zlﬁ]-l ’

_ 1/2 142
(A*+dN) dN(1+2k*/dN) X% (A*+dN)+dN(1+2A*/dN) g (10)
where dy = (zalzs* n N)Z/(Zm NB*) and Zo/2 is defined by gauf(zalz) =] = ? i

These approximate confidence intervals can be employed to conduct large-sample
statistical tests of null hypotheses of the form B = BO or A= AO‘

Finally, in the setting of a reliability demonstration test, it is desirable
to specify a lower confidence bound for RN’ the system reliability at the
completion of testing. In the Appendix, we show that a large-sample 100(1-a)%
lower confidence bound for RN is given by

Ry > 1 = (1-Ry)explz /2/Y1. (11)

N

5. [EXAMPLES
Two examples are presented in this section. Each assumes a total of 200
~trials and 45 observed failures occurring at trial numbers 4, 6, 8, 9, 10, 12, 18,
elly 22, 25, 28, 30..31, 33, 3B, 42, 485, A46,.51,.63, 56, 59, 62. 66..70, 75,311,
82, 88, 99, 108, 109, 115, 119, 126, 134, 142 . 138 168, 161, 165. 172, 179,
183, 198,

Example 1: m = 10, N = 20

Using (4) - (6), the point estimates Bg* = 0,819, ** = 0,387, and
R3y = 0.815 are obtained. The results (10) - (11) provide the following 90%

confidence limits: 0.658 < B < 1,085, 0,214 < X < 0,700, and R20 > 0,758,



Example 2: m = 1, N = 200

Proceeding as described above, the point estimates are 8* = 0.751,

*

200
0.603 < B < 0,945, 0.328 < X < 2,158, and R,,, > 0.779.

A* = (0,842, and R = 0,831. The associated confidence 1imits are

Discussion

In Example 1, the number of different system configurations is relatively
small, the confidence interval for B 1is wide, and the interval contains B =1
(corresponding to no growth). If the data had been analyzed using standard
i.i.d. binomial techniques, the reliability estimate would have been 0,775 with
an approximate 90% lower confidence bound of 0,737, Both of these values are
less than their counterparts provided by the reliability growth methodology.

The combination of the two examples demonstrates the importance of
correctly accounting for the test design when there are replications of each
system configuration. If the given sequence of failure data had been observed
with m = 10 and analyzed assuming m = 1, the estimate of final system
reliability and the corresponding Tower confidence bound would have erroneously
been inflated. Differences of the magnitude indicated in the examples could be
critical in the context of a reliability demonstration test in which producer
compliance with prescribed reliability thresholds is under investigation.

Identical comments apply to the situation in which m = 10 and the data
are analyzed according to the procedures developed by Crow [13] for the
analogous continuous reliability growth model (see the discussion in Section 3).
These procedures, which implicitly assume m = 1, would provide a reliability

estimate of 0.831 and an associated lower confidence bound of 0,777.



APPENDIX
(Proofs for Asymptotic Results)

Additional Notation

We first relate the CAE's (4) to linear functions of some basic

10

independent r.v.'s. Let Xi denote the failure count at the ith configuration,

i=1,2,+*,N, and let f(j) identify the configuration at which the j-th

N
failure occurs, j = 1,2,+*+,Y. Then we have Y = I Xi and
i=1
Y N
IIn f(j) = I Xi In i. Define
j=1 i=1
N
v = I Xi In i,
i=1
TlN = Y (1“ N) = V, T2N = Y,
-B/2 aon 2= 1 B . a=Pre osuP

(A.1)

We initially pursue the asymptotic properties of UlN and UZN’ and then

establish that the CAE's satisfy the asymptotic behavior described in Theorems 1

and 2.

Lemma: As N » o, the 1imiting joint distribution of (Uln’UZN) is bivariate

“s-normal with mean 0 and covariance matrix
2g2 gl

I = mi »

gl g

PpUat: “Letqy = l-py* ALi P-(1-1)1 denote the unreliability for

N

(A.2)

configuration i, i = 1,2,+-++,N, From (A.1) we have Tiy=-12 X; In(i/N) and

N
Ton = E Xi where the Xi's are independent, E(Xi) = ma;

Var(xi) = mp;q;-. Note that
i B

z q'i = AN "

i=1

N

L qi 'ln('i/N) = ')\NBB-I s
i=1

) O I g
L aq;[In(i/N)] 2AN"BC

i=1

(A.3)
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Where the symbol ~ means that the ratio of the two sides tends to 1 as
N + =, The last two results in (A.3) follow from (3) and the integral

approximation of a Riemann sum. Using these we have

- . B,~1 - _ B
Vi = E(TlN) mAN®B s Voy = E(TZN) = mAN",
2 - 2
oy = Var(TlN) ~ oman P2 » Oy Var(TZN) ~ man®, (A.4)

Consider an arbitrary linear function TN = lelN + dyTops (dl,dz) # (0,0).

