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ABSTRACT

Conditions are given for weak convergence through random indiceé of a
general stochastic approximation process which includes the Robbins-Monro and
Kiefer-Wolfowitz processes. For a particular index, a sequential fixed-width
bounded length confidence interval for the parameter being estimated is estab-
lished. As an example, an optimal recursive estimator and confidence interval

for the mode of a distribution function is constructed.



§1. Introduction and Summary

In a stochastic approximation (SA) procedure, stopping time variables or
stopping rules are important because they give the researcher a reasonable
criterion for halting the procedure with a certain amount of confidence (see
Stroup and Braun (1982), Sielken (1973) and Farrell (1962)). Moreover, stopping
times are useful in developing confidence regions for parameters of interest.
Proof of weak convergence through a general random index gives results for
stopping times as simple corollaries.

Consider a general SA algorithm,

- R =1/2 T
£1..1) R SE - {f(Xn) +n B + n en},

for locating the assumed unique root of f(x)=0, say 0, where f(*) is a measur-
able function such that f:R+R. In (1l.1), Sn and € are random variables and T
is a fixed constant such that 0<1<1/2. Heuristically, one may think of e, as
the random error at the nth stage due to the fact that f(Xn) can only be
measured with error. Bn may be thought of as the bias in the measurement of
£(X,), e.g., if £(*) is a probability density function. The algorithm (1l.1) is
a special case of the algorithm studied by Kushner (1977) and Ljung (1978). It
contains the well-known Robbins—Monro (RM) (1951) and Kiefer-Wolfowitz (KW)
(1952) procedures for finding roots and maxima of a regression function, respec-—
tively.

Motivation for studying a general algorithm has been given by Ruppert

(1982). Ruppert considered a similar algorithm to estimate the (assumed)

unique O such that £( 8)=0,

_ _ -1 =25 T
Cil. 2 X.,=% -a ffx ) +n7°'8 +n sn}



where 0{®K1/4. As argued by Ruppert, an important reason for comsidering algo-
rithms of the form (l1.2) is that a conventional restrictive assumption in SA
that the errors {En} be martingale differences need not be made. Ruppert showed
that for large n, the estimator X, can be almost surely (strongly) approximated
by a weighted average of CERRRT I where Xn and the errors e are k—dimensional
random vectors. This representation and strong approximations for sums of
dependent random variables immediately give several important results about the
large sample behavior of X . We consider only the case k=1. We choose a modi-
fied version of (l1.2) since Ruppert's representation is not directly applicable
to statistical problems that have non—zero bias terms (Bn) infinitely often and
®K1/6, as in the example in §4. The algorithm (l.1) is in a form more related
to the easily accessible algorithm given by Fabian (1968).

After a short preliminary section on notation and assumptions, results
which describe the large sample behavior of the recursive estimator X are given
in §3. The main result is weak convergence via random indices (Theorem 3.2).
This result subsumes the earlier work on stopping rules in SA (see Stroup and
Braun (1982) and references cited therein). A fixed-width bounded length confi-
dence interval for the parameter O is an easy corollary of Theorem 3.2. This
corollary is the result given by Sielken (1973) and McLeish (1976) for the RM
process. Sielken's method was to verify Anscombe's (1952) uniform continuity in
probability condition. McLeish showed convergence of a randomized version of
the BRM process in D[0,1) (the space of right-continuous real functioms on [0,1)
having left-hand limits). The methods in this paper are different. Via strong
approximation techniques, we prove convergence of a randomized version of a
process derived from (l.1) in D[0O,®), a more convenient function space for

stopping rules.



As an example, $§4 shows to how develop a fixed-width bounded length confi-
dence interval for the mode of a distribution function. Using SA to estimate
the mode was introduced by Burkholder (1956) under restrictive conditions and
more generally by Fritz (1973). As a preliminary result, we show that our pro-
posed estimator when suitably standardized converges to a nondegenerate distri-
bution. This preliminary result is new and should be of independent interest
since it gives a method of constructing a mode estimator which has a rate of
convergence similar to the optimal rate of convergence of density estimators
(see Muller and Gasser (1979)). The example also demonstrates why it is impor-
tant to consider a general SA algorithm since the mode estimation problem is
neither an RM nor a KW procedure. The final section gives the results of an
investigation of finite sample properties of the mode estimator proposed in §4

via a Monte—Carlo study.

