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0. SUMMARY

Simultaneous autoregressive models are applied to balanced incomplete
block and lattice square designs. Relationships between the resulting
maximum 1ikelihood estimators and standard analyses are explored and
clarified. Also, it is shown that the Papadakis estimator, as applied to
these designs, has the characteristics of the standard analyses, but simply
involves fewer plots in the adjustment procedure for treatment averages.

A worked example illustrates the differences in treatment estimates in a

lattice square design, for standard inter-block analysis and for simultaneous

autoregressive assumptions.

KEYWORDS: Balanced incomplete block design, Lattice square design,
Maximum Tikelihood estimators, Papadakis estimators, Simultaneous

autoregressive models.



1. INTRODUCTION

The analysis of field trials when observations in nearby or neighbouring
plots are correlated has received extensive study over a number of years.
An early reference point is the work of Papadakis (1937). The relationship
of his suggested estimator to the maximum likelihood estimators in certain
one- and two-dimensional designs under certain simultaneous autoregressive
models has been explored by Draper and Faraggi (1984).

It has been suggested by Kempton and Howes (1981, p. 65 and p. 69)
that the Papadakis model may be used quite generally for field trials and
specifically, for example, for lattice squares (LS's). On the other hand, a
standard analysis for such designs under the "usual N(O, 102)” type of error
assumption is due to Yates (1936, 1939, 1940). Under Yates' analysis, ad-
justments are made to the treatment averages for the incompleteness of the
blocks.

In this paper, we investigate lattice squares under the assumption that
a simultaneous autoregressive model which assumes correlation within rows
and columns is appropriate. This is done with different correlations,
Py for rows and Pe for columns. We then obtain maximum Tikelihood estimators
for treatments and correlations and discuss the relationships and differences
between the three possible treatments estimators namely maximum 1ikelihood
estimators, Yates', and Papadakis. It will be shown that, for these designs,
the Yates estimator is very close to the first order term in an expansion,
where valid, of the maximum Tikelihood estimator. Moreover, the Yates'

and Papadakis corrections to the treatment means have similar forms. However,

neither is actually needed in designs completely balanced for rows and columns



because an explicit solution can be obtained. An example
is presented for illustration in Section 5.
The Tlattice square is a two-dimensional design. As a preliminary, we
investigate what can be regarded as a one-dimensional equivalent, namely
the balanced incomplete block design. Results and conclusions which closely

parallel those of the lattice square are obtained.



2. BALANCED INCOMPLETE BLOCK DESIGNS

Suppose we wish to examine t treatments in b blocks of size
k < t. Suppose, further, that each treatment occurs the same number, m,
of times and appears X times with every other treatment. Then the design
is said to be a balanced incomplete block design (BIBD). Note that there
are n = bk = tm plots, and that A(t-1) = m(k-1). For the standard details
of analysis reproduced below see, for example, Cochran and Cox (1957), or

Yates (1940). The usual model considered is

= *
Yo~ Baloa R b Bl (2]
if "replicates" are not a factor; if they are, some minor differences occur
in some formulas. Here yjs is the observation on treatment s 1in block j,
u is an overall mean, ag is the effect of the sth treatment, Bj is the
effect of the jth block and Ejs is an error such that € = (column vector of

e in a defined order) - N(U,IUE). Two alternative assumptions on the Bj
are commonly made.

(a) Bj is a fixed effect. This leads to the so-called intra-block

analysis.
(Y g= (Bl""’Bb)' X N(O,Iog) independently of the €5 This leads
to the analysis with the recovery of inter-block information. As 62 + o,

B
case (b) - case (a).

We set



BS = total of all response observations y from
blocks in which treatment s appears.
TS = total of all observations on treatment s.
G =1 T, = grand total (= B, )
s s

Then, from Cochran and Cox (1957, pp. 445-446) we can estimate the effect

of the sth treatment by

a¥ = m T +8[(t-k) T - (t-1)B+(k-1)6]} (2.2)

~

where 6 1is an adjustment factor taking the value

6 = {t(k-1)}""

