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Summary

The problem of estimating an endpoint of a distribution is revisited,
using the bootstrap and random subsample methods. Contrary to an example
in Bickel and Freedman (1981) suggesting that these methods do not work
here, it is shown that one can in fact construct asymptotically valid con-
fidence intervals. However, the results also indicate that resampling

methods may be more model-dependent than originally thought.
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Introduction. Bickel and Freedman (1981) give the following as a counter-
example to Efron's (1979) boots;rap method. Let x],xz,...,xn be independent,
identically distributed random variables from thé uniform distribution F
on the interval (0,8). Using the natural pivot n(e-x(n))/a, where X(i) de-
notes the ith order statistic, they observe that (1) n(B-X(n))/e tends to
a Timiting exponential distribution, and (i1) with probability one, the
conditional distribution of the bootstrap quantity n(X(n)—an))/X(n) does not
have a weak Timit. Here (XT,...,X;) denotes a bootstrap sample. Since the
bootstrap distribution does not approximate the true distribution of the
pivot well even in the 1imit, these authors conclude that the bootstrap
method does not work for this situation.

In this paper we re-examine the problem more generally for any F with
a right endpoint 6 and belonging to the domain of attraction of the type II
extreme value law, i.e. we only assume that there is ¢ > 0 such that (cf.
Gnedenko, 1943)

(1.1) Tim  {1-F(cx+0)}/{1-F(x+8)} = & for all ¢ > 0.

x+0-
The uniform, as well as any distribution with a finite, non-zero density
at 6, corresponds to § = 1. It is easy to verify that under (1.1), the
above observations generally hold true, namely, (i)' nl/s(e—x(n)) tends
to a Timiting distribution, and, (ii)' with probability one, the conditional

1/8

distribution of n (X(n)-X?n)) does not have any weak limit. However,

using a method of constructing bootstrap intervals first considered but



apparently abandoned by Efron (1979), we show that these intervals are
asymptotically valid for precisely one value of § 1. This result has

two implications. The first is that the bootstrap method is more “robust"
than first thought, since it can provide valid inferences even without

the bootstrap distribution being close to the true distribution of the pivot.
On the other hand, since the method works for only one value of &, the re-
sult suggests that it is highly model-dependent.

Even more surprisingly, it will be shown that if we repeat the whole
argument with Hartigan's (1969) random subsampling method instead of the
bootstrap, then (i)' and (11) ' again hold with X?n) replaced with the Targest
value in each random subsample. But now if F is the uniform distribution,
the random subsample intervals have exact coverage probabilities for atll
sample sizes! In fact these intervals are asymptotically valid for al]
Fowith § =1,

The non-uniform performance of the bootstrap method can be corrected
if we knew §. This is accomplished by using a "generalized" bootstrap,
which resamples the observations with unequal probabilities depending on ¢,
The validity of the resulting intervals is proved in Section 4.

The twin problem of finding point estimates of 6 s also considered.
Essentially our procedure is to derive median- and mean-bias corrected
estimates based on X(n) using the bootstrap and random subsample distri-
butions. Two of the estimates so obtained turn out to have been pProposed
earlier in Robson and Whitlock (1964) and Cooke (1979). A third is new.
This application of the bootstrap method does not appear to have attracted

much attention in the bootstrap Titerature.



2. Survey of known results.

One of the first to consider the problem of estimating an endpoint
of a distribution from a nonparametric viewpoint is Miller (1964), whose
main purpose was to show that-Tukey's (1958) original suggestion for con-
structing jackknife t-intervals can give incorrect answers. This and sub-
sequent papers assume the following framework. Let X],...jn be independent,
identically distributed random variables from a distribution F(x-8) such
that F(x) < 1 for x < 0 and F(0) = 1, for some finite 6. Further, F(x)
is assumed to belong to the domain of attraction of a type II extreme value
Taw, i.e. it satisfies (1.1) for some & > 0.

Miller (1964) showed that Quenouille's (1949) jackknife estimate based
on the naive estimate X(n) is

#: -1
- (2.1) 8y = X(n) +n (n-])(X(n)-X(n_1)).

When ©6 1is a truncation parameter, i.e. § = 1, the particular bias ex-
pansion of X(n) led Robson and Whitlock (1964) to propose the modified

jackknife estimate

~

(2.2) O = 2X(n) = X(n-1)>

which is asymptotically equivalent to (2.1).



Noting that neither of these estimators has smaller asymptotic mean squared

error than X(n) when & = 1, Cooke (1979) obtained the estimator

n-1

(2.3) Xy - [(1-i/n)" - O-( /MK gy

n)

L 5T

i=0

which is asymptotically equivalent to
(2.4) 6 = ZX(

He showed that this has smaller asymptotic mean squared error than (2.2) for
6 = 1, but not for § > 1.

