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ABSTRACT

Locally most powerful similar (LMPS) rank tests are derived for the
two-sample problem when the samples are type I censored on the right. Special
parametric families are then considered to arrive at the censored-sample
modifications of the Wilcoxon-Mann-Whitney (WMW) test, the Savage test and the
median test from the point of view of LMPS as an exact optimality criterion.
Asymptotic power function of the LMPS test is derived under a sequence of
contiguous alternatives, and the censored sample modifications of the WMW test,
due to Halperin (1960) and Gehan (1965), are compared to the LMPS test in
terms of asymptotic efficiency. It is found that although Gehan's test is not
exactly equivalent to the LMPS test, it is in fact asymptotically optimal,
whereas Halperin's test is not even asymptotically optimal for the logistic

location model.

Key words and Phrases: Two-sample rank test; Type I censoring;
Locally most powerful similar; Asymptotic
relative efficiency

Research supported by the 0Fffice of Naval Research Grant No. NOOO14-78-C -0727.



1. INTRODUCTION

This article considers the use of a finite-sample optimality criterion to
construct rank tests for the two-sample problem when the data are type I
censored. In the absence of censoring, the locally most powerful (LMP)
criterion has played a major role in a large variety of nonparametric testing
problems (cf. Hajek and gidék, 1967). LMP rank tests under type II censoring
has also been extensively treated in the literature (e.g. Johnson and Mehrotra
(1972), Bhattacharyya and Mehrotra (1983)). With arbitrary censorship or random
censorship schemes, this exact optimality criterion has proved elusive due to
the complexity of the censored-rank 1ikelihood. Consequently, recourse is often
taken to asymptotic optimality, intuitive adaptations of the full-sample optimal
rank tests to censored data, or use of some special T1ikelihoods depending on the
pattern of censoring, See, for instance, Halperin (1960), Gehan (1965), Peto
and Peto (1972), Kalbfleisch and Prentice (1973), and Crowley (1974) for some of
the relevant literature. Our object here is to show that when the samples are
type I censored, an exact optimality criterion, namely, the property of locally
most powerful similar (LMPS), can be employed to construct rank tests for the
two-sample problem. We focus on a censoring scheme, called equal type I
censoring, under which both samples are right-censored at the same fixed point
T. The method can be readily extended to handle unequal or even

multiple type I censoring.

LEt XiueveX and Y, °°*°,Y be independent random samples from
1 ny 1 n,
absolutely continuous distribution functions F and G respectively, and let

the combined sample order statistics be denoted by wl < Wy < oo < wn, where
n = n1+n2° Under the equal type I censoring scheme, the observable data consist

of (%c,qc) where W_ = (Wpyoee,M ), Z, = (Zy,°++,Zp) s the censored

rank-order vector, Z.

i 1 (0) if Wy s an X (Y), and R denotes the total



Zi and

N~ 20

number of Xils and Yj's that are < T. Further, set Ry = .

i=1

R. =
I

o~ 9

Central to the formulation of a distribution-free test of the null
hypothesis HO:
distribution of ;C. First, the design of the equal type I censoring entails

F =G under the present censoring scheme, is the probabiTity

that the joint density of (;c,qc) is composed of the product of two multi-
nomial probabilities -- the probability that ry (rz) observations of the first
(second) sample occur in the intervals (”i’wi+dwi) corresponding to which

z; =1 (0), and nqy=ry ("2'r2) observations of the first (second) sample occur

in the interval (T,«). Upon integrating the joint density with respect to w

o
we obtain the probability of z. as
n,! n,l! v . T4 1=z
e 1% w2 st i i
PralZ) = T Ty e T T e g dw
o N~y Nin=T
SIFETEL # )18 2 (1.1)

where f and g are respectively the pdf's of F and G, F’= 1=E, Ev= 1-G
and Ar = {-o ¢ Wy M RTATE KR T}. Under HO’ the probability (1.1)