(2.3)
in case (a) when inter-block information is not recovered, and the value
B = (b—T)(Eb-Ee)/{t(k—1)(b-])Eb+(t-k)(b—t)Ee} (2.4)

where it is recovered. The quantities Eb and Ee are the mean squares due
to blocks adjusted for treatments, and residual, respectively. Define the
t by bk = n matrix T as follows. When the blocked design is Tisted in
order, block by block, Tsi = 1 if the sth treatment is associated with the

ith observation, and Tsi = 0 otherwise. Let



where 1' = (1,1,...,1) of dimension 1 by k. Then define

D=1, ®) Dy (2.6)

where (:) denotes the Kronecker product. Then, in matrix form, with
* = * * *x)!
o (u1,...,as,...,at) , (2.2) becomes

o* = m {TY=-8(t=1)T0[I-m" ' T'T]Y} (2.7)

where Y s the vector of observations, recorded in the same pattern as the
block by block enumeration.
We now consider, instead of case (a) or case (b) above, an alternative

mode1 ¥y = G + X o where

IR RS T (2.8)
i 54 5 ) i

and where nij =1 if Y5 and yj occur in the same block, and nij = (0 otherwise.
We assume € = (E],...,en)' 4 N(O,IOE) independently of the x's. Following
Besag's (1974, Eqg. (4.13) with p = 0) simultaneous autoregressive model,

we obtain the Tlikelihood

2)—n/2 -1

(210 IBlexp{-(202) "' X'B"BX}, (2.9)
where B =1 - pD and X = Y - T'a. The maximum Tikelihood estimator o

is of form (Ripley, 1981, (5.34))
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(AN aFh) T (2.10)

1 1

where TV IT' = T(1-pD)?T" = m{I-m" T(2;D—32D2)T'} using the fact that TT' = mI.

The matrix (T\J"_TT')'1 can be expanded as a convergent series if and only

Vi Vi 2

if the eigenvalues of QB =m T(20D-p"D°)T' are all less than one in absolute

value. This is true if

( minf(1+21/2) V203, Kk = 2,

(1-22)1(k=1) < p < i minth(1+2'/2), Ht-1)}, k = 3, (2.11)
L (T
If we retain only terms of orders zero and one in QB’ we obtain
~ % & - -
a; = m [TY-{2p-p"(k-2)}TD(I-m 'T'T)Y] (2.12)
where we have used the facts that D2 = (k—])In + (k-2)D, and T(I~m_1T‘T) = 0.

Comparing (2.12) with (2.7) we notice the estimators are identical except

that g(t-]) in (2.7) replaces {2S~52(k-2)} in (2.12). Because of the validity

~ ~

of the expansion, oy will converge to the maximum likelihood estimator o,
for fixed p, if the former is applied iteratively in the following sense:
~ AAZ

Gy W T 0200 (k-z)}TD(v-T'&j)] (2.13)

where o, = m"]TY. In fact, iteration is not needed here because the balanced

incomplete block design produces a TV']T' of patterned form which can be
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explicitly inverted (Rao, 1973, p. 67) to give 5 in terms of p as
o = a(1+bTDT')T(1-4D)Y (2.14)

where a = {m-(t-2)$}/[{m-(t-1)$}{m+$}], b = $/{m—(t-2)$} and
$ = {26-(k-2);2}/{1+(k—]);2}. The maximum Tikelihood 5 is obtained as
follows. Setting the first derivative of the Tog likelihood with respect

to p equal to zero provides

(Yuz'&)'(D-EQZ)(Y—T’&) . (k-1)o (2.15)

~

(Y-T'a) (1-20D+p2D2) (Y-T'a)  {1+(n-1)p}{1+p}

The & may be substituted from (2.14) to provide an equation in 5 which
can be solved, for example, via the Newton-Raphson method. From this, &
is then obtained. In practice, it is easier to replace a 1in the Tikelihood
by & from (2.14) and then to maximize the Tikelihood numerically by a
search over ;.

For least squares estimation, the term on the right of (2.15) is
replaced by zero, so that

(Y-T&LS)'D(Y-T&LS)/{(Y-T&LS)'DZ(Y-T& (2.16)

DLS % LS)},

where o g has the same form as o but with p replaced by oLs Again

numerical maximization is simplest.



3. LATTICE SQUARES

Suppose we wish to examine t treatments in a set of m k by Kk
Tattice squares. Typically m = 8(k+1) where & = %3 1; 25 ++s » The different
values of & correspond to various association relationships among the
treatments. When & = %y any treatment s will appear with any other treatment
W once in either a row or a column but not both. When 6§ =1, s and w

appear together both in a row and a column, once each, and so on. The usual

model considered is

Y

-~ *
x E L L L8 g R (3.%)

!
where the set of subscripts (q,r,c) representing the position in the rth
row and the cth column within the gth replicate have been replaced by a single
subscript i = 1,2,...,n which denotes the plot's position in a row by row
enumeration of the plots, replicate by replicate. Two alternative assumptions
on the B's and the y's are commonly made

(a) Br’ Y are fixed effects. This leads to an intra-block analysis.