§2 Notation and Assumptions

Assume that random elements are defined on a fixed probability space
(9,F,P) unless otherwise specified. Endow D[0,) with Stone's (1963) extension
of Skorokhod's (1956) Ji-topology and use =>y to denote convergence in this
topology. Also, use = to denote equivalence in distribution. Let [*] be the
greatest integer function. Let {Xn} and {Yn} be sequences of random variables
(r.v.). We write Xn=0(Yn) if there exists a r.v. Z such that }an/]YHIS? almost
surely (a.s.) for all n. If |X_ |/|Y,| *+ 0 a.s., we write X =o(Y,). Let
Op( *) and op( %) be the corresponding symbols for relationships in probability.

The asymptotic coverage probability is fixed at l-a, where ae(0,1/2). We
will define a sequence of random intervals {In} and a stopping rule Ny so that
Ny is the first n such that length(lnlsgd and 1lim P(GEIN )=1-a. The basic

d-0 d
assumptions about the relationships defined in (1.1) are stated below.



Al. Let ™0 and O1/2-T. Assume that £(x) = G(x-8) + o(|x-6]1™™.

A2. Let p>0 and BeR. Assume that Bn = B+ o(n_p)-
A3. lim X =8 a.s.
n¥%® n
Ah. There exists a probability space which contains a sequence {en} and a
standard Brownian Motion B on [0,%) such that
{en; n=1,2,...} 5 {en; n=1,2,...}
and for some o,€ > 0 depending on {E }

n

1/2-¢

= ¢ B(t) + 0(t Vi

) k<t %k

A5, Let Nn/mn = N + op(l), where N is a positive random variable, {mn} are
integers going to infinity and {Nn} is a sequence of random variables.

A6. Let {él}, {%1} and {Gn} be sequences of random variables such that
g =B+ o(1), g =0+ o(l) and G =G + o(1).

Remarks: In A6, we allow estimators of B that do not converge to B as
quickly as those in A3. These will be useful in the construction of confidence
intervals. The monograph of Phillip and Stout (1975) gives several sets of suf-
ficient conditions so that the sequence of random variables {En} can be rede-
fined on a richer probability space without changing its distribution so that AL
holds. Thus, our formulation includes stochastic approximation processes with
certain types of dependent noise and even nonstationary noise (see Phillip and
Stout, 1975, Chapter 8). For notational convenience, we follow Strassen (1967)
and adopt the phrase "without loss of generality” when redefining a sequence of
random variables on a possibly richer probability space containing a Brownian

Motion process (see Csorgo and Revesz, 1981, Remark 2.2.1). TFor example,

assumption A4 would be written as



A4'. Without loss of generality, there exists a standard Brownian Motion

process B on [0,%) and a o, €0 such that

Zk<t g = 9 B(t) * 0(1:1/2'5).

§3 SA Convergence Results

Theorem 3.2 contains the main result, weak convergence via random indices
of the process {Wn} (defined in (3.1) below) derived from (1l.1). To prove that

result we need:

Theorem 3.1

Consider the algorithm defined in (1.1) and assume A4. Let

(3.1 W (r) = [nt]”z“T(x[nt]H-e) + B/(G-1/2+T) 1=1,2,...

~

Then, without loss of generality, there exists a standard Brownian Motion

process B and a sequence of Gaussian processes {Zn} defined on [0,«) such that
_ —€
(3.2) Wn(t) = Zn(t) + 0(n )

where Zn(t) = -Z(nt) and

}—1/2 g t-(G—1/2+T) 2(G-1/2+T)).

(3:3) Z(t) = f2(6-1/2+7 B(t

Hence,

(3.4) Wn(t) =>W Z(t).

The proof of Theorem 3.1 uses the following two lemmas.

Lemma 3.1 (Ruppert, 1982, Lemma 4.1)

Assume a>-1/2 and A4. Then there exists a standard Brownian Motion Ba and

an €'>0 such that



2a+l a+l/2-¢'

(2atl) Ly 4 ok N

2i((t K B o Ba(t

3 a
If a<-1/2, then 11mt_m Zk_(_t k e, exists and

(3.5) limt_m Xk(t K2 e igs finite a.s.

Lemma 3;2
Consider the algorithm defined in (l1.1) and assume A4. Then, there exists

0 such that

nlfz‘f(xnﬂ-e) o e ey = §;=1(k/n)cﬂ_l g + 0 9.