~

reduces to

Ny 0
fisb148)
1 "2 = anep
Py (z)) = ——— F(MIFMI"T,
~ r
0 (1)
1
Note that, unlike the cases of no censoring or combined-sample type II
censoring, here Zc is not distribution-free under HO' However, R is a

complete sufficient statistic for the nuisance parameter F(T), and this fact

suggests that a distribution-free test based on Z. must be conditional upon

p\-

R. Along this 1ine, Halperin (1960) proposed a heuristic modification of the



Wilcoxon-Mann-Whitney (WMW) test. His test statistic is of the form
£ 1l i
Wy = F-EW(RI,RZHRl(nZ R,)] (1.2)

where N(R1’R2) counts the number of times an X precedes an Y among the
uncensored elements of the two samples, and the term R1("2“R2) accounts for
the total number of times an uncensored X precedes a censored Y. It is well
known that in the absence of censoring, the WMW test is LMP for the logistic
location alternatives. A natural question is then == Does Halperin's intuitive
modification retain the local power optimality under type I censoring, and if
not, what form of the modification would achieve this? This question
constitutes the major motivation of the present study.

Since R 1is a complete statistic, any similar test based on %c must be
conditional given R. Therefore, for rank tests based on type I censored data,
we are essentially setting the optimality criterion that among similar level «
rank tests, the power function is to be locally maximized. Such a test will be
called a locally most powerful similar (LMPS) rank test.

A general form of the LMPS rank test is developed in Section 2. Special
models are then considered in order to derive optimal modifications of the WMW
test, the Savage test and the median test from the point of the LMPS criterion,
It is found that the modified WMW test, due to Halperin, is not optimal under
the logistic location model. Section 3 establishes asymptotic distribution and
power of the LMPS test. Unlike the random censorship model which requires
sophisticated machinery for the treatment of the asymptotics, we show that for
the present case a fairly elementary treatment is possible by invoking a
theorem of Sethuraman (1961) concerning the joint and conditional Tlimiting
distributions. In Section 4, we compare Halperin's test and another

modification of the WMW test due to Gehan (1965), specialized to type I



censoring, with our LMPS generalization of the WMW test in terms of their
asymptotic efficiency. We find that Gehan's test is asymptotically, although
not exactly, optimal, whereas Halperin's test is not even asymptotically
optimal for the logistic location alternatives., Some extensions of the results

of Section 2 are discussed in Section 5.

2. DERIVATION OF THE LMPS RANK TEST
In this section, we first derive the form of the LMPS rank test in a
general setting and then consider its applications to some important models.
As with the derivation of the LMP rank tests, we consider a

real-parameter family of alternatives: F =F G = Fe' 8 > 60’ and for

%

simplicity of notation, we take eo = 0. The parameter value 60 will often be
suppressed in notation. For instance, F(x) will stand for Fo(x) and E(-)
will denote the expectation under HO: 68 =0, We will use an upper dot for the
first derivative with respect to 6,

Denote the conditional likelihood of z. given R=r by Pe(E [r) and

let s(zc,r) = n-l[alog Pe(zclr)/aej . Then conditionally, given R=r, a
s 7 6=0

level o test of the form x(z.,r) =1, v(r) or 0, if S(z,r) >, =, < d(r),
with y(r) and d_(r) determined by E[x(gc,R)lr] = a, maximizes the
conditional power, uniformly in a neighborhood B of 0, among all Tevel «a
similar rank tests of Hy: G = F against Hy: G = F, 6 > 0. (cf. Hdjek and
gidék, 1967, Theorem I1.4.8). To see that the conditional test x(z,,r) thus
formulated also maximizes the unconditional local power, let x' denote any
other similar rank test of level a. Because R is complete, x' must also
have conditional level a given R and since x has the maximum conditional

Tocal power, we have E4(x'|r) < E4(x|r) for all 6B and all r, 0 < r <n,



This in turn entails that E.[E,(x'|R)], the unconditional power of x', does
not exceed E[E,(x|R)], the unconditional power of x. Therefore, x(z.,r) is

the LMPS rank test.