2 2

(b) B~ N(O,OB) and Yo N(D,OY)

Typically it is assumed that 03 = Ué, although this is not necessary. As

and all B's and y's are independent.

Gé -+ o and 05 + o, case (b) - case (a).

We set, for ¢ > 1,



TS = total of all response observations y from all plots i
which receive treatment s,

RS = total of all y's in rows in which treatment s appears,

CS = total of all y's in columns in which treatment s appears,

G = grand total of all y's,

LS = (m—1)Ts - mRS + G,

MS = (m-1)TS - mCS + G.

Then, from Cochran and Cox (1957, p. 493), we can estimate the effect of
the sth treatment by

A

-1
* =
ag =m {TS+ArLS+kCMS}, £3.2)
where Ay and AC are coefficients for the adjustments needed for the in-
completeness of the rows and columns. The values of Kr and AC depend on
the replication selected and which case, (a) or (b) is assumed. Examples
are in Appendix A.

For ¢ = %}
redefined symbols. We do not discuss this because our matrix formulation

the formula for ag is of the same form as (3.2) but with

does not contain this ambiguity.
Define the t by n matrix T as follows. When the blocked design
is written out row by row within replicate and then replicate by replicate,

T 1 if the sth treatment is associated with the ith observation, and

Si

T 0 otherwise. Let D

B i L Ik’ whape T = {1.1...551) of difiension



S o8

1 by k, and define

~
1]

r Im (:) Ik (g) Dk’
Gl (:) D, (:) I s (3.3)

A A
1 o

™~ ~N
1 I

where (:) denotes the Kronecker product. Then, in matrix form, with

uL = (u%,u;,...,ui)', the L denoting lattice, (3.2) becomes

| T -
o =m {TY-mT(ArZr+kCZC)(I—m

1y (3.4)

where Y 1ds the vector of observations, recorded in the same pattern as
described earlier.
We now consider, instead of case (a) or case (b), an alternative

mode1 y_i =qg +xX.,1=1,...,n, s =1,...,t, where

; i ) (c)
) R W S |y T o W s 1 g (3-5)
1 Y'J+_l 204 C J%"l Fdard
and where ngg) =1 if Y; and yj occur in the same row and replicate and is zero
otherwise, while n$§}=1 if Yy and yj occur in the same column and replicate and
js zero otherwise. We assume ¢ - (31,...,en)' 5 N(O,IGZ) independently of the x's.
Following Besag's (1974, Eq. (4.13) with u=0) simultaneous autogressive model, we

obtain the Tikelihood (2ro%) ™ ?|B|expl-(20°)" X 'B'BX} where B=I-p Z -p 7,



i

1 Tagy= 1

X =Y - T'a. The maximum likelihood estimator o dis of form (TV 'T') 'TV 'Y,
_'l ; o ”~ ~ 2 ; .
where TV 'T' = T(I—przr—pczc) Thus m(I-QL) and where
IR R .
QL =m T(ZpY‘ZY‘+ZDCZC_DPZY‘_DCZC_ZDrchY‘ZC)T ¢ (3.6)

1 1

The matrix (TV"'T')”" can be expanded as a convergent series if and only if
the eigenvalues of QL are all less then one in absolute value. This is true

G i

1< gy + (K-T)gy < 1,

P ML

where

gy = -(m-2) (p+02)
q, = 126, +20 - (1-3)(05+02) = 2(k-1)p, 0}/ (k+1). (3.7)

For example, if m= 6, k = 5, the conditions imply a feasible region shown
shaded in Figure 1.

If we retain only terms of orders zero and one in QL’ we obtain

ab = w8, 2,402 (1- mT TV, (3.8)



Figure 1.

~12-

The shaded region shows the values of (pr,pc) for which the ex-
pansion of the maximum likelihood estimator involving QL is valid,
for the case m = 6, k = 5 described in the text. For the case

Pp = Po =P this region reduces to the intersection of the shaded

region and the 45° line shown, with a multiplicative scaling

factor of 2_1/2

applied.
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Lo _ 2 ~ oA " " . L
where B 2pu - (m-3)pu t 200 and u = r, c in turn. In deriving oy

we have used the following facts (u=r or c):

zﬁ = (m2)T + (n-3)Z,,
TZrZC = 1t1£T-T—TZr—TZC (3 5
m e 4
Tll=m "T"1) = 0,
1;](I~m“]T‘T) Lo