Proof: TFor the one-dimensional case, (3.5) and assumption A4 imply Ruppert's

(1982) assumption A4. The remainder of the proof is similar to Ruppert's

Theorem 3.1. *

Proof of Theorem 3.1: To prove (3.2), first let y=G-1/2+7t. From Lemmas 3.1 and

3.2, with a=G-1+w=v-1/2,

G+t1

€ + 0(n_€)

W (t) —[ntT_Y&<[nt]k

2a+1 atl/2-¢'

~tnt]” Y{o B([nt]%® 1 (2a+1) 1) + o([nt] S

~ne]”Y o B([at]1?Y (29 7H + o™ 9.

siuse BOALTS T @9~ < Bt (a9 ™Y + d(1) aAnd

Y= (nt)_Y+ O(n—l_‘Y), we have

[nt]”
(3.6)  W_() = ~(a)” T o B((mn)?Y (2p D) + 0(n” %)

which proves (3.2). Since -B(t) =, B(t) and a -/2 B(at) =) B(t), (3.4) is

immediate from (3.2). #



The following lemma is a modification of a result that can be found in
Csorgo and Revesz (1981, Theorem 7.2.2). However, the method of proof is dif-

ferent and can be extended to more general situations.

Lemma 3.3
Suppose ~$(t): th} is an element of D[0,®) defined on (9,F,P). Assume A5,
that there exists a Gaussian process G(t)=t_a/ZB(ta) for some a>0, that B( ) is

a Brownian motion on [0,«) and that

-1/2
n

(3s7) |s(nt) - G(nt)| = o(1).

Hl/zS(n.)} is Renyi-mixing, i.e.,

Then, {n
-1/2 B

(3.8) P(n S(nt) € A, t>0|E) =>y P(G(t) €A, t>0)

for each A,E € F such that P(E)>0. Thus,

~173 _
(3.9)  N_TTS(N_£) => 6(r).

Proof: Fix T>0 and consider only O0<t<{T. WNow, from {(3.7);

P {lim sup |n"1/25(nt) - n_l/ZG(nt)| =0} = 1.
n¥e i
This gives, for any set F having positive probability,
P{lim sup In_l/ZS(nt)—n_l/ZG(nt)l = OIE} = 1.

n¥*® t
This implies, for A € F,
(3.10)  |P(a” Y/ 2s(nt) e, 0<t<T|E) - P(n /26 (nt) ea,0¢E<T|E) | > O.

It is easy to show that n_lsz(n.) is Renyi-mixing, i.e.,



(3.11) e h Y 26(me) e, 0KEKT|E} =5 P(G(E) @A, OKECT).

See for example, Csorgo and Revesz (1981, Lemma 7.2.2 and subsequent remarks).
Since T is arbitrary, (3.10) and (3.l1) are sufficient for (3.8). (3.8) and

Theorem 4 of Durrett and Resnick (1976) give (3.9). #

Theorem 3.2
Consider the sequence of stochastic processes {Wu} defined in (3.1) and
assume Al-A5. Then,
WN (t) =>W Z(t).
n

Proof: A direct application of Lemma 3.3 to Theorem 3.1l. Define,
with Y=G-1/2+T,

o(y = /2 Yo B(e2Y (2p7h

S(nt)

(nt)/2 W(t)

From (3.6), (3.7) is satisfied. Thus, from lLemma 3.3,

-1/2 D "
Nn S(Nnt) = t WN () —>‘W G(t).

n
Using t_1/2 G(t) =p Z(t) completes the proof. F

Remarks: It is not very difficult to show that the algorithm (1.1)=with
assumptions Al-A4 contains the Robbins-Monro process. See Ruppert (1982) or
Ljung (1978) for proofs under different assumptions. Thus, Theorem 3.2 contains
the main result of Stroup and Braun (1982, Theorem 5).

To emphasize the importance of Theorem 3.2, we now construct a sequential
confidence region for the main parameter of interest, 6. Let % be the (1—0:)th
quantile of the standard normal distribution. For random variables 6;, . and

G, and for each d>0, define



(BaLZy.  Wps inf [n>1: Oz 00 1@/2-1) f(e_-1/2+7) }-1/2}
= = if no such n exists
and
(3.13) 1= xn MO8 (6 172402y 0, (2(6,-1/24D) ey
x_ (12708 /(e ~1/24004z 0, 26 -1/240) i 2y

Remark: We may define the sequence {nd} where

—1/2}

n, = inf {>1: ddz o n'(l/z"T) 2(G-1/2+71) . It is immediate that under
d L. 2Zof2

the assumptions of Theorem 3.1 that limd%O P(Ge[n Y=1-a. Further, from Lemma

d
3.6 of McLeish (1976), we get limd+0 Nd/nd=1 a8

Corollary 3.3

Consider the algorithm defined in (1.1) and assume Al-A4 and A6. Then,

1lmd+0 P(BEINd) = 1l-a.