To obtain Pe(gcir), we substitute Fy(x) for G(x) in (1.1) and
divide by

b n n - o _ - -
Py(Rer) = Sfa(sl)(r_g)Fs(T)[F(T)]nl e ISMIFm I

where a = max{0, r-nz} and b = min{nl, rt. This gives

n n - -
PolzIr) = {(ri)(ri)[F(T)/F(T)]rl[FB{T)/Fe(T)]rl

r it 1=z,
<ryirgt Jeee) T LR /FM T ) F (DT aw )

A 11

b ny My - s s.-1
< Lz (D GEOFTMIFM IR (/P (M 15T (2.1)
5=a

To arrive at a compact form of the test statistic S(Ec,r), we assume that the
family of densities fg(x)/F4(T), x < T satisfies the regularity conditions Al

formulated in Hajek and ¢idék (1967, p 70). Let

E} = R/n ’ Rl = Rllnl s R2

Rz/nz s

F(TY , gq

p I-p , A, = ng/n .

n
Also, for any given r, 1 <r < n, we define the scores ar(i,f), i=1,2,¢°¢

¥

r, corresponding to the truncated density f(x)/p, x < T as

a (i,£) = ELFF LU/ F(FHpU T - FITY/p (2.2)
where U1 < U2 < eee ¢ Ur are the order statistics of a sample of size r from

the uniform (0,1) distribution. Then, using (2.1), an evaluation of

Pe({c|P3/P8(zc|r) at ©=0, under the stated regularity conditions, leads to

- o @ . R
S(Zg,R) = A (1=3 ) (R Ry [-F(T)/(pa)] + n™*

1_1(1-21.1)aR(i.‘f")., {2,3)



The details are straightforward and hence omitted. Henceforth, for simplicity
of notation, we will write S for S(gc,r) and x for x(z.,r).

In the following we obtain some explicit results by specializing 6 to
either a location or a scale parameter. To apply the above general result to
the location model G(x) = F(x-8), we assume that f(x) 1s absolutely con-

tinuous and that | [f'(x)|dx < = where f'(x) = df(x)/dx. For this model,

== 00

F(T) = =f(T) and f(x) = -f'(x). Using these into (2.2) and (2.3), we obtain

the test statistic

_ R

s* = A (1-A ) (R;-R)LF(T)/(pa)] + n”2 I (2ag(a,f) (2.4)
with the scores ax(i,f) = E[¢(Ui,f)] where

d(u,f) = -{.:'- (F L (pu)) + flf,” , e (0,1), (2.5)

As for the scale alternatives G(x) = F(x exp(-8)), we assume that

f(x) 1is absolutely continuous and | |[xf'(x)|dx < ». Here F(T) = -TF(T)

- 00

and f(x)/f(x) = -1-xf'(x)/f(x). Corresponding to (2.4), we have

R
— — -.1 b
ST = A (1=3 ) (R;=R,)[TF(T)/(pq)] + n [ eZatd,6) (2.6)
where a* (i,f) = E[¢;(u,f)] with
1r
00w, ) = 1Fpu i pu) + IHTL -y e qo,1), (2.7)

Guided by these results it would be natural to formulate modifications of
the WMW test, the median test, and the Savage test to equal type I censored data
by considering the logistic and double-exponential location models and the expo-
nential scale model, respectively.

Logistic-Location

For the logistic family F,(x) = (1+expl-(x-0)1)71, o > 0, we have

p = [l+exp(-T)1" and F(T) = exp(-T)[1+exp(-T)12 so £(T)/p = 1-p and



f(T)/(pq) = 1. Also, using the property - (F L)) /e(F ) = 2u-1,

0 <u< 1, the scores a*(i,f) reduce to
r

PE(2U,-1) = p[ appy -1]

and hence the statistic (2.4) becomes

s, = A(1-A)(R,-R,) + —L1 [ 2 §(1-Z.)1'-=E£] (2.8)
L~ 'n n" vl "2 (14e~T) n(R+1) ;- i P .
R
Since z (1=Zi)i is the WMW statistic based on the uncensored observations,
i=1

SL can be viewed as a modification of the WMW statistic under the present
censoring scheme, Note that S is not equivalent to Wy of (1.2), the
modification proposed by Halperin.