Comparing (3.8) with (3.4), we see that the estimators are identical except
that m,, in (3.4) replaces éu in (3.8). Because of the validity of the

expansion, a% will converge to the maximum Tikelihood estimator uL, for

fixed Py and Peo if u% is applied iteratively in the following sense

AL Gt _-] ~ A IAL
a3y =W ATY-T(6,2,40 2 ) (Y-T'a3)3, (3.10)
=h 1

where s m TY. In fact, iteration is not needed here for § > 15 because
the lattice design produces a TV_lT' of patterned form which can be explicitly

inverted (Rao, 1973, p. 67) to give uL in terms of % and b @s

{(a-b)I+b11'}T(I-Q)Y, £3:01)



~Ta=

where
a = {(m-1)a;-(K2-2)ma, /L€ (m-1)ay-(k*-1)ma,} ((m-1)ay#ma,3 T,
b = qu/[{(m-1)q1—(k2—1)qu}{(m-1)q1+mq2}]. (3.12)

The maximum 1ikelihood Pp and p. are obtained as follow. Setting the first
derivatives of the log likelihoods with respect to Py and Py equal to zero

provides equations:

8 .
o~ A {5? [B§ s pe
nX'ZuBX u =D.,.sP_ TP

P
e b =
X'B2X E

= 1, U ='re (8.13)

where X and B are the values of X and B with dL, P and Pe replacing

o P and O These two simultaneous equations involve, in their second terms,

the (i,i+1) and the (i,i+k) elements, the designations being reduced modulo
n where they exceed n, respectively of §'] and must be solved, a tedious
calculation. It is simpler in practice to substitute a selected grid of
(BF,SC) values into &L and hence evaluate the likelihood over that grid, so
picking out the maximum value of the likelihood.

For least squares estimation, the term on the right of (3.13) is

replaced by zero so that



(3.14)

_ oyl : )
where buv = X ZUZVX. The least squares estimate of a, a'g 1S of the same

form as mL but has oy replaced by Pu.LS everywhere.

Special Case B0 P

In many practical situations, it is reasonable to assume that

PR Paisipe For comments on this choice, see Kempton and Howes (1981, p. 63).

A1l formulas reduce to their appropriate forms via simple substitution of

p. =D 0. A1l that is needed is to write Z = Zr + ZC whenever it occurs

c

and to drop subscripts from A, ¢, and p. The equation parallel to

Egs. (3.13) is the result of adding these two equations together.
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4. LATTICE SQUARE DESIGN EXAMPLE

We shall re-examine data given by Cochran and Cox (1957, pp. 490-493)
comprising a lattice square design with k=4, § =1, m=5, n=280. The
appropriate formulas for Yates' estimators Ar and AC are given in Appendix A
and here result in the numerical values xr = 0.04787 and hc = 0.03037 (p. 493).
The maximum 1ikelihood estimates for Py and P are ;r = 0.108 and ;C = -0.030
and these lead to estimates for the 16 treatment parameters given in the
second column of Table 1. These may be compared with the "adjusted means"
of Cochran and Cox (1957, p. 491) which are the corresponding Yates' estimates,
shown as the third column of Table 1. We see that, although two entirely
different models are used, individual estimates are broadly speaking, compatible.
In view of the fact that only one at most of these models can be correct for
the data set, we do not compare them via a model-dependent criterion such as

weighted or unweighted sum of squares of residuals.



S

Table 1. Comparison of treatment effects for a 4 by 4 lattice square design
with five replications. Second column: Maximum Tikelihood estimates under
the assumption of a simultaneous autoregressive model. Third column: Yates'

estimates from Cochran and Cox (1957, p. 491).

Treatment Mle Yates'
1 4.98 6.45
2 1271 13.68
3 8.90 &8s 3
4 11.417 Til36
5 9.89 9.44
6 5.96 7.58
7 7:.52 187
8 9.79 9.32
9 10.91 10.01
10 5. 77 14.91
11 1812 TF.59
12 12.91 1218
13 12.07 10.69
14 13.40 14.27
15 10.07 9.28
16 10.05 11.09
Sum 174 .46% 174 .47*

*These figures are subject to small rounding errors;
both should be 174.48.
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5. PAPADAKIS AND MAXIMUM LIKELIHOOD

We reconsider the assumption made in connection with Eq. (3.1).
Suppose that now B is the combined neighbouring effect from the "plot to
the left in a row", and the "plot to the right in a row", these left and
right adjacencies being determined in torus, wrap-around manner (Martin,
1982). A similar "up and down in a column" definition is applied now to
Y Let Nr and NC be the n by n neighbour-specification matrices for rows
and columns whose ith row contains 1 in positions j for which plot j is
row- and column-adjacent vrespectively, to plot i, and zero otherwise. Then
the maximum Tikelihood estimator of a* is

~

_ -1 -1
u; =m {TY—mT(wrNr+wCNC)(I-m

TYE) (5.1)

where 12 and b, are coefficients for the adjustments needed for the row-
and column-adjacency effects. Parallel to the work in Section 3, there will
be two forms for wr and wc according to whether an intra-neighbour analysis
(Br’Yc fixed effects) or an inter-neighbour analysis (Br’Yc random effects)
is specified.