Proof: From (3.12) and A6, we have,

N1/2—1’

4 Ny

{2(G—1/2+T)}1/2/U - = o(l) as d-0.

ZUJZ

Thus, A5 is satisfied. From Theorem 3.2 and the Continuous Mapping Theorem at

t=1, we have

1/2-1

%

Xy =8 = N(-8/(G-1/2+7), &2/ [2(G-1/2+) ). #
a

Remark: The applicability of Theorem 3.2 and Corollary 3.3 for the RM
process was cited in §1 and for the mode estimation problem is in §4. These

results can also be used in conjunction with estimating the optimal replacement

time in an age replacement policy, an important problem in resource allocation.
Frees and Ruppert (1983) showed that a stochastic approximation estimator of the

optimal replacement time has desirable asymptotic properties such as strong
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consistency and weak convergence to a limiting distribution {(cf., Frees and
Ruppert for definitions of an age replacement policy and the optimal replacement
time). Corollary 3.3 can be used to determine at what stage of the estimation
process the estimator is reasonably close to the optimal replacement time with
high probability. This tool may be useful to the experimenter as a cost—saving

device.

§4 Mode Estimation Via SA

Estimating the mode of a distribution function is a delicate problem that
has drawn the attention of many researchers (cf., Eddy (1980, 1982) and Hall
(1982)). As pointed out by Fritz (1973), SA is a natural vehicle to use in mode
estimation. In this section we give a variation of Fritz's SA mode estimator,
prove its optimality and then construct sequential fixed-width bounded length
confidence intervals for the mode. Proofs of these properties appear at the end
of the section.

Let £(*) be the probability density function of some distribution function
F(*). When it exists, use f(s)(') for the sth derivative of f, s=0,1,2,...
Assume that the mode of F, 8 = supr(x), is unique and finite.

Let B, be the class of all Borel-measurable real-valued functions k(*),
where k( *) is bounded and equals zero outside [-1,1]. Let r be a fixed positive
integer. For 0<s<r, define

; i 1 j=s
Moo= fkeB ¢ f_ly ELIR 26T j=0,_”’r_1}-
M. ¥8 & class of kernel functions used to estimate f(S) which is similar to a
class used by Singh (1977).

Take X; to be an arbitrary random variable with finite second moments. Let

th

B = cﬁXl, Zl""’zn—l)’ the sigma field generated by past events at the n
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stage. We assume there exist sequences of positive random variables {an} and

c, are F -measurable. Let {Zn} be an i.i.d. sequence of random

{Cn} where a_,, ¢,

variables such that Z; has density f. Define Ep to be the conditional expecta-

1
tion given F. Use kaﬂl to define the estimator of f( )(') by

(4.1) fél)(x) - k((Zn—x)/cn)/ci.

th

Define the estimator of O at the n stage, X 41> recursively by

] (L
(4.2) X, =X +af (X).

A 1list of the basic assumptions is collected below.

Bl. For some integer r>l, assume f(x), f(r)(x) exist for each x and are

bounded on the entire real line.

2. For each x#0, (x-8)£‘1)(x) < o.

B3. TFor some A,C>0 and t=3/(2(2r+l)), anan cnnZT/3+ C a.s.

B4. f(r)(x) is continuous at 6.

B5. Assume that G > 1/2—-T = (r-1)/(2r+l) where G = ~at$%) gy,

B6. For some d>0, f(r)(x) = f(r)(e) + 0(]x~e|d) for each x.

LamaALL

Consider the algorithm defined in (4.2) and assume B1-B3. Then,

(4.3) lim X =0 a.s.

n+r>® n

The proof is a modification of Fritz (1973, Theorem 2). See also Frees

(1983, Theorem 4.1). The weak convergence of the mode estimator is now stated.
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Theorem 4.1
Consider the algorithm defined in (4.2) and assume Bl1-B5. Define

1 1
s &L £ gy [ yT/rt k(pday, & = A% £(8) [ k*(y)dy and {W_} as in

1 1
(3.1). Then, for Z(t) defined in (3.3), we have

(4.4)  W_(£) =D ().