Double Exponential-Location

Taking fg(x) = 1/2 exp(=|x=6]) and applying the approximate scores
ax(i,f) = ¢(E(U1-),f)s we would arrive at a modification of the median test. To
obtain its form, we first use the property -f'(Ful(U))/f(F-l(u)) = sign(u-1/2),
where sign(a) = 1(-1) if a >0 (< 0), into ¢(u,f) of (2.5). Substituting
the resulting approximate scores into (2.4), we arrive at the following modified

median test statistic:

()

S, = A(1=H(E-°§)[-———fm]+ %(12)[ (2 )+
“ ’n p' M1 "2’ pq - s1gn—1- 2

D i=1

where  f(T) = 12 exp(-T) and
f'bb e T , T<0
p =9 -T
1=l e s T20 .

Exponential-Scale

For the exponential scale alternatives Fe(x) = exp(=0)exp[=x/exp(6)],
6 > 0, we have -f'(x)/f(x) = 1. Thus, in view of (2.7), the scores a;(i,f)
r

are determined by E[F'l(pUi)], which are readily obtained from the work of



Saleh et al. (1975). Using their results, together with f(T) = exp(-T),
p = l-exp(-T) and Tf(T)/(pq) = T/p, in (2.6) and simplifying, we arrive at the

following modification of the Savage statistic:

R R
i s el 1 g R-1
Ry (T+1)-R= o=(p= )1 + 2 1_51(1 Zi’{R(i-l)jfl

w
m

n
::I_LIH

_1yd=i Ry 1
-DIGEIHE)

1 I pv
x[T-2HT- & O],
pJ v=]
3. ASYMPTOTIC POWER
As is typical with censored sample rank tests, application of the LMPS
test gets computationally involved with larger sample sizes so a large sample
approximation is of interest. In this section, we derive the asymptotic distri-

bution of the test statistic S(Z_.,R) wunder a contiguous sequence of

ac?
alternatives. The result is then used to establish the asymptotic power of the

LMPS test. Unless specified otherwise, all limits are taken as n + o,

For generality, we consider statistics of the form

1

S o cJ\n(l"}tn)(Rln-RZn) tn ’

n

h >
[y

=208 (3.1)
n

where ¢ 1is a constant, aRn(i) are some arbitrary scores, and n 1is used in
the subscript to mark the sequence. The LMPS test is then a special case when
c = -E(T)/(pQ) and aRn(i) = aRn(i,f), the scores corresponding to the
truncated density f(x)/p, x < T.

Henceforth, we assume {rn} is a subsequence of {n} such that

r/n > p as n > = and for given {r,}, the scores a, (i) converge in
n
1 2
quadratic mean to a square integrable function ¢ with | (¢(u)=3)"du > 0
0
_ 1
where ¢ = | ¢(u)du. We also assume that
0
n 2

a, (i) = ¢ + o(n , and An = A+ o(n_LQ), 0 < A<,

1 n



Consider a contiguous sequence of location alternatives {Qn} given

' o i -12
by the pdf's q = T f(x;) T f(x;-6)) where 6 =an "%, 4>0,
i=1 i=n1+1
D

and f 1is assumed to have finite Fisher information. We will use -—119

D
and ——9¢ to denote convergence in distribution under Qn and HO’

respectively, and the corresponding symbols for convergence in probability will

Qn PO
be —— and —s .

The following theorem states the asymptotic distribution of Sn under

Qn‘ Its proof follows from the result (c) of Lemma A.2 in the Appendix.

Theorem 3.1 Let p, = F(T--Bn)e Then, under Qn’ the statistic Sn is

2 .
asymptotically N(v,,o ) with

!
(1-20p,F + an"H2A(1-20p | #(u)e(u,Fldu + (p=p,) 2, (1=A )c,
0

<
i

1
A(1-2)p (J) (6(u)=F)%du + (1-A)pg3° + A(1-A)pgc =2A(1-1)pqcs,

=]
U]

where o¢(u,f) dis given by (2.5).//

In order to derive the asymptotic power of the LMPS test we first
construct an allied unconditional test which is based on the same test
statistic, has asymptotic level o, and moreover, is asymptotically
power-equivalent to the (conditional) LMPS test. The work is thereby reduced to
the evaluation of the asymptotic power of the allied test. The required result

is stated in Theorem 3.2 and is proved in Appendix B.

