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A FURTHER LOO K AT ROBUSTNESS VIA BAYES' THEOREM

G. E. P, Box and G. C. Tiao

1. Introduction and summary

In recent years, under the leadership of Savage [13, 14, 15],
there has been a great revival of interest in subjective probability and in
the interpretation of data via Bayes® theorem. Many statisticians now feel
that this provides the most satisfactory basis for a theory of statistical
inference., In particular, such an approach seems necessary if one is to
give explicit cognisance to the uncertainty in the assumptions which are
bullt into many statistical procedures. Classical statistical arguments lead
us to treat such assumptions as if they were in some way axiomatic and
yet consideration will show that, in fact, they are conjectures which in
practice may be expected to be more or less true. The mathematical
expression of more or less'true seems to require the explicit injection of
subjective probability distributions. For instance, in many problems the
particular physical setup 1s such that the errors involved might behave like
a linear aggregate of component errors and, consequently, a central limit
effect would operate. In fact, of course, the central limit theorem does
not tell us that a linear aggregate of a fini te number of component errors
would be exactly normal. We are, however, entitled to expect in this
physical situation that the distribution we are dealing with will be a member
of a "distribution of distributions” in which the normal curve occupies the
central place. In this situation we can express our true state of mind by

the use of a prior distribution of some parameter or parameters, measuring
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the non~-normality of the parent distribution,

If we assume normality, we can proceed with an "objective”
classical analysis. But by making this normality assumption, however,
we act in fact as if the distribution of our non-normality parameter were a
delta function. As seems to be inevitably the case in other problems as
well as this one, therefore, our "objectivity" is gained by pretending to
knowledge we do not have and in so doing we aven ignore what the sample
has to tell us about the matter in question.

On classical theory, once having assumed the form of the parent
distribution, we can derive criterion which is appropriate on this assumption.
For example, on the assumption of normality, for the comparison of twoascans
we would derive the t statistic. It is then customary to justify the use
of such a normal theory criterion in the practical circumstance in which
normality cannot be guaranteed by arguing that the distribution of the
criterion is but little affected by non-normality of the parent distribution--
that is, it is robust under non-normality. However, this argument ignores
the fact that if the parent distribution really differed from the normal,' the
appropriate criterion would no longer be the normal-theory statistic. It is

easy to produce examples in which the distribution of the normal theory
criterion is little affected if the parent is assumed to be some distribution
other than the normal; and yet, the inference to be drawn when a criterion
approgpriate to this other distribution 1s employed is markedly different,

In this paper the anlaysis of Darwin's paired data on the heights

of self and cross-fertilized plants quoted by Fisher in “The Design of
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Experiments"[6] is reconsidered. In our development the parent distribution
is not assumed to be normal, but only a member of a class of symmetric
distributions which include the normal, and whose kurtosis is measured by
a parameter £ . In this example, the physical nature of the experimental
environment is certainly such that a central l{mit effect would be expected,
That this expectation justifies us only in supposing that the error
distributions will approach the normal is specifically recognized in our
formulation by giving a subjective prior probability distribution to g
centered at its normal value. The sharpness of this subjective prior
distribution can be varied so that we can represenf a range of situations
in which a greater and greater degree of central limit effect is injected.
Finally, when the prior distribution becdmes a delta function, we produce the
usual formulation in which an exact assumption of normality is made, At
the other extreme, we can produce the situation in which all the information
about normality or the lack of it 1s essentially being generated from the
sample itself. The extent to which the usual normal theory t test could
be approximately justified over this wide range of circumstances 1s {llustrated
and discussed.

