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A Bayesian Approach To The Importance of Assumptions
Applied To The Comparison of Variances

G.E.P. Box and George C. Tiao

I. Introduction.

Frequently the distribution of observations y depends not
only upon a set of r parameters £1 = (E1ye.., ﬁr) of interest,
but also on a set of, say, t - r further nuisance parameters
£2 = (gr+l""’ &t). Considerable difficulties may arise in deal-
ing with nuisance parameters by non-Bayesian methods. ‘hen the
use of Bayes' sheorem is appropriate, however, the "overall” in-
ference situation about £, is completely exemplified by the poster-
ior distribution of g. obtained by simply “integrating out’’ the
nuisance parameter Ea.

Now we can write the joint posterior distribution of (£i1,£2)
as the product,

p(Bstaly) = plEaléasy)p(éaly).

The posterior distribution of £i1 can thus be written:

(1) il = J Pleslger)plbaly) 4 Lo

in which the marginal posterior distribution p(tz2]|y) of the
' puisance parameters acts as a weight function multiplying the con-
ditional distribution p(£i1léa,y) of the parameters of interest.

It is frequently helpful in understanding the problem and the



2e

nature of the conclusions which can safely be drawn to comsider
not only p(£1|y) but also the components of the integral on the
right hand side of equation (1). Cne is thus led to consider the
conditional distributions of §i for particular values of the
nuisance parameters £ in relation to the probability of occurance
of the postulated values of the nuisance parameters.

In particular, in judging the robustness of the inference
relative to characteristics such as non-normality and lack of in-
dependence between errors the nuisance parameters f= can be
measures of departure from normality and independence. The distri-
bution of the parameters of interest ¢ conditional on some
specific choice £z = £2¢ will indicate the nature of the inference
which we could draw if the corresponding set of assumptions (for
example, the assumptions of normality with uncorrelated exrors) are
made, while the marginal posterior density p(€z = £20|y) reflects
the plausibility of such assumptions being correct. The marginal
distribution p(g.]y) obtained by integrating out £2 indicates
the overall inference which can be made when proper weight is
given to the various possible assumptions in the light of the data
and their initial plausibility.

The attractiveness of this approach is further increased by
the fact that if we let m(£1) and m(£z) be the prior distri-

butions for £, and £, assumed independent, and let f(£1,82(y)
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represent the joint likelihood, we may then write equation (1) in
the form,
p(€aly) = ka .£ p(Erlta,y)s ((2ly)m(t2) d L2

where .

4(E2ly) = ko [ £(E1,6=2]y)d &2 is the “"integrated"
likelihood and ky and ks are normalizing constants. Thus the
weight function p(¢a|y) which is proportional to the product
L(2ly)m(€2), is separated into a part coming from the data itself
(this would tell us what the data ‘‘has to say" about the assump-
tions) and a distinct part coming from the prior distribution. It
is informative to consider the effect of varying ﬂ(gg) to see
how sensitive the final result is to changes in prior assumptions
and also to study £ (£2]y) itself.

The above is, in fact, the approach which we adopted in our
previous study of Darwin's data which concerned the value of a
location parameter-- Box and Tiao (1962). In this paper, we further
illustrate the attack by applying it to the problem of comparing
two scale parameters, Standard tests to compare variances based
on normal theory are known to be sensitive to nom-normality. For
example, Box and Anderson (1954) show that the same degree of kur=
tosis which changes the significance level of a test to compare
twenty means from 5% to 4.9% changes the significance level of a

corresponding test to compare twenty variances from 5% to T1.8%.
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I1I., Scope of the Present Study.

We suppose that two samples are drawn from specific popula-
tions characterized by location parameters 6; and @z, scale par-
ameters oy and g2 and a common non~normality parameter B. We
first assume that the location parameters 8; and 6z are known.
Letting the ratio 02%/01® corresponds to the parameter £i and B
correspond to the nuisance parameter £- in our general formulation
we can then study p(c22/0.%|g,y), the conditional posterior distri-
bution of the squared scale parameter ratio, for any chosen degree
of non-normality together with the associated p(Bly) which indi-
cates the plausibility of that value. The posterior density
p(Bly) can be written as the product £(B|y)p(B) whose elements
are associated with (i) the information concerning non-normality
coming from the data and (ii) that injected a priori.