Remarks: Using the Continuous Mapping Theorem at t=1 gives the asymptotic
normality of the mode estimator in (4.2) when suitably standardized. The rate
of convergence, 1/2-T= (r-1)/(2r+l), is better than the rate recently given by
Eddy (1980, Corollary 2.2) when the same number of bounded derivatives is
assumed.

An immediate extension is to find the 0 such that f(p)(9)=a for nonnegative
integer p and fixed, known constant a. For asymptotic normality of a multi-
variate mode estimator see Frees (1983, Theorem 4.4), in which a different
method of proof (due to Fabian (1968)) is used.

To get a version of Corollary 3.3, we introduce estimators of S;, o and G,
that satisfy A6. Let kos Mo, kze Mz, kre Mr and define

s+l

fgs)(t) = ks((zn—t)/cn)/cn for s=0,2,r. Now, define

i r-1 r - (r)
Chetil B oReetT [yl kyity o7 AN ]
n g ) ]
-1 j=1
g 1.8 meyodli 4 =pal &i00)
(4.6) O mACe ) k tyyay n ) ks (X
..l j:l J J
-1 & (2)
(b Ty Gy o =k e e (xj)}.
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Corollary 4.2

Consider the algorithm defined in (4.2) and assume Bl1-B6. Use the estima-

tors in (4.5)-(4.7) to construct {N,} and {1_}as in (3.12) and (3.13). Then

1imd+0 P(eelNd) = 1-0a.

The remainder of this section contains the proofs of Theorem 4.1 and Corol-
lary 4.2. We use the following result due to Strassen. (Recall the convention

stated in the remark following the assumptions in §2.)

Lemma 4.2 (Strassen, 1967, Theorem 4.4)

Let {Qn’Fn+1} be a martingale difference sequence. Define

E?, S(Yn) = EE € s and S(t) by linear interpolation. Let h be a

Yy = qulEFn n

nonnegative, nondecreasing function on [0,%) such that t_lh(t) is nonincreas-—
ing. If

(4.8) Yn + ® a.s. and

4.9 I EFn{Ei 1(e >h(Yn))}(h(Yn))'1 T

then, without loss of generality, there exists a Brownian Motion process 3B
on [0, ®) such that

(4.10)  S(t)-B(t) = o((log t)(t h(t)/4).

Proof of Theorem 4.l: We need to satisfy the assumptions of Theorem Fele . Al 18

true by Bl, B4 and B5. Define

[}

a ' T, £8P0y - P ) )

(4.11) B P
n

3/2-1
an
n

(4.12) 8 (P -e, £ D))
n



14

Thus, from (4.2) with f*(')=-f(l)(-),

) S * ™-1/2 T
(4,43) E oy =% -om {;nn £ B +n en}.

Some easy calculations show that A2 is true with B defined in the statement of
the theorem. Note that some of the bias term is in an f*(Xn) ((ann-A)f*(Xn))
but is asymptotically negligible. Lemma 4.1 satisfies A3. The main work of the
theorem is to satisfy A4 for which we will Lemma 4.2.

Let {%1} as in (4.11) and define Y, as in Lemma 4.2. Since keM;, we have

that EF fil)(Xn) is bounded. Further, for p>0, by change of variables,
(L) R Birtie
(4.14) EFn(fn (X)) e [ kP((s X e ) £(s)ds

1
-2p+
= PP [Py £(X te_y)dy.

B Lz

Ty WLEN 2 n‘zTEF (fil)(xn))2 »¢3£¢0) [ k¥ (y)dy a.s. by Lemma 4.1, Bl, B3
n
and the Dominated Convergence Theorem. Further,

1

(4.15) E, s% 5220050 | ity = & e
n -1

This satisfies (4.8) since Yn/n9ﬁ2 A8

To satisfy (4.9), use a conditional version of Holder's inequality. Let

p,q be nonnegative constants such that 2/p+ 1l/lq = 1. . Then,
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=1 D 72
(R(E)) " By {£1(e>n N}

-1 2/p 2 1/q
< (h(Y)) (EFHE:};) [EFn(I(En>h(Yn)))]
< (h(Yn))‘l(EF EIPI)ZIP{EF Efl]l/q[h(Yn)l_p/(ZQ)
n n
B P -p/2
* EFn e (h(¥ )) §