It is believed that the injection into the model of subjective
prior probability distributions to represent tentatively held "assumptions”
has general application. Extension of these ideas to other statistical

proceduraes is being carried out.
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2. Varlous approaches to the analysis of Darwin's data

Darwin's experiments were conducted in pairs so that on the
normal assumption and on classical theory one may interpret these data by
using the paired t test. Figure 1(i) shows the observed differences. On the
same scale 18 shown a t distribution centered about the sample mean ¥ with
scale factor s/NT where the quantity s = Z(y; - ¥)/n-1 1is the usual
sample estimate of the variance of the differences. In what follows for

definiteness, we shall call this distribution the reference distribution for

the population mean 6. This reference distribution may be variously
interpreted, It is the fiducial distribution of 6. It can also be regarded as
showing a complete set of confidence intervals for 6 for all values of the
"confidence coefficient. " Finally, if we make suitable assumptions
discussed later, concerning the prior’distribuuons of © and ¢, it is the
posterior distribution of 6. If we are interested in a significance test
appropriate to the hypothesis that © = 0 against the alternate 0>0,
then the associated significance level for the present example is 2. 485%.
Now suppose that instead of assuming normality for the parent
distribution, we assumed it to be uniform over some range € -¢ to 6 +o ,
where here and in what follows, o is used as a general scale parameter and
does not necessarily refer to the standard deviation. This assumption would,
of course, be quite ridiculous in the present example. First, we know that
the many contributing errors arising from genetic differences, soil
differences, and so forth, will produce a strong central limit effect so that

we may expect with good reason that the heights themselves and, even



—5-

more, their differences will be closely normally distributed. Second,
the evidence from the sample itself does not support the uniform
assumption. However, to illustrate our point, let us make the assump-
tion of a uniform instead of a normal parent, One thing we might then
consider is the effect of this extreme degree of non-normality on the
distribution of the t statistici. This can be approximately calculated
using, for example, the work of Gayen [7] or of Box and Anderson {2].
Following these latter authors, it is readily shown that the null distri-
bution of t? is approximated by an F distribution with & and &(n-1)

degrees of freedom where
8 =1 +E(b-3)/n

and
E(b-3) = y& ~ n"(2y% ~ 332 + Ly} + 0 (3vh - 16 y'av}

+15y4® + 38y] + 86+v})

where 1
v, =2 )/ e} ¥

are the standardized cumulants of the parent distribution of differences.
In our present example, & is found to be 0.913. Thus, t?1s approximately
distributed as F with 0. 913 and 12. 78 degrees of freedom. In particular,
the significance level associated with the hypothesis that 6 = 0 against
the alternative 6 \ 0 is now 2. 388% as compared with the previous value
of 2. 485%. The test of the hypothesis that the true difference 1s zero

using the t criterion is thus very little affected by this major departure



from normality. Similarly, confidence intervals based on the t-statistic
would be very little affected by this departure. The robustness of the t
statistic in this example was, in fact, demonstrated by Fisher who derived
the exact randomization distribution in tfiis case and showed that the null
probability agreed very closely with that obtained from the t criterion.

However, if we really knew that the parent distribution was
uniform, we would not consider the t criterion at all, We would be led
instead to consider the function

=im-e|/h
where
m=3 (yp +¥s) h =3y, - v

and YL and yg are respectively the largest and the smallest of the
observations - jointly sufficient statistics for 6 and ¢ on the uniform
assumption. On this same assumption, as shown by Carlton [3], the
variate (n~1)W 1s distributed as F with 2, 2(n-l) degrees of freedom.

Just as Figure 1(i) exemplifies the inferential situation with the
normal assumption, so Figure 1{i1} correspondingly exemplifies this situation
with the uniform assumption. As before, we can interpret the distribution
in Figure 1(if) either as the fiducial distribution of 6 or as defining a
complete set of confidence intervals for ¢ or, finally, (if we adopt
identical assumptions about the prior distributions of € and ¢ as those
needed before) as the posterior distribution of 8, We notice that this

reference distribution is markedly different from that we obtained from the
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normal assumption, especailly with regard to its location. In particular,
the significance level associated with the hypothesis that 6 = 0 against
the alternative 6 > 0 is not 2. 485%, but 23,215%. Thus, whichever form
of derivation we favor, we see that the conclusions which we would draw
if we assumed a uniform parent distribution are very different from those
which would be appropriate if we assumed a normal parent distribution,
even though the t criterion itself {s very little aifected by this large
departure from normality. The principal reason for this large difference is
that in one case the reference distribution is centered at the sample mean
and in the other case it is centered at the sample mid-point. For this
particular sample, the mean and the mid-point differ considerably, mainly
because of two rather large negative differences.