Theorem 3.2  Suppose that ﬁn and Gn (either constants or functions of E;)

are chosen such that the statistic Spp = nI/Z(Sn-ﬁn)IGn satisfies
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D

0
(a) SnA — N(0,1)
D0
(b) S ;|- — N(0,1) as T _ =+ p,
nA - n
Rn=rn

Then the unconditional test given by Xy = 1(0) if SnA > (<) - is of
asymptotic level a, Moreover, if

(c) Spa has a 1imiting distribution under Qs
then the test Xp is asymptotically power-equivalent to the conditional test ¥
=1, Y{Fh) or 0, if S, >, = < ba(Fh) with v(¥ ) and b, (r,) determined
by

a = PolS,, > b (F )R F T+ ¥(F)POLS , = b (F )[R =F 1. (3.2)

Note that SnA is a function of R, and S . Hence the conditional
test x based on ShA is equivalent to the LMPS test. This theorem states
that we can use xg to determine the asymptotic power of x once we find ﬁn
and Gn such that conditions (a) - (c) are satisfied.

To verify conditions (a) and (b) of Theorem 3.2, we first consider the
joint limiting distribution of S and R under H,. This distribution can
be obtained by using A =0 and Py = P 1in part (c) of Lemma A.2.

Consequently, we have

- D
nt/20S (105, Ry=p] — N(0,%,) (3.3)
where Z, is given by (A.5). In view of the fact that o¢(u) = ¢(u,f) for the

LMPS test, we have here ¢ = 0. It then follows from (A.5), (A.6) and (3.3)

that
D
1/2 0
n Sn/ao —  N(0,1) (3.4)
and as T > p
n
1/2 Do
n= s /ol —> N(0,1) (3.5)

"n



1

where
1

o = A(1-A)pl I 8 (u)du + qe’ 1. (3.6)

Now (3.3) and (3.4) entail that a statistic Spa can be defined to satisfy

conditions (a) and (b) of Theorem 3.2 by setting ﬁn = 0 and having

. P .

o, —> 9. To obtain such a 0,s We can simply replace p by Eh i 36].
1
Note that | ¢2(u)du may contain p, for example, when ¢(u) = ¢o(u,f) of (2.5).
0
1,
Denoting | ¢ (u)du or its estimate, whichever applies, by V, we get
0
o2 = A(1-MR IV + (1-R )c?] (3.7)
n n n ' g

. P
To ensure o _-EL' 9ps We will confine ourselves to the situations where

1

2 :
J ¢ (u)du is continuous in p, if p is involved.
0

For condition (c) of Theorem 3.2, we need to show that the statistic

b ] A2 = e c L3 )
SnA = nilzsnlcn with g given by (3.7), possesses a limiting distribution
under the sequence {Qn} of contiguous location alternatives. To this end,

we first use ¢ = 0 1into the assertions of Theorem 3.1 and obtain that under

Qns nqun)/o0 is asymptotically N(0,1) with
| -1/2 .
Hon An A(1-2) p é d(u)dp(u, fidu + (p-pn)xn(lwkn)c
2 - PO ~ Qn
and o, given by (3.6). However since o, —* Oy, We have o —> g,
by contiguity. Thus nI/Z(Sn-BOH)Ian, or equivalently, SnA - n1/2u0n/3n,

is asymptotically N(0,1) under Q- Moreover since nllz(p-pn) > AF(T),

172 ,~ O Dg
we have n UOn/Un —_ u(A)/a0 and in turn SnA-[u(A)IGO] —>» N(0,1)

where
1

u(a) = M1-2) A [p | ¢(u)o(u,fldu + f(T)cl,
0
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This finally entails that the asymptotic power of Xa and therefore of x is
given by
Tim Q

n e

n(SnA b ZG) = I_Q(ZQ-U(A)/U(})
= 1-®(za-kA)
where o(+) denotes the cdf of N(0,1) and
2 1 > 1, o |
k™ = K(l-?\)[pg o(u) ¢(u, fidu + F(T)c1 [p( é ¢ (u)du + qc”)] ~. (3.8)
The number k 1is the efficacy of the test corresponding to the density f.
Remark. The preceding arguments also apply to contiguous scale

alternatives in which case we need to replace f(T) by Tf(T) and o¢(u,f)

by ¢9(u,f) of (2.7).