Now, by B3 and (4.14), Eg (fr(ll)(xn))P < (a2 N2y ana itk @4.125,
n

- (p—2)
(4.16) EFnﬁ = 0(n ¥

For some 0<1/2-1, let h(t)=t1_E. Since Yn=0(n), we have
wh(Yn))—p/z Eg e]f’1 = O(nT(p'z)_P/Z(l“g)). Requiring that 0<e<l/2-T implies that
n
Wp-2)-(p/2)(1-¢)<K-1
and thus (4.9) is satisfied. We thus have (4.10) which is sufficient for A4. =
The proof of Corollary 4.2 is similar to the proof of Corollary 3.3 using

Theorem 4.1, Theorem 3.2 and the following:

Lemma &.3.
Consider the algorithm defined in (4.2) and assume B1-B6. Then, the esti-
mators 6:1’ g and G, defined in (4.5)-(4.7) satisfy A6.
Proof: We prove only Br'1=B+ o(l) as the others are similar. Sufficient for this
is
n

5,17y B CY fgr)(xj) » £ (g a.s.
gt
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]

Now, Eangr)(Xn) f kr((s—Xn)/cn)/c:_1 f(s)ds

1
=L
oy [ k) ey

1
o L Em (e /rt £ (n (1))ay

where Hnn(y)—Xnﬂ E'cny, by a Taylor-series expansion and since kre Mr' By B6,

1
d
(4.18) Eanff’(xn> = J T ) (£ (oyro( | n (-0 Jay

o f(r)( 8)

by Lemma 4.1 and the Dominated Convergence Theorem. By Kronecker's lemma, we

have
_ln
(4:19) ] ssmenr(P ey = £S5 B
=i g

It is not hard to find a te(0,2] such that

—F (r) £ (r) =
¢h.20y 14 EFj|fj (x5 Eijj (xj)| < =a.s.

(4.19) and (4.20) are sufficient for (4.17) by Theorem 5 of Chow (1965). #

§5 Monte-Carlo Simulation

In a simple example, finite sample properties of the procedure introduced
in §4 were investigated. The Gamma distribution was used with location and scale
parameters 11 and 10, respectively, which produces a mean of 1.1 and standard
deviation of .3317. The distribution function and parameters determine a
unique 6&=1.

To estimate the derivatives of the density function, we used Legendre poly-—

nomials to calculate simple, polynomial kernel estimators. For rates r=3 and
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r=4, these kernel estimators are given in Table 1 below. By using r=4 and
Legendre polynomials, the mode estimator is asymptotically unbiased (f=0). This
fact had a great impact on the performance of the stopping rules which is

described below.

Table 1 Inserted Here

Let A and C be positive constants, K, and Kg be nonnegative constants. As
first suggested by Dvoretsky (1956), we used {an} and {cn} of the form a, =
)‘2T/3.

A(n+KAf1 and ¢, = C(n+Kg

A Taking K, to be positive improved the conver—

gence properties of the procedﬁre in finite samples. Choice of the positive
parameters A and C is constrained only by B5 (for the above Gamma distribution
and r=3 this implies A > (—2/7)/f(2)(8) = .024). One criterion for selection,
introduced by Abdelhamid (1973), is to choose the A and C that minimize the
asymptotic mean square error. For r=3, some easy calculations show that these
optimal values are A=.08 and C=.7. Unfortunately, these optimal values are
usually not available to the experimenter a priori. Tables 2-4 give results for
some alternative parameters A and C (and various choices of K,, Ke and the
initial estimator X;). In these tables, the criteria for choosing among alter—
native estimators based on different parameters are the expected bias and mean
square error standardized by the sample size.

Another important consideration in finite samples is the choice of the
appropriate confidence level (o) and confidence interval width (2d). Based on
the above parametrization of the model, it is easy to calculate factors in the
asymptotic mean and variance of n(r*l)/(2r+1)(xn_9) as given in Theorem 4.1,

For r=4, these are £=0.0, 02=.21885 and G=1.00088. Assume that these values are
known, that n1/3(Xn—G) is distributed normally (not only asymptotically) and

that it is desired to have a 95% confidence interval for O with error no more
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than .10 (which implies z0¢2=1.96 and d=.10). Based on the remarks preceding

Corollary 3.3, we require a sample size at least

172

Gl ny _>_za/2d_10/ fae-1/2) % = 499.7.

Even in this simplified version, a large sample size is required for moderately
precise results. Because of the large sample nature of the problem, we imposed
the somewhat arbitrary constraint that the procedure not be stopped before
n=200.

At the 95% level of confidence, Tables 5-7 give the results of using the
stopping rule in the SA algorithm for selected values of A, C, K, K5, Xy and d.
The proportion of successes column (PROPN SUCC) is the number of times 6 € INd
divided by the number of times the algorithm was actually stopped. Similarly,
averages for the stopping time, Ny, and the bias at Ny were computed only over
the runs stopped.