As we have explained, we are not seriously suggesting that the
uniform distribution is a reagonable cholce for the parent. We wish only to
emphasize that uncertainty in our knowledge of the parent distribution
transmits itself rather forcefully into an uncertainty about the conclusion
we can draw concerning 6, and the difficulty which this presents in our
interpretation of the data is not avoided by our knowledge of the robustness
of the t criterion. It seems to us that this difficulty can only be resolved
by explicitly including the knowledge that we have about the parent
distribution into our formulation. This knowledge is of two kinds, that
coming from the sample itself and that coming from knowledge of the
physical set-up appropriate to this problem. In the classical formulation

of the problem the first kind of information is ignored and the second kind
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is misrepresented. We shall see that they are both taken account in an
appropriate Bayesian formulation.

At this point, it may be instructive to remind ourselves of the
Bayesian justification of the t distribution such as has been essentially

given by Jeffreys [9,10].

3. Derivation of the t test via Bayes' theorem on the principle of precise

measurement

The Bayesian argument requires that we have some prior
distributions for 6 and ¢. We assume, as it seems reasonable, that the
local prior distribution of these location and scale paramaters are
independent. So far as the location parameter is concerned, the situation
met in actual circumstances of experimentation would often permit us to
assume that the prior distribution of ® was locally uniform, using what
Savage calls the principle of precise measurement [14,15]. This principle
says, in effect, that we do not need to know exactly what the prior
distribution of 6 is if we can say only that in the region in which the
likelihood is appreciable it does not change very much, and at no other
point is it of sufficiently great magnitude as to become appreciable when
multiplied by the likelihood. This principle would be applicable in
situations like that illustrated in Figure 2(i} in which the likelihood
dominates and is inapplicable in the situation illustrated in Figure 2(ii)
in which the prior probability density dominates. What makes this principle

of particular importance is that most actual experimental situations are



-9-

represented by Figure 2(i) rather than by Figure 2(ii)s The reason for
this is that if the situation is really like that in Figure 2(il), then there
is little point in doing the experiment. For instance, suppose that the
value of the gravitational constant in suitable units had been estimated as
32.2 #.1, then there would be little justification for making further
measurements with a method whose accuracy was, say, * 2 , but
considerable justification for conducting further experiments using a
method whose accuracy was #.02 .

The argument that if 8 is taken as locally uniform, then log 6,
}é , etc. will not be, loses its force if we remember that unless the range
of value of & over which the likelihood 1is appreciable is large compared

with the average magnitude of 6 over the same range, then such trans-

formations will make little practical difference in the range considered.

In the example considered above, for instance, if the prior distribution
of 6 were assumed uniform from, say, © =32.0 to 6 =32.4, then, to
a close approximation, the prior distributions of, for example, log & and
-19- would be uniform over corresponding ranges.

Vie can also demonstrate this lack of sensitivity to prior assumption
when we consider the scale parameter. Suppose we merely assume that
either ¢ or its logarithm or some power of ¢ is locally uniform. We have
then 59 4 69 assumed uniform

p(6)e< k» p(axX -1 (1

if log ¢ assumed uniform

whence denoting £(8,q/ y) for the likelihood function given the sample

Y
pl(e, ¢/y) = k£{8, ¢/y)* p(8)" plv) (2)
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Wwhere k- f}{ £(8, 5/y)* plo)* pis)de do .
On the normal assumption, then
p(6, o/y) = p(8/c,¥)* pla/s) (3)
where .
p(6/F, 0} = (n/2n02)* exp {-(n/26%)(7-0)"}
Ve~
plo/8} = {r(_v_%g) }-l(y"gj')_zq &q-(v H) exp {-vs*/2¢? }