4 ,ASYMPTOTIC RELATIVE EFFICIENCY

Drawing from the results of the previous section we now proceed to
compare Halperin's test with the LMPS test S, given by (2.8) in terms of
their (Pitman) asymptotic relative efficiency (AE). In addition, we will also
consider the AE of S vs another modification of the WMW test proposed by
Gehan (1965). Both AE's are established under the logistic location model.

Gehan's statistic, say Wg, was originally constructed in the context of
arbitrary right censoring. For the special case of equal type I censoring,

NG is related to Halperin's statistic NH by

” 1 " .

The difference between WH and NG arises from the fact that while wH

includes the information provided by the ordering of the uncensored observations
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as well as the uncensored X's with the censored VY's, WG additionally takés
into account the contribution of the uncensored Y's and censored X's.

Under the logistic location model, we have ¢(u,f) = p(2u-1),
p = [l+exp(~T)]m1 and f(T) = exp(-T)[1+exp(=T)]-2. The statfstic S, isa
special case of (3.1) with ¢(u) = ¢(u,f) and ¢ = 1. Using these into (3.8),
we obtain the square efficacy of SL as

AMI-)p /3 +1(T1%
p(p°/3 + q)

2
kSL
The asymptotics of HH and NG can be derived along the same lines; the

details are therefore omitted. It turns out that the square efficacy of the

conditional test based on wH is

|

Ky = MI=N B’ [ (20-1)6(u,fdu + £(T)[p+2q(1-1)13>
H 0

2 ph -3 ML
x {plp /3 + q((1=1)(2-p) “+rp -4r(1-A)q ") 1} L.
Under the logistic model, the AE of Wy relative to SL is therefore
given by
2
AE(NH:SL) = ky /kS

(p2/3 +q) (p /3 +F(T)[p+2q(1-0) 11 [p°/3 +£(T)]172
x {p°/3 +q[(1-1)(2-p) 2+rp2-ar(1-2)g° 11" L.

[}

Numerical computations of the above AE for different T and X are presented in
Table 4.1. Numbers are accurate up to 6 decimal places. The AE is exactly 1

at A =1/2 so Halperin's test is asymptotically optimal when the sample sizes
are equal. Furthermore, all AE's are close to 1, and they tend to 1 as

& L2 . BF- a8 B ¥l G O
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Table 4,1

Values of AE (NH:SL) under the logistic location model.

A T =3.0 =1.0 0 1.0 3.0

p .047428 .268941 .500000 .731058 .952574
wl .999854 .995709 +989252 .991378 999833
e .999896 .997080 -993075 .994842 .999906
.3 .999942 .998397 .996444 .997560 .999958
.4 .999980 .999494 .998963 +999350 -999990
5 1.000000 1.000000 1.000000 1,000000 1.000000
.6 .999960 .999104 .998537 .999260 .999989
wil .999704 .994885 .992916 .996839 .999958
.8 .998607 .982354 .980421 .992403 .999904
o9 .992043 .959849 .956601 .985572 .999830

For the conditional test with the test statistic wG, the square efficacy
is given by
2 2 1 2. 2
kg = M1 [ (2u=1)o(u, Fdusf (T T To(p™/3 +a) 71

2
In the special case when ¢(u,f) = p(2u-1), we find that kw = kS o)
G

AE(NG:SL) = 1. Therefore, Gehan's test is asymptotically optimal, although it

does not have the LMPS property in finite samples.

5. CONCLUDING REMARKS

The idea of LMPS rank test can be extended to the unequal as well as
multiple type I censoring cases.