N
We then have TN = I Xi[-d1 1n(i/N)+d2] and
i=1
wo o= E(Ty) = mA(d,8 l+d,)n®
N N 1 2 ’
2
0":]2 = Var(Tn) ~ mAiK NB,

2 - 2 2 -
where the constant K = [(dls 1+d2) +d18 2]. Next define

B ./ & _ .
Wiy = N [xi mqi.][d2 d11n(1/N)],
~B/2 N
NN - N (TN"\’N) - ifl W.IN e

. _ } 2
Since E(wiN) = 0, Var(WIN) mAK“, and

- . -R/2
NB 2 dymd; G| < N 2(1d, ]+ [dy ] 0 W),
it follows that, given any € > 0, there exists an Ny(e) such that

1/2

[Wgp| < emA)™"°K with probability 1 for all N > Ny(e) and uniformly in i.

Therefore, the Lindeberg-Feller central 1imit theorem applies. Thus

N“B/Z(TIN-le,TZN-vZN) is asymptotically bivariate s-normal with mean 0 and
covariance matrix I given in (A.2). The variance terms were already derived
in (A.4), and the covariance term follows in a similar manner. Finally, it can

be verified that N'B/z(le-mANBB-l) + 0, so the proof is concluded.

Proofs of Theorem 1 and 2

As Theorem 1 is a direct consequence of Theorem 2, it suffices to address

the latter theorem. From (4) and (A.l1) we have the relation

NE2(grmp) = (UpymBUy ) (T /NB) 7L
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The Lemma entails that (UZN'BUIN) is asymptotically s-normal with mean 0

and variance mA. Also since TlN/NB = mal o+ N-E/2

=1

UlN which converges in
probability to mAB -, we have NBlz(S*-B) —> N(0,8 (ml) ). Turning next to

A*, (4) and (A.1) allow us to write

Tn A* Tn(TZN/m) - (TZN/TIN) n N

) -1

TIn X+ B1In N + Tn(1+cNU2N) - B(1+cN 2N)(1+Bc (A.5)

NY1IN

where ¢, = (mAN Noting that U1N and U2N are bounded in probability

N
and cy > 0, (A.5) yields
N2 an e 2 = ama)THBU U, + o) (1), (A.6)
and the r.h.s, has the limiting distribution N(O,B8 (ml)_l) as a consequence of
the Lemma. Finally, use of the delta-method (see [24, pp. 385-6]) establishes that
e

NB/2(1n N) 1(?\*-?\) ——> N(0, 8 %\m » Which concludes the proof.

Derivation of Lower Confidence Bound for RN

Beginning with the approximation (3), we initially estimate = aan®l

P
N
by p; = A*B*NB*'l. Following the same lines that developed (A.5) and (A.6) we

obtain the representations

' 1n(p§/pN) = 2 In(l+cyU,y) - 1n(1+8cNU1N),

N2 nCapso) = mn7H2u,m800) + 0 (1),

4872

An application of the Lemma then yields 1n(p§/pN) —g—> N(O,z(mk)"l). Since

2(mA*)-1 is a s-consistent estimator of the 1imiting variance, we conclude that

112 _ (yy2)1/2,

b* 1n(D§/DN) Y N(0,1) where b* = (%-mA*N Finally,

to see that this leads to b* 1n[(1-R§)/(1-RN)] . N(0,1) and (11), observe

%
that both NB*/Z 1n[pN/(1-RN] and NP /2 1n[pﬁ/(1-R;)] converge in probability
to 0 as a result of the s-consistency of the CAE's and the error bound

reported for the approximation (3).
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Abstract - A discrete reliability growth model (appropriate for
success-failure data) whose derivation parallels that of a popular
nonhomogeneous Poisson process model (appropriate for continuous failure time
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