vz n=l, and q¢v .
On integrating out ¢ we obtain

p(gﬁ-n/ Y= p[tv_q]- {4)
where p[tv_q] is the t distribution with v-g degrees of freedom. The only
effect of changing the power q of ¢ supposed uniform, is to change the
number of degrees of freedom in the final posterior t distribution. In parti~
cular, by assuming log ¢ to be locally uniform, we obtain a posterior
distribution of & as a t distribution with the traditional v = n-1 degrees of
freedom. If we suppose ¢ to be locally uniformly distributed, we will have
a t distribution with n- 2 degrees of freedom, and if we suppose a2 to be
locally uniform, a t distribution with n-3 degrees of freedom,

If we take log v as the function of ¢ to be regarded as locally uniform we
are consistent in the sense that log ¢ 1s a location parameter for log (y-6),
just as 6 is a location parameter for y. We do not regard this argument as
conclusive, but it is comforting to notice that from a moderate sized sample
such as that from Darwin's data, rather drastic changes in the nature of the
prior distribution of ¢ do not greatly affect the final conclusion and in what
follows we make the assumption of uniform distribution for log ¢.

For our later purposes, it is perhaps worth while to consider this well-

known result geometrically, The joint posterior distribution of 6 and ¢
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shown by the contour diagram in Figure 3, can be regarded as being built
up from a series of normal disuibuﬁbns each centered at y, each of which
 represents the conditfonal distribution p(8/c,¥) of 6 for soma- given o,
multiplied by pls/8), the marginal posterior distribution of ¢ which has the
form of an inverted gamma function. If we knew the value of ¢, then the
posterior distribution of & would be normal about ¥ with this known value

ofoc z o When ¢ 18 unknown, then we must average all these normal

- 0 -
distributions, using for weights the ordinates of the marginal posterior
distribution of ¢. In so doing, we obtain the t distribution. There is,
of course, nothing new in the above; we recall it here only to introduce

the more general argument which follows.

4. A wider choice of the parent distribution

If, i{n the analysis of Darwin's data, we suppose that the parent
distribution of self and cross-fertilized plants are of the same form, then
the distribution of the differences would certainly be symmetric. Let us,
therefore, assume that our parent distribution is a member of a class of
symmetric distributions which includes, in particular, the normal, together
with other distributions on the one hand more leptokurtic and on the other
hand more platykurtic than the normal. A convenient choice is the class of
power distributions employed in other contexts, for example, by Diananda

[5]1, Box {1] and Twrner [16],

L 2/
<here oly) = exp {-3L2] } (5)
-l
© = {r[1Hp)/2] 2HHIHV2]
-0 < Yy < 0 0 [*2 < o0



In particular, we see that when p = 0, we have the normal distribution,
when £ 15 1, we have the double expdnential; and when p tends to «l,
our distribution tends to the uniform distribution.

5. Derivation of the posterior distribution of @ for a spacific symmetric parent

We now derive the posterior distribution of 8, supposing that the parent
distribution to be a member of the above class of distributions in which g
is assumed to have a fixed value Bo. In so doing, we shall adopt the same
assumptions a priori as are necessary to derive the traditional t distribution

when p is assumed to be zero.

We have
Moy _a. &/ (143g)
20,0/380) = [T i+ 2180y 204 5 V) P31 T )
p(e)Xk , plo)xo - (6)
g0 that *
2/(1+Bo)
P8, /¥,B0) = kgt exp{-%ﬁﬁ;—a;l } (7
where 2/(1 48)

=ﬂ' -(nH) exp{~ % ;IZL—l } dods o
R
By integrating our ¢ as before, we finally obtain for the posterior distribution

of © for any fixed B =@, in the permissible range the remarkably simple

expression _n(Bg#)
p(8/y, Bo) = k[M(6)] (8)
where (l'l'ﬁo)
M(e) = [Zjly -6
is the absolute moment of order _2 of the observations about 6.
140
The integral 4 o0 -n(14B0)/2
= £ [M(6)] de

is merely a normalizing factor which ensures that the total area under the

* 1t is understood here that at least two of the observations are not equal.
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distribution is unity. This integral can not usually be expressad as a
simple function; it can, of course, always be computed numerically, and
with the availability of electronic computers, this presents no particular
difficulty. *

Using equation {8), posterior distributions computed from Darwin's
data for various values of By are shown in Figure 4.