Under unequal type I censoring, each sample has its own specified
censoring point, say Tys i=1,2. For this setting, ordering is only possible
for observations that are < T where T = min(Tl,Tz). Thus, the censored
rank-order gc is still equal to (21,22,---,ZR), where R 1is the total number
of Xi's and Yj‘s that are < T. Consequently, the unequal type I censoring

can be treated in the same way as the equal type I censoring.
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As to the multiple type I censoring, we consider the case of double type
I censoring as an example. Let TL denote the maximum of the left censoring
times and TU the minimum of the right censoring times of the two samples and
assume that TL < TU. Let R denote the total number of observations that are

< T, and RB, the total number of observations that occur in the interval

L
(TL,TU). Then, the censored rank-order vector is given by Lo =

(z ), and

e e ,Z
RL+1’ R *+Rp
n"rL"“l'“B

FL s
Py lze) = K TDIRT =TT -F(T)]

where k 1is a constant free of F. Here the sufficient statistics (RL,RB)
have a trinomial distribution under HO’ and are also complete. Thus we can
derive the LMPS rank tests using the conditional likelihood of Z_. given

(RL,RB)Q
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APPENDIX A: PROOF OF THEOREM 3.1

A theorem due to Sethuraman (1961) concerning conditional and joint
1imiting distributions provides the basic tool for a fairly straightforward
treatment of the asymptotics of the conditional tests.

Theorem A.1 [Sethuraman] Let {En} and {n.} be sequences of random
2= and m-vectors defined on a probability space. If, for an arbitrary te RM,
the conditional distribution of € given n_ = t, converges to NQ(QE,E),

and n strongly converges in distribution (SD) to Nm(o,n),

then jointly (e ,nn) converges in distribution to N£+m(0,z) with

r+BeB' , BO
Z = - i - o

We decompose S of [3.1) =as Sy = S1p*Syp With

n

R
51z (1),
i= n

Sin = A (1=A ) Ryp-Rop)s Spp = n =

n n

To derive the asymptotic distribution of Sp» we first obtain the conditional
limiting distribution of S2n given Rin and R2n' An application of Theorem
A.1 will then give the joint Tlimiting distribution of SZn’ Rln and R2n'
Finally, Theorem 3.1 will be established using an appropriate linear
transformation of these variables.

Lemma A.1 Let {rln} and {an} be subsequences of {n} such that

rln/n > Ap and r2n/n > (1-A)p. Denote

'n = T1n*T2n
P 1
b = ’-“‘_1"]_2" J ou) ¢Cu, F)du (A.1)
/n " 0
2 "1n"2n 1 -2
o, = —om é (¢(u)-4) du. (A.2)
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Then conditionally given R1n =Ty and Rop = rop» the limiting distribution

n

of n1/2{ESZH-(rZH/n)E;n]-vln}/cln under Q, is N(0,1).

Proof:  Under Qn and given Rln = rin and R2n = Tons X(l)"'°’x(r1n) and
Y(l)’°'"’Y(r y are simply the order statistics of independent random samples
2n
of sizes P and Fons respectively, from the truncated distribution
h{x) = f(x)/F(T) and h, (x) = f(x=9n)/F(T—9n), x < T. Hence, given
n
(rln,r‘Zn)s the rank-order vector Z. = (21,"',Zrn) has the same probabillity
distribution as the distribution of the rank-order vector corresponding to
two uncensored independent random samples of sizes "1n and "an from h(x)
o P
and h, (x), respectively. Since S - oL gh (1-Z.)a,. (i) 1is a linear
en 2n §=1 T,
rank statistic of the full rank order Zo in this context, we can apply

Theorem VI.2.3 of Hajek and ;idék (1967) to establish the conditional

asymptotic distribution. Using di =0, 1 <14« rin and di = An'lfz,

riptl € 1 < r., in that theorem, the expressions (A.1) and (A.2) are obtained.//
Next, we define n, = nllz(iin-p) and  n,. = nllz(ﬁén-pn). Since R;.

and R, have binomial distributions b(nl,p) and b(n,,p,), respectively, and

P > P by continuity of F, we conclude that under Qn’ Mn —§E—9 N(O,pq)

Non =§2—¢ N(O,pg). These, together with the facts that Rln and R2n are

independent and 2im nlln = A and 2im nzln = 1-1, yield that under Q

n-e N>

n

[nypsnpy] =2—> N(0,9) (A.3)

pe 0
Q = _1 ® (Ae4)
- 0 s (l")\) Pq

where
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Lemma A.2. Under Qn’ we have

D
(a) nY3(s, -v, ) I N((1-3)Ty, )
Mn™%sN2n™Y

- e D
(b) nM205, =vy Ry PaRyppy] —s N(0,3;)