Better estimates are available if & 1is assumed known. Cooke (1979)
gave formulas for the best constants Cq and Co minimizing the mean squared

errors within the respective classes

Xy * 1) X))

and
s, B
+ -(1- s 4 s
X(n) CZ{X(n) (] e ) 150 e X(n__l)}
Note that ¢; = ¢, = 1 yields (2.2) and (2.4). In another paper, Cooke (1980)
also derived the best Tinear estimator based on a fixed number of the largest

order statistics. For solutions assuming conditions stronger than (1.1),

see Hall (1982) and the references therein.



When & s unknown, the choice between (2.1) - (2.4) is in some sense
not absolutely critical, since the mean squared error of each is O(Uﬁ), where
i, = F_1(1-n'1). Thus every estimator is at least consistent. In contrast,
the situation with interval estimation is very different. Miller (1964)

showed that the jackknife t-intervals give completely wrong coverage pro-

babilities. Robson and Whitlock (1964) obtained the interval

~1
(X(n) sX(n) + a (T-&)(X(n) - X(n_-[)))

which has asymptotic coverage probability 1 - a only for 6 = 1. Cooke

(1979) generalized this to
(2.5) (Xny Xny + €001 = X 40)).

This has asymptotic coverage probability 1 - o if and only if (1.1) holds
with 6 = 1/v. Weissman (1981) further generalized (2.5) to the "two-sided"
interval involving Tower order statistics

) s

(2.6) 1,0939y:8) = (K4 00) (K X

X(n) + ri(pZ)(X(n)_X(n—i)))
where ri(p) = [{1-(T-p)](i}_v—1]_1. He showed that this interval has

asymptotic coverage probability Py - Py if (1.1) holds with & = 1/v.

Clearly (2.5) is a special case of (2.6).



3. Bootstrap and random subsample procedures.

Let 06* denote the largest value in a bootstrap or random subsample,
and P, the associated resampling probabilities. It is easy to verify that

for i = 1,2,...,n-1, the bootstrap distribution is
(3.1) Pu(6* < X i) = {(n-1)/m}" = e},

and the random subsample distribution is

-1

(3.2) PL(0% < Xpqy) = (2" 1201y » 2

We first prove statements (i)' and (ii)' mentioned in the introduction.

Theorem 3.1. Under (1.1) and as n > =,

1/6

(1) n1/5(8-x(n)) converges in distribution to that of Z'/°, where Z is

the standard exponential random variable, and

(ii) w.p.1, the conditional distribution of n]/a(x(n)—g*), under either (3.1)
or (3.2), does not have a weak 1imit.

Proof. From standard results concerning extremal processes (cf. Weissman,
1981), we know that for fixed k, the joint distribution of

(n}/ﬁ(e—x(n)), nl/ﬁ(e—x(n_])),...,n]/ﬁ(e—x(n_k))) converges to that of the

; 1/8 1/68 1/8 .
random variables (21 ,(Z]+22) ,...,(Z]+...Zk+1) ), where the Zi s
are independent standard exponential random variables. Hence (i) follows.
/6

It further follows that for each fixed k, n

)]/(S - Z}/S. The Hewitt-Savage zero-one

(X(n)_x(n-k)) converges in

distribution to that of (Z1+...+Zk+]



law now implies that Tim sup n1/5(x(n)-x(n_k)) = o and 1im inf n]/é(x(n)-x(n_k))=o
a.s. This together with (3.1) and (3.2) yield part (ii) of the theorem.

We proceed to show that despite this fact, the bootstrap and random suB-
sample methods can still give useful results. First we consider interval
estimation of 6. Efron (1981, 1982) has given two methods, called the
"percentile" and "bias-corrected percentile" methods, but because both
yield intervals contained within the support of the bootstrap distribution,
they clearly do not work here. Instead we resurrect another method originally
criticisedin Efron (1979, Remark D). Let ta be the 100a percentile of the

bootstrap distribution of 6*, 1i.e.
A* = =
P*(ta < B g_x(n)) 1-a,
or equivalently
(3.3) Po(t, -0 <8* - 8) = 1-q,

since 6 = X(n)' If we believe, as the bootstrap method would have us

believe, that the Monte Carlo distribution of g* - 8 is close to the true
distribution of 6 - 6, (3.3) suggests the approximation P(ta -6 < o - 8) = 1-a.
This gives (X(n), ZX(n) - ta) as an approximate 1 - a one-sided confidence
interval for 6. We will show that this approximation is asymptotically

valid under (1.1) for some value of §.



Although Efron (1979) has advocated splitting the bootstrap pro-
babilities at the endpoints of the intervals in other situations, it turns
out that because of the asymmetric nature of the present problem, this
should not be done here. Thus if a = e-i for some integer i, we deduce
from (3.1) that an approximate 1 - o bootstrap interval for © is
(X(n)’zx(n)'x(n—i))' This interval however has associated o = 277 if
we use random subsampling (3.2) instead of (3.1). Clearly the two methods
cannot both be correct at any one instance. For values of a not of the
form e—i or 2-1, but less than e_] or 1/2 respectively, we obtain 1 - a
intervals by performing the usual trick of randomization.