6. Properties of the posterior distribution of 0 for fixed f = Bg

Since p(e/z,p.,) is a monotonic function of M.(6), we find (see Appendix)

the following:
(1) p(6/y, £o) 1s continuous, differentiable and unimodal, although not

necessartly symmetric, the mode being attained in the interval [ys, yL].

(2) When Bo=0, M(8) = Z(y,-0)* = (n-1)s? + n(¥-6)*> and making necessary
substitutions we obtain for the posterior distribution of 6

P(Sj’qtn/ Y, Bol = p(tn_l} as before.
n{fo+l)
(3) When P approaches -1, lim [ M(6}] = {h+ lm-6])
fo—-1
and making the necessary substitutions,

Hm  p(6/ySo) = k[h+Im-6117" (%)

Po—-1 o0
where k-l =wf (h+|m-9|)'n de

* It is interesting to notice here that when p S0 and the quantity n(?—;l-)
is large, we can approximate the posterior distribution by

p( &y, B}~ k exp {-%[n—u-}@]h'( 8o}{0-0,)2}

' L
k(2B niegen ) hio) = log { 14(0)]
and 8, is the value of 8 at which h(@) attains its minimum. This is a

where

special case of a powerful method, known as "Saddle Point Approximation, "

developed by Jeffreys, [11] and Daniels [4]. In our case, it is equivalent
to the normal approximation of the distribution p(6/y, 8) around the maximum
likelihood estimate of 6.
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so that

éi:n_‘ ( Lj(r?—ll)/y ﬁo) = p[Fq, 2(n-1)]

This is then the reference distribution shown in Figure }(i1) but now derived
as a posterior distribution.

Thus, we see that, when the parent i{s normal (B, = 0) , our
expression {8) yields the t distribution as expected, and when the parent
approaches the uniform (B, -1} , again as expected, our expression (2
gives the double F distribution with 2 and 2{(n - 1) degrees of freedom. In
each of these cases, the posterior distribution can be expressed in terms
of simple functions of the observations which provide then, of course,
minimal suffictent statistics for 6 and ¢«

{4) When P, approaches l, the distribution is not expressible in
simple function of the observations, but in the limit the mode of the
posterior distribution is the median of the observations if the latter is
uniquely defined; and, if not, it is some unique value between the values
of the middle two observations.

{5) In certain other cases, it is possible to express the posterior
distribution of 9 in terms of a fixed number of functions of the observations.

For instance, when

g = (l-q)/q , g=1,2, 3,04
we have 2q
(10)
p(e ,0/y, Bo) Xo Y O T (zrq) o 8,qr
and r=0
n

2q
el 8/Y, Bo) 0( [2 -n° (Zq) o qu-r] 2q (11}

where
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S=E N
and it is readily seen that the set of 2q functions, 8, , S; , e« qu
of the observations are jointly sufficient for @ and ¢.

In general, however, the posterior distribution can not be
expressed in terms of a few simple functions of the observations, the
minimal sufficient statistics are the observations themselves. If we wish
to think in terms of sufficiency and information as defined by Fisher, our
posterior distribution always of course employs a complete set of
sufficient statistics, and, consequently, no matter what is the value of
B, no information is lost. The posterior distribution of 8 always has as its
central value, the maximum likelthood estimate of ©, but it should be
noticed that we are not concerned with the distribution of this maximum
likelihood estimate; rather, we are considering the distribution of 6 given
each one of the observations.