- D
() nt/20s =y R -(p+(1-2) (p-p))] —15 N(0,,)

where
1
PSR

v = (1-A)p 7 e M1-2A)p é $(u) ¢(u, f)du
Viso) g, = (p~pn)An(1-kn)c

i 2 — S —

01+(1-A)pq¢ 5 0 s Paé
_ -1

iy = : PR o . ;

| pgd , 0 . (1-0)"1pq 1

5 2 .

o ’ (I'A)D‘W
5 s + (A.5)
34 (1-A)pq¢ ’ Pq
with
-) 1 - 2
gy AM1-A)p | (4(u)=-4) du
0
(A.6)

o = of+(1-k)pq$2 + 1\(1-?\)pqc2 - 2A(1-\)pacé .

Proof: First note that the conditions Mp = X and o, = Y are essen-
tially the same as Ry = [rln] and Ry, = [rp 1 with ry = nl(x//ﬁ + p) and
Fon = nz(y//n + p,). We have rln/n + Ap, r2n/n > (1=1)p. Therefore from

1

(A.1) and (A.2) we obtain 2im cin = A(1-M)p | (¢(u)=-¢)du = ci and
n-»e 0



1/2,72n =
i e arn”ln“’zn)

n n n
= 2= ol2 2 = = /2772 _ .. -

"1n"2n 1
nr‘n

+ AL

Using these results and Lemma A.1, part (a) is concluded.

The assertion (b) follows from part (a) and (A.3) by using Theorem
A.1. Here Ly is obtained by substituting ci for Py Bm (0,(1=2)9)
and @ given by (A.4) into I of Theorem A.1.

For part (c), let us use the representation
1205 _(v, +(p-p ) (1-2 )e), R.=(p+(1-1)(p.~p))]
n n~\VonT\PTPRl Ay, n'¢ls Rp~IP AL

1/2p¢ =y T -n 1R -
&nn ESZn v2n’R1n p’RZn pnj
where

1, A(1=a)e , =x (1-A)c

2
=
o
™

A , 1-2

n n

i 5 A(1-A)e , =-A(l-))c

0, A 51 1 Dk

part (c) follows from part (b) by noting that I, = leﬁ'.//

- M1-2)p] é o(u)¢(u,fldu — (1-1)y§, and n+w,

19
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APPENDIX B: PROOF OF THEOREM 3,2

The fact that Xa is of asymptotic level a« 1is obvious from
the condition (a). To prove that x and X, are asymptotically
power-equivalent, we will use a result due to Hoeffding (1952, pl89) concerning
the convergence in probability of functions of random variables.
Let
g,(Fy) = Y(F)Q, (S 40 (F ) R =F, ).

Then under Qn the asymptotic power of x 1is given by the limit of
Een[Een(x[Rn)] = Qn(SnA > ba(Rn)) + Eﬂn[gn(Rn)]'

We need to show that the limit of E, [Eq (x[ﬁh)] equals the 1limit of
n on

Qn(SnA > za), the asymptotic power of Xp+ From condition (b), we have that

PO(SnA=ba(Fh)]Rn¥Fn) + 0 as ?h +p (B.1)
which together with (3.2) entails that ba(Fn) +z, as ?h + p. This and the

a1 P L P
fact R, -£L> p 1imply, by Hoeffding's result, ba(Rn) iy z,. Further, on

account of contiguity, we have ba(ﬁh) iy zy which in view of condition

(c), leads to

gim Q (Spp > bo(R)) = 2im Q (S, > z,).

n> o« nN+>ce

a

The proof will be concluded if we show that 2im Eg [gn(ﬁh)] = 0. Once
n

- 0
again, using contiguity we have Rn __E_; p and from (B.1) that

Qn(SnA = ba(Fh)lﬁhiFh) >0 as 'Fh > p. An application of Hoeffding's result

25 o . - n
again implies gn(Rn) ——> 0. Thus the unconditional test Xp is

asymptotically power-equivalent to the conditional test .
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ABSTRACT
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terms of asymptotic efficiency. It is found that although Gehan's test is not
exactly equivalent to the LMPS test, it is in fact asymptotically optimal,

whereas Halperin's test is not even asymptotically optimal for the logistic

location model.