We then relax the assumption that the location parameters
¢, and 9, are known., Although in principal this merely involves
two further integraﬁions, this proves to be laborious even on a
fast electronic computer. We show that a close approximation to
the integral can be obtained by replacing the unknown &, and 62
by their maximum likelihood estimates in the integrand and changing

the "degrees of freedom'" by one unit. An example is given.
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III. Choice of Parent and Prior_Distributions.

A, Parent distribution

We would expect that inference about scale parameters would
be particularly affected by kuxtosis in the parent distributions,
while the effect of skewness would be considerably 1ess; We
suppose, therefore, that the parent distributions in question
are symmetric but not necessarily normal. A convenient class of

such distributions are the power distributions used in our previous

paper, o

(2) p(y|6,0,p) = k exp (. 38 1+p -0 <y<®
-0 < 8 <
0 <6< o
gy ) -1
o k'_'{?u*%‘@') it 2)02 1 ¢B<l

When two samples are drawn from possibly different members of this
class, the joint probability density will depend upon six unknown
parameters, namely a set (Bi,9:1,0.) associated with the first
sample and a set (Bz,82,02) the other. We shall assume throughout
this paper that the parents have the same parameter B. The ratio
022/012 of the scale parameters is thus also the variance ratio.

B, Choice of prior distributions for 6., 6=, and 01, Ja.

We assume, as in our previous paper, that location parameters
and the logarithms of the scale parameters are locally uniformly

distributed a priori, namely
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(3‘1) P(ei) o Ca

(302) p(log 0,) o ca or plog) o ;,1- i=1, 2.
1

This assumption would be appropriate if we believed that any
point in a region in which the likelihood for 61,082, log o1,

and log oz was appreciable would have been as acceptable a priori
-as any other,

C. Prior distribution of B

In practice, the value of B would not be known; However,
suppose the problem was the common one where errors could origin-
ate from a number of different sources, such as chemical sampling,
chemical analysis and instrument deviations. Then the overall
error would be function y - 6 = £(e) = f(e;,ea,..;.) of a num=~

® 0'2 3ee o

ber of independent component errors having variances 061’ o

Often the percentage variation in each component would be small
and f£(e) could be closely represented by the linear approximation

y=0 = a5 + 2 as€ . 1f at least some of the products a,0  were

(@) i i 1

of the same order of magnitude as the largest such product so
that no single source of error dominated the situation, then a
central limit effect would control the error distribution. The
normal distribution would then assume a central place in our

thinking. We can represent this by regarding B now as a measure

of non-normality and choosing a prior distribution for B with



Te

modal value at B = 0 and containing an adjustable parameter
which controlled the degree of concentration about this mode. A

convenient choice which was used in our previous paper is,

3 3 I'(2a) 1 - p2)a"1 «wl<B<1
(%) p(B) = Fl* e et (1 9% ol

When "a'"' approaches infinity, p(B) would approach a 3§ function at
p=0, corresponding to an outright assumption that the parent is
normal. When “a" has the value unity, p(B) is rectangular, repre-
senting a situation where there is no more reason to expect a nor-
mal distribution than any other member of the family of distribu-~
tions in equation (2). Any desired intermediate situation can be
represented by an intermediate value of "a'" and the sensitivity

of the inference to the assumption of normality can be assessed

by varying this concentration parameter.

IV. Derivation of the Posterior Distribution of the Variance

Ratio 022/0.® for Fixed Values of 83, 02, and B.

From (2), the joint likelihood function of the two samples

¥ = (yz.:., Yi2s seey 'Yln;_) and Ya = (YP...‘L: Ya22s seey Yang) is:

(5) £(01502501,02,831,y2) = k 01 - 0z = exp (-% z i% (5,9)/ o

e
TR U =1 i
where si(B,e) = A 13 ail i=1, 2
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_%13_)} - (nrma)

and k={r(1+%ﬁ) o(L+

We first restrict ourselves to the situation where the values
of the location parameters 6p and 0z are known. The joint post=

erior distribution of o1, oz and B is then:
(6) plow,o2, Bia;,aa,.z;,zg)”k Pfﬁl)P(Ua)P(B)ﬂ(01:02:5]91:92,2;:2?)

= p(plew, 92:21:22)? (o1, 02|B;01,02, _2'_1:12) .