Theorem 3.2. The bootstrap interval (x(n),?x(n)-x(n_i)) has asymptotically

exact confidence coefficient 1 - a =1 - e”' if and only if (1.1) holds with
(3.4) § = 109(1-e_])/log(.5).

Similarly, the random subsample interval (X(n)’zx(n)'x(n-i)) has asymptotically
exact confidence coefficient 1 - aq =1 - 27" if and only if (1.1) holds

with § = 1.

Proof. Recall from (2.6) that Weissman's (1981) interval

I&(v;O,]—a) = (X(n)’X(n)+ri(1'a)(x(n)_x(n—i))) has asymptotic coverage pro-
bability 1 - o if (1.1) holds with § = 1/v. The theorem follows by equating
ri(]-u) to 1 and solving for &§.

A stronger result obtains if we specialize F to be the uniform distribution.
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Theorem 3.3. Let F be the uniform distribution. Then for all

(1/2)”’1 < a < 1/2, the intervals obtained by random subsampling have exact
coverage probabilities for all n.

Proof. Direct calculation shows that

- i .
P(e < 2X(n) - x(n—i)) =1-2 AP T = Tl yu s sali=l

It is interesting to obtajn improved estimates from X(n) by subtracting

from it the bootstrap and random subsample estimates of bias. From (3.2)

we see that (X(n) - X(n_])) estimates the median-bias of X(n). Therefore

a median-bias corrected estimator of 6 is 2X(n) - x(n—I) which coincides
with Robson and Whitlock's estimator given in (2.2). No corresponding
estimator is available from (3.1) since the bootstrap distribution puts
approximately 1 - e'] of its mass on X(n). However, we can use both (3.1)
and (3.2) to obtain estimates of the mean-bias in X(n)‘ Subtracting these

estimates from X turns out to produce respectively 6_ in (2.4) and a
(n) n-1 €
-1

. ng,n ~i-1 : .
new estimator, ZX(n) -2(27-1) A 2 X(n—i)’ which we can write
approximately as

A n-1 s
(3.5) %s = K(ny - (172) = 27X 4.

=0
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Theorem 3.4. Let u_ = F 1n™) and = 1/, ‘Then under (1.3) and

as n = oo,
(0-u )"! Bias (X(py) > T4,

(e—un)'] Bias (8,.) - (v-1)r(v+l),

(EJ—un)_.I Bias (8.) = {(1—e—1)_v—2}r(v+1),

(0-u )" Bias (Bpg) » (2°-2)T(v+1).

Proof. Follows by direct calculation using the formulas in Cooke (1979,
section 3).

This theorem shows that both ng and gRS remove the first order bias
when 6 = 1, and gc does the same when & is given by (3.4). It may be
verified that when n 1s Targe and ¢ % 1, ng and gRS have biases in the
same direction and lim |Bias(6RS)/Bias(ng)| 3 s

n—)-OO
Theorem 3.5. Let v and up, be as in Theorem 3.4 and

4r(2v+1) + r(2v+1 )(7~p)2(1-p2)"2\)']

H(p)

40(vH1) (1-p) T p T(2v+i+1)/T(v+i+1)
i=0
; o
p {T(2v+i+1)/T(v+i+1)} T pIr(v+j+1)/T(§+1).
1 )

)2

-+

2(1-p

n o8

i



37

Then under (1.1) and as n + o,

(e-un)_zMSE(X(n)) > T(2v+1)

)"ZMSE(ERN) > T(2v+1) {(20%=v+1)/(v+1)]

(B—un
(0-u )T°MSE(8.) - H(e ")
n c
(6-u ) "2MSE(8,c) - H(.5)
n RS e
Proof. Again use the formulas in Cooke (1979). Note however that his
formula (12) is incorrect.

The following table gives some numerical values for the RHS of the

above quantities.

Table 3.1. Some values of lim (e-un)'2 MSE (8)

D >
D

§ X(

n) RW & RS

Tog(1-e"1)/T09(1/2) 6.172 9.969 4.699 7.367

1 2.000 2.000 1.331 1.333
2 1.000 0.667 0.719 0.599
3 0.903 0.602 0.704 0.609
4 0.886 0.620 0.728 0.650

5 0.887 0.651 0.754 0.687




it

4. A generalized bootstrap.

A heuristic explanation can be given for the peculiar values of §
in Theorem 3.2. From standard theory (cf. Weissman, 1981) we know that for‘

each fixed k,
Sk
(4.1) P{(B-X(n))/(x(n)—x(n_k)) <1} =1 - (1-.5%)
as n + « under (1.1). The bootstrap method approximates the LHS with

(4.2) Pl (X)X )/ Xy K gy < 1)

* +_‘k
= Pu(Xpy > X(n-k)) > 1-e

Equating the RHS of (4.1) and (4.2) yields the value of § in (3.4).
- A similar heuristic explanation works for random subsampling.
This suggests that if & is known, and we draw bootstrap samples in
such a way that
Svk
)

-]

(4.3) PulX) > Xppopy) = 1 - (1-.5

then the resulting intervals will have asymptotically correct coverage pro-
babilities. Given (X;,....,X ), let pé”) be the probability that X is
sampled at each draw of this "generalized" bootstrap.