From the family of distributions for various values of Bpas shown
in Figure 4, we see that very different inference will be drawn concerning 6,
depending upon which value of yis assumed. The chief reason for this wide
discrepancy 1s the fact that in Darwin's data, the center of the posterior
distribution changes markedly as £ is changed. In particular, for this
sample, the median, mean and the mid-point are respsctively 24.0, 20.9,
4.0, and these are the modes of the posterior distributions for the double

exponential, normal and uniform parent respectively.
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7. Posterlor distribution of 0 and g when p is regarded as a variable parameter

Because of the wide differences which occur in the posterior
distribution of 8 depending on which parent distribution (that is, which
value of By} we employ, in practice it might be thought there would be
considerable uncertainty as to the nature of the valid inference that could
be drawn from this data, We now show in this section that this is not the
case, when we use appropriate evidence concerning the value of p. We
have, in fact, two sources of information about the value of f; one from
the data itself and the other from our knowledge a priori that a central limit
effect would operate in the circumstances of the experiment. Both types of
evidence can be injected into our analysis by allowing § itseif to be a
variable parameter associated with a prior distribution.

We can represent the central limit tendency of the errors by
choosing a prior distribution for § which has a maximum value at § =0 ,
and which extends from <1 to #l1. A convenient distribution for this
purpose is the beta distribution having mean zero and extending from -1
to +1 and, consequently, possessing only one adjustable parameter which

we call a. We assume then:

p(ﬁ)=wu-ﬁ>‘)&"I A1<p<l
where e L _ (12)
w = I {2a) [T (a)] zz(Za 1 azl

When a =1 , this distribution is uniform, Witha >1 , it is a symmetric
distribution having its mode at the normal theory value g =0 . If we wished
to represent a situation in which some value other than p = 0 occupied

the central position, then this could be done in a similar way by using a
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beta function having two adjustable parameters.

After eliminating the scale parameter ¢, we now obtain for the

joint posterior distribution of € and f:
_n(i+p)

o(6,8/9) = ko163 r [1+ ULy [ 14 28y 177 (i) -
=k, * £(6,8/y) p(B)

where p(P) is given by equation (12), £(6,B/y) 1s the function represented

by the surface shown in Figure 5 and k; and k, are the appropriate

normalizing constants. We can write

£(6,8/y) = ple/B,y) #(p) (14)

where n(148)

-]
sB) =kor (14 BBy (ra B f (e )T T2 e as)
[+ 2]

and pl6/B, z) is given by equation (8)s The conditional distributions
ple/B, g_) are the t-like distributions which we have already plotted in
Figure 4 and which represent the posterior distributions of @ for different
specific choices of f. The function ¢(f} which is sketched in Figure 6(1)

can be regarded as representing information coming from the sampie

concerning . Ve see that the function £(0, 8/y) 1is in fact built up of

these t-like distributions suitably weighed with the weight function ¢{(B) .
We can interpret £(6,/y) as the joint posterior distribution

of 6 and for which the prior distribution of £ is uniform. In this case,

®(8) 1is then the posterior distribution of . Of course, it would usually be

quite unrealistic to suppose that the distribution of p were uniform a priori.

Since

p(8, B/y) = k p(6/B, ¥} ¢(B) plp)
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we see that the joint posterior distribution bte, [3/!) will in general be
obtained by weighing p(6/8,y} not with s(B) but with the function
#{B)* p() . The parameter a in p(p) [equation(iz)] can be adjusted to
allow for any desired strength of central limit effect. The case a =1
giving a uniform distribution for p(p) corresponds to no central limit
effect. When a tends to infinity, p{B) becomes a delta function and
represents an overwhelmingly strong central effect, This corresponds to

the assumption of exact normality for the parent distribution.