The following remarks summarize the results of the simulation study, the
details of which can be found in Tables 2-7. Each simulation is based on 500
independent trials.

(1). The performance of the mode estimator can be characterized as typical
of a stochastic approximation estimator. From Tables 2-4, we see that the
effects of the initial estimator X; still persist for large n. The mode estima-
tor performed better when the initial estimator was less than the true mode than
when X; was greater than the mode, an important point in practice. The perfor-
mance was dramatically enhanced by taking K, to be positive, but the introduc-
tion of positive K; only slowed the convergence of the algorithm.

(2). For r=4, the stopping rule performed well even in cases in which the
mode estimator did poorly. Criteria for judging the performance of the stopping
rules were proportion of successes and the average bias at the stopping time.

When the convergence of the algorithm was extremely poor, the stopping rule per-—
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formed slightly worse. Thus, the stopping rule should not be relied on as the
sole eriterion for halting the procedure when the experimenter has no knowledge
of the distribution function.

(3). For r=3, the stopping rule performed well on the basis of the average
bias at the stopping time. However, the performance was markedly poorer than
r=4 when judged by the proportion of successes criterion. This is due to the
fact that to construct the confidence interval we needed to estimate the third
derivative of the density at the mode. Even the sample sizes we used were not
large enough to get accurate estimators of the bias. Thus, the confidence

intervals were much poorer than the asymptotically unbiased case (r=4).
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TABLE 1 —— KERNEL FUNCTIONS

.375 (3-5y2) I(-1<y<1)
ky(y) = 1.5y I(-1<y<1)
3.75(3y%-1) I(-1<y<1)

26.25(5y°-3y) I(-1<y<l)

.375(3-5y2) I(-1<y<1)
ky(y) = 1.875(5y-7y%) T(-1<y<l)
3.75(3y%-1) I(-1<y<1)

0



E(X,~0)
nl/3usE_

(X,
nl/3uMsE

R (X~ 6)
nl/3usE_

E(X,- )
nl/BMSEn

E(Xn— )]
n1/3MSEn

E(X,- 6)
nt/3usE_

E(X, - 6)
nl/3usE_

E(X,~ 0
nl/3usE_

E(X,~6)
nl/3usE_
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TABLE 2 -— PERFORMANCE OF ESTIMATORS

r =4 A= .08 c=.7
X Ky Ke Stage of Algorithm

250 500 2000 ®

1.5 0 0 .126 .103 072 0
3.14 4.25 7.77 .164

5 .093 .061 .024 0

.907 .809 .517 164

10 .118 .075 .029 0

1.02 .829 481 .164

1.5 0 5 .191 .172 .139 0
6.22 9.07 19.5 164

10 .205 .185 149 0
7.29 10.7 23.4 164

o5 0 0 -.070 -.070 -.067 0
2.84 4,31 10.3 .164

) 5 0 -.024 -.011 .000 0
$233 .189 .160 .164

1.33 0 0 .070 .055 .034 0
1.42 1.79 3.00 .164

1.66 0 0 «237 .208 .161 0
7.16 10.2 21.0 .164
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TABLE 3 —— PERFORMANCE OF ESTIMATORS

r=4 KA=0 KC=O
A € X Stage of Algorithm

750 500 2000 -
E(X_ - 0) .08 W ma s 126 .103 .072 0
nl/3usE 3.14 4.25 7:77 .164
E(X,~6) .05 137 112 .073 0
nt/3usE_ 2.06 2,54 3,72 .148
E(X_ - 0) .10 43 122 .092 0
nl/3usE 4.56 6. 44 13.3 .186
E(X,~6) .08 dpa o8 .252 .243 .214 0
nl/3usE 13.2 19.9 557 450
(X, -0 1.9 .077 .058 .033 0
nl/3usE .269 .239 .197 .026
E(X,~ 6) 1.5 112 .086 .051 0
nl/3usE 596 492 .428 .017
E(X_ - ) TR .046 .037 .027 0
nl/3usE_ W10 - Lels 2.47 .085
E(X - 6) W5 1.0 .5 ~.004 -.008 -.012 0
nl/3usE_ 1.02 1.54 3,72 .085
R (X, ©) .05 .5 5 =15 ~. 140 =119 0

nt/3MsE, 4.56 6.69 14.9 401
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TABLE 4 —— PERFORMANCE OF ESTIMATORS