If we compare (5.1) with Eq. (3) of Draper and Faraggi (1984), we
see that they would be equivalent if mp,. = mwc = % and if N = Nr+Nc' In
fact, (5.1) is the Papadakis estimator for the case wr F wc, up to definition
of b and be- The Papadakis formulation would involve regression estimators
of wr and wc instead. We thus see that the Papadakis estimator can be
regarded, up to definition of b and be» as a maximum 1ikelihood estimator

in the particular model formulation described above.
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6. REMARKS

A previous paper (Draper and Faraggi, 1984) discussed field trials in
one and two dimensions for designs of Type II(a), Type III, and Type III
cyclically row permuted (Williams, 1952) for one and two dimensional layouts.
In the two dimensional layout, no directional differences were assumed and a
single p value was used for both rows and columns. The extension to oy and
Pe for that case is easily effected using formulas of the type exhibited in
this paper. The maximum likelihood estimator has the form of (2.10), with

-1

2
Vs (Lep N N ) (6.1)

where Nr is an n by n row-neighbour-specification matrix defined by
i Ca 3
N, = IS(kH)xﬁ?j_,IkG’_;N, (6.2)
where NC is an n by n column-neighbour-specification matrix defined by
i
N, = zﬁ(kH)Q_;N@Ik, (6.3)

and where N 1is the cyclic k by k matrix

-

N=El 00 00 s:: 0 1 s (6.4)
| 0 B SRR ¢

1000 10
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We can re-write (2.10) as

m (1-m~1TQT ) " T(1-Q)Y (6.5)

where
e e TRRA "0CGg JOT HAsT
Q = ZQTNP + ZDCNC - prNr pCNC ZprpCNPNC' (6.6)
Here,
2 _ (2) . (2) = it 1)
Nr 21 + N : Nc 2l + NC R NrNC Nrc >

where Nﬁz), Néz), and Nil]) denote n by n neighbour-specification matrices

which contain 1's and 0's such that

N I OMO Lol

R N O O (6.8)

M) = Ty CONGON 5.9
where N(Z) is the cyclic k x k matrix



T

W8 .l o010 ... 010
PO 0]
10007 ... 000 (6.10)
ot lovoaane. . (2 G0

and N is defined in (6.4). For example, the ith row of N£2) has 1's ‘in

those columns j for which cell j is located next but one to cell i

in a row of the design, and has zeros otherwise. Table 2 illustrates the
general situation and has those (row) cells marked with symbol Nﬁz),
Similar remarks apply for Néz) and Nr£1]) for columns and diagonals

respectively, as shown in Table 2. When cell i is near or on an edge, the

appropriate torus-generated cells must be used.

N2
D [
8o A oo B8 bae | oty n{2)
D [
N2

Table 2. Cell patterns which lead to the n by n neighbour-specification

By

matrices Nr’ NC, r o



0%

The expansion of (6.5), when valid, as far as terms of zero and first

order in Q, can be written

m TY=TQ(I-m™ T T) V)
-1 iy B ~2 i ) [ o 11 -1,
=m {TY-T(2prNr+2pCNC—prN£2)-pCN£ )-ZQrpCN£C ))(I-m GiF iR (6.11)
where we have used the fact that T(I—m~1T'T) = 0.
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Appendix A. Values of Ar, AC for ¢

Lattice Square Designs.

—

1, 2 for

With recovery of

Without recovery of

8 inter-block information inter-block information
?\r KC Ar‘ = }\C
i Z(Er'Ee) | Z(EC-Ee) 5
2 kik+1)Er kik+15EC k(k+1)
: (Er"Ee)(kEc'Ee) (EC-Ee)(kEr—Ee) 1
2 2 2 2 k-1)k
(k-1)(k EPEC~Ee) (k-1)(k ErEc'Ee)
» we"wr we'wc 1
k{wr+wc+(k-1)we} k{wr+w5*fk=¢7wé} k=T)k

In the above table,

|
we h Ee r

m
1

™
1

m
1

residual mean square.

g W, = (2k_])/(2kEr'Ee)’ W,

(2k—1)/(2kEC—Ee),
mean square due to rows adjusted for treatments,

mean square due to columns adjusted for treatments and rows,