8. Posterior distribution of 8

From the joint posterior distribution of 8 and P

p(8, B/y) = D6/B,y) #(B) pIB)

the posterior distribution of @ is obtained by integrating out p vielding

1
[ e, 8/y) ap
-1 (16)

r(8/y)

I

1
J ple/g,y) 4B pie) dp
-1

In obtaining this integral, we are averaging the t-like distributions
p(e/ﬁ,z) with a weight function ¢(p)+ p{B) which is in fact p(ﬁ/_y_) , the
posterior distribution of B. The value of this weight function is seen to
depend partly upon information from the sample through ¢(8) and partly
from prior information characterized by p{¢) . The way in which this
weight function (B} - p(f) changes as the assumed central limit effect is
increased is shown in Figures 6(1) - 6(iv). In these diagrams, the dotted

curve 15, in each case, the prior distribution p(f) . When a =1 (Fig. 6(i),



pip) 1s uniform and p(ﬁ/x) equals ¢{p) . This represents the situation
where the information concerning p is essentially coming from the sample
itself. The value of the parameter a is 3 in Fig. 6{il), 6 in Fig. 6(iil) and
10 in Fig. 6{iv). These three diagrams show how increasing certainty of a
central limit effect tends to override the information from the sample.
Finally, when a tends to infinity, both p(B)} and p(B/y} would approach
a delta functionat p=0 .

The integration |

ple/y) = 1f P/, y) é(8) plp) dp

has been actually carried out for each of these weight functions and the
results are shown in Figure 7 together with the t distribution which would
be appropriate for the case a ~~ ®@ corresponding to an assumption of
exact normality. In the diagram, the case a =10 is not shown since this
curve is almost indistinguishable from the t distribution. This is interesting
because as will be seen from Fig. 6(iv), the central limit effect implied by
a =10 is not an overwhelmingly strong one. For instance, it certainly
leaves as acceptable a priori the possibility that B =+.3 or f=«3 ,
If we call the normal distribution a "second power" distribution, this is
equivalent to supposing a priori that "third power" distributions and "13
power" distributions are possible,

Figure 7 then represents the final inference we could draw for 6

depending on how strong a central Iimit effect would be appropriate in the

physical situation. In view of the very large differences exhibited by the
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t-like distributions in Figure 4, it seems remarkable how alike these
distributions are. In particular, it will be seen that the tail areas which
have been traditionally regarded as the most important part of the
distribution are very little affected even with no “"central limit effect. "

The main reason for this is that those widely discrepant t-like distributions
generated by parents which approach the uniform are almost ruled out by

information coming from the sample itself. (See Fig. 6(i).)

We may remark here that the precise form of the posterior distribution
of 8 would of course depend to some extent upon the way we parameterize
the constant measuring normality. The measure § which makes the
double exponential and the rectangular distributions equally discrepant
from the normal seems not unreasonable. However, we might have used
for example the familiar kurtosis measure Az ky/k,> for the class of

distributions we have considered. It 18 easily shown,in fact, that

T [5014p)/2] T [(14£)/2]} -
Ae = T I3036)/2]2 -3 « On this scale, the double expon
ential distribution would appear as 3 and the rectangular distribution
as -l.2, It seems that whether B, A4 or any other reasonable measure

of non-normality is adopted, the overall conclusions are very similar,

9. Information concerning the nature of the parent distribution coming from

the sample

In the past the normality or otherwise of a sample has usually
been decided either by employing certain preliminary tests, for example,
the x? goodness of fit test. and the Kolmogoroff-Smirnoff test {12] or by

3

calculating statistics of skewness or kurtosis such as A3 = k3 / (k;) z ’



-2]~

Ag=wy/ k§ « In the present instaﬁce, since we are dealing with
differences in heights, it is reasonable to assume the distribution is
symmetric. It would then seem that the calculation of &(p) y oo

p(B/ y) for uniform p(B) as shown in Figure 6(1) would provide a much

more satisfactory way of summarizing what the data has to tell us concerning
the nature of the parent distribution from which the sample is drawn., It

will be noted that in our approach, we have done more than merely “tost”
the assumption of normality and then, in the absence of "a significant”
result, assume it. The information concerning p coming from the sample is
included in the formulation itself and as we have seen in the case of Darwin's
data it plays an important role in virtually eliminating the influence of

unlikely parent distributions.
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FIGURE 2 (i)
SITUATION WHERE INFORMATION FROM THE SAMPLE