r=3 B =0 Kg=0

A c X Stage of Algorithm

750 500 2000 =
E(X_ - ) .08 B bR b .066 047 .024 0
n?/7usE_ {151 197 .077 .043
E(X_ - 0) .5 ~.008 .002 .009 0
n?/7usE_ .033 .028 .034 .043
E(X,~6) 1.33 .047 .035 .020 0
n?/7MSE_ .087 .075 .059 .043
E(X,- ) 1.66 .120 .082 .038 0
n2/7MsSE_ 4.85 .355 2176 .043
E(X,~ ) 2.00 .662 .604 475 0
n2/TMsE_ 11.3 14.6 22.4 .043
E(X,~6) .08 1.0 1.5 134 .101 .056 0
n?/7msE_ 443 377 257 .087
E(X_ - 0) .10 .7 047 .033 o7 0
n2/7MsE_ .094 .076 .055 .045
E(X,~ ) .15 1.0 1.5 .062 .046 .028 0
n?/7MsE_ .108 .088 .077 .069
E(X,~ ) .15 1.0 .5 .026 .029 .025 0

n?/TMsE_ .032 .043 064 .069



1.5

1.5

«3

1:33

1.66

10
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TABLE 5 —— PERFORMANCE OF STOPPING RULES

r =4 A= .08 Ci= .7

Ko d PROPN PROPN AVG
STOPPED SUCC N4

0 .100 .848 .986 909.6
.075 .578 972 24lB813:

.100 .884 .980 976.4
.075 .542 963 ¢ (il538,
.100 -850 .981  1047.
.075 476 .958. ¢vil581,

5 100 .788 .982 910.8
.075 544 982 pedA9l,

10 .100 .758 .982 895.5
.075 .524 954 1499.

0 .100 -902 .998 857.3
.075 .656 979 1494.

0 .100 .976 .988 865.6
.075 724 983 agl510.

0 .100 .910 .982 870.1
.075 .658 .973  1482.

0 .100 716 .980 932.9
.075 .456 .969  1505.

AVG
(%y,=0)

.012
.004
.019
.007
.028
012
.011
.003
.018
.008
.003
-.002
-.004
-.001
.010
.003
915

.005



.08

.05

.10

.08

.15

.15

.05

o)

ol

1.3

1.5

1.0

27

TABLE 6 —— PERFORMANCE OF STOPPING RULES

1.5

1.5

1.5

1.5

«5

r =4

.100

.075

.100

.075

.100

.075

.100

.075

.100

.075

.050

.100

.075

.050

.100

.075

.100

.075

.100

.075

KA=O

PROPN
STOPPED
.848
.578
.748
#5712
.822
.386
«242
0
1.000
1.000
.848
.998
.980
.012
.980
.980
974
.974
.522

.126

Ko =0

PROPN

sUcC

.986

972

.960

.948

.985

.964

.884

0

.998

.978

917

1.000

.953

.500

.996

.996

.998

.994

.954

.889

AVG
Ng
909.6
1513.
880.9
1398,
1023.
1662.
1477.
0
650.4
954.4
1777.
1246.
1550.
1941.
542.8
1083.
538.0
1078.
1202.

1612.

AVG
(Xy =0
.012
.004
.029
.018
.008
.002

.039

.052
044
.034
.061
.056
.046
.017
.013
.015
.012
-.011

_0007
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TABLE 7 -- PERFORMANCE OF STOPPING RULES

.08

.08

.10

.15

=15

r=3 Ky =0 Ke=0

C X d PROPN PROPN AVG AVG
STOPPED SUCC Nd (XNd—G)

7 1.5 .100 .994 =505 274.9 .064
.075 .988 .508 379.5 .057

.050 .912 «575 868.3 .035

+3 .075 .998 577 283.8 -.009

.050 .972 .568 744.7 .003

1,33 .07 .996 .516 329.5 .043

.050 .938 .574 797.3 .029

1.66 .075 .956 446 522.2 .082

.050 .818 .538 989.4 .050

2.00 .075 .100 240 1134. .140

.050 .050 440 1371. .093

1.0 1.5 075 1.000 .282 283.1 .131
.050 1.000 344 508.4 103

. 1.5 .075 .996 .594 384.4 .038
.050 .916 .600 1005. .024

1.0 Lo .075 1.000 -590 223.0 .065
.050 1.000 652 518.0 .045

.10 50, .075 1.000 .648 208.9 .023
.050 1.000 .648 475.1 .028