Theorem 4.1. Suppose that (1.1) holds with & known. Then the generalized

bootstrap yields asymptotically valid intervals for 6 if
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plgn) = .I _ (-'_‘56)]/"]’
n B -
¥ . plgn) =1 - (]_.56)(‘]""])/”, J = 1,2,...,”“29
k=n-j :

pgn) - )(n ])/n

Proof. The values of Pén) clearly satisfy (4.3), and the theorem follows
from (4.1) and 420,

Corollary 4.1. 1If (1.1) holds with known 8§ and

(4.2) o = (1-.5%)K

for some k, then the interval (X( ) ZX( )—X( k)) for 6 produced by the
generalized bootstrap has asymptotic confidence coefficient 1 - q«.
Proof. As for Theorem 3.2.
We now consider estimates derived from the generalized bootstrap. Here
the bootstrap estimate of mean bias is
n-2

583 (1-.55)kx(n_k) + (1-,59)0-

o (1) = -

This gives as a bias-corrected estimator of o,

n-2
Boot

Syn-1
s x(n~k) - (1-.5°) X(]).



Theorem 4.2. Let u and H(-) be as defined in Theorems 3.4 and 3.5.
Under (1.1),

(6-u )" Bias (6(%)) » 0
Boot
and
(e-un)'2 mse (69) ) 5 n(1-.5%)
Boot

as n -+ o,

Proof. Same as for Theorems 3.4 and 35,

We note that 3(6) is essentially Brs with 1 - .5(S substituted for 1/2.

Boot
The following table gives some values of the asymptotic MSE.

Table 4.1. Values of H(1-.5%)

5 Tog(1-e"1)/10g(.5) ] 2 3 4 5
H(1-.5%) 4.70 1.33  0.46 0.29 0.21 0.16

A better idea of the efficiency of 6 8) may be had by comparing with
Boot A
Cooke's (1980) results for the best linear estimator 6(5) (r) based
~ Lin
on the r 1largest order statistics. For example e(]) has approximately
A(-l) /\(3) ,\(3)BOOt

the same MSE as 6' /(3), and MSE (8'°/) = MSE (8 (6)).
Lin Boot Lin



]G

5. Remarks.
We have assumed in the Tlast section that & s known. If it is un-
known, the generalized bootstrap may be made adaptive by replacing &

with a consistent estimate. ©De Haan (1981) showed that one such estimate is

8 = Tog m/Tog {(X(n_z)-x(m))/(X(n_1)'x(n-2))}

where m -~ « and m/n +~ 0, as n + =, Clearly the adaptive version of Theorem
4.1 holds. On the other hand, whether & 1is known or estimated, the
conclusions in Theorem 3.1 remain true with the generalized bootstrap.

It may be argued that, if & 1is unknown, 6 - X(n) is not the right
quantity to bootstrap, since its limiting distribution, after standardization,
is not independent of §. This criticism is not entirely valid, because
there is nothing in the original formulation of the bootstrap method which
requires that only pivotal quantities be bootstrapped. (Recall that if
X and u  denote the sample and population means respectively, i—p can be
usefully bootstrapped even though it is not an asymptotically pivotal
quantity when the population variance is unknown.) Asymptotically dis-
tribution-free quantities for the present problem do in fact exist. One
such, reported in Weissman (1982), is ]Og{(e'x(n—m))/(e—xkﬂ)]/109{(9—X(n—k))/
(enx(n_m))}, where 1 < m < k < n; see also de Haan (1981) for another. For
m and k fixed and n + «, this has a Timiting distribution, under (1.1),
which is independent of 6 and &. Knowledge of this distribution will of

course lead to approximate confidence intervals for 6. This is done in
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Weissman (1982). Unfortunately, any attempt at bootstrapping the obvious
quantity

TOQ{(X(n)-an—m))/(X(n)—xf ))}/109{(X(n)_xfn-k))/(x(

n
immediately runs into difficulties. This is because the latter is un-

3 * * *
defined whenever two or more of X(n), X(n—m) and X(n-k) are equal to X(n),
an event which occurs with substantial probability for almost all samples

(X1""’Xn)‘
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