REPRESENTED BYTHE LIKEuHOOD | (B) DOMINATES
THE PRIOR PROBABILTY.
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FIGURE 2(ii)
SITUATION WHERE INFORMATION FROM THE SAMPLE
REPRESENTED BY THE LINELIHooD L(8) 15
DOMINATED BY THE PRIOR PROBABILITY.
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FIGURE 4
POSTERIOR DISTRIBUTIONS OF

6 FOR VARIOUS LHOICES OF g.
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APPENDIX

In section 6 we have asserted certain properties of the posterior
distribution p(e/y, Po} in the permissible range of B. That they are so
follows essentially from work on the median of a set of numbers by Jackson
{8] some 40 years ago. For the class of parent distributions given by
aquation (5), the maximum likelihood estimates of 6 ror fixad $,, which
is the mode of p(8/y, Bo), was considered for certain specific choices
of By by Turner [16], who seems to have been unaware of the much more

general result obtained by Jackson. In our notation, consider the function:

2
n — =00 6 ™
1 <¥<
M(e) = E]Yi'elw -1 ¢B<l
i=1
For convenience, let us denote q = -l-f-é- so that
n
m(e) = ), ly, - ol® q>1

i=1
(1) We first show that

(a) M(0) is continuous and has continuous first derivative, and

(b) M(®) has a unique minimum which 18 attained in [Ys’ yL] .
To see (a), consider

g,(0) = l6-y 1% 1el,2,0ee,0
Clearly g 1(EI) is continuous everywhere. Now,
for @ <y,
g(0) = -q(vi-e)q'l ’

for © > ¥y

g}(0) = qle-y) 1™

and as 0 approaches A from both directions,

lim gi (0) = lim gi(e) =0



which implies that gj (yy) = ¢ .
Since g -1 >0 , so that gi (8) exists and is continuous everywhere.
Our assertion (a) is proved since M(6) is the sum of all gi(e) .

Let us now consider M'(e) . We see that

when 6<yq
' L q-1
M'(@)= -q ), ly, -0 <O
i=1
and when ' 0 >vyy,

’ 3 q-1
M'®)=q ), (8B-y) >0
=1

Thus, by properties of continuous function, there exist at least a
6o , Yg < 8, < vy, » such that

M'(eg) = O .
Further, since M'(6) is a monotonically increasing function of 6, we
conclude that M'(8) can vanish once and only once and that the extreme
value of M{@) must be a minimum. This completes the proof of assertion
{b).
(2) It has been shown by Jackson that when q approaches 1, in the limit
the value of 6 which minimizes M({@8) is the median of the yi's , if the
latter is uniquely defined; and, if not, is some unique value between the
middle two of the yi's .

(3) We now show that, when q is arbitrarily large

1
um (M(®]4 = (h+lm-0 D)
q

where m = % {yp + Ysg) h=3 vy -Ys)_ ..



Proof: Consider a finite sequence of monotone increasing

positive numbers {a,} and a number 8 such that

n 1
s=() a} )@
i=1

we can write

1
a
where . -;!-‘ £1 foralli.
n
n a1
Sy, 3
Hence (an)-{ 1231( an) }
hat 1 (—S—)—-l-lo{f‘,(ﬂ)q}

When q — o , lim log{Z(-—)} logr where 1<r <™
q—ow 1=z1°0

But this implies that 5
Um log (—-) =0
q—-
whence lim S=a_ .
q —=o0 n
Thus, for any given value of 8, when q is arbitrarily large,

um [ M) ] 9 = Sup |y -0l

a=e sup[le-y |, lo-yl]
h+{m-96) a<m
= h for 6=m
h+(8-m) e>m .
Hence, 1
lim [M(B)]E=(h+|m-el) and the assertion is proved.
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