The conditional posterior distribution of o1 and oz for

given value of B 1is:
2

(7) P(Gl:°2l5:91392:11:y_2) =1 P(Uiiﬁsei:xi)
i=1

where - .
P(Gilﬂ,ei,xi) = ki O'i- (ni+1) exp {"" é‘ nisi(s’e)lcil-l-az
"

2 4

k, =

g =y

‘i
/ 1+
2 ) >
It is seen to be the product of two indpendent inverted gamma

distributions. The posterior distribution of 08/0% is readily
obtained by making the transformation V = 03/0%f and W = 01, and

integrating our W. Thus,

.'L

= 1 , 0 1+6
(8) p(V|By01,02,32,32) = k VO “nas.e%a, g

." nl
1 i § (n;_+ng) (}%@')] ( nlslgﬁ 9% (1+B)
where k = (1+6) 2 148 3 _}1 nzsz(B,0 t

R F"“i( )
i=1l L

) (n1+na)0*"é)

- s

Vi
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1
It is convenient to consider the quantity :2 g g v 1+p » where
2
o3 8 o
it is to be remembered V = =& is a random variable and
o1 82(B,0

is a constant calculated from the observations. We have that,
1

r S
| S1(B.8 14+
(9) P!:;;%%;%"-V

an F distribution with n; (1+8) and np(1+B8) degrees of freedom.

r
5:91:9212l112‘} G s ;Fn1(1+6), n2(1+5)] >

- 1o

na
% (y13-61)%/na
In particular, when B = 0O, the quantity V - is dis~

2
2 (ygi-ea) a/na

tributed as F with n; and nz degrees of freedom. Further, when

the value of B tends to -1 (the parent distributions tend to the

max|y1j=61] | 2
rectangular form), the quantity u =V maXlYa'-BaLJ has the
i
distribution,
i
(10) 1lim p(u|B,01,02,¥1,y2) = S3=2 u for u 1
el 291,02,¥1,32 2(niing) - <
-22 .
= Bzhi2 e for u >1

= 22n;_+n25

Thus, for given B not close to ~1, probability levels of V can be
obtained from the F-table, In particular, the probability a poster-

iori that the variance ratio V exceeds unity is simply

/
i

) : P .
Ve iv > 118403,02532,Yz e Pr’%Fn1(1+B), na(148) 7 §iégf5%l}'
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V. Relationship Between the Posterior Distribution

p(V|B;02,602,¥2,¥2) and Classical Procedures.

In the simplifying situation where 61, 62, and P are assumed
known, a result parallel to that just derived can be obtained from
the classical theory. It can easily be shown that in expression
(5) the two power sums nisi(B,8) and nzsz(B,0) when regarded as
functions of the random variables y; and yz have as their joint

moment generating functions, ni(1+6)

- __2__1" 2
(12) MY(tl;ta) = ol 11 - 26,04 1""‘3

=i

where Y = (n1s:1(B,9), ne=s2(B,08) ) .
-2 w2
Thus, letting ¥ = (nlsl(B,e),fdxl+B, nasa(B,B)/Ual+g) we obtain
. : ni(1+ﬁ)
(13)  Myeleasee) = (1 - 2ty) "

which is clearly the product of the moment generating functions

of two independmtly distributed x¥ distributions with ny (1+8)

and no(1+p) degrees of freedom respectively. Thus, the criterion
s1(8,8)/s2(B,0) on the hypothesis that ¢%/0c8 = 1 is distributed
as F with ny(148) and nz(1+p) degrees of freedom and in fact
provides a uniformly most powerful similar test for this hypothesis

against the alternative that o%/c% > 1. The significance level
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associated with the observed s1(B,0)/s2(p,0)} is

(%) b {%HL(L+B), nz (1+8) ’ :agﬁsgg.§

and is numerically equal to the probability for V > 1 given in
equation (11). The level of significance associated with the ob-
served ratio s1(B,0)/s=2(B,0) which can be derived from classical
theory is thus precisely the probability a posteriori that the
variance ratio o¢2/¢c? exceeds unity when log o1 and log oz are
supposed locally uniform a priori.

A general test for comparing k variances for normal populations
was derived by Neyman and Pearson (1931) using the likelihood ratio

method. This test has been modified by Bartlett (1937) who showed

that if we let n,
k /N si(o,e) B k
(15) A(0) = T , N= = n. ,
el 2 gl
znisq(o,s)
s i
i=1

the quantity =~ 2 log A (0)/g(0) is then distributed approximately

as x2 with k degrees of freedom where

(16) g(B) = 1+ [3k(14p)] Zn;" - N § .
i=1

In general, the likelihood ratio A(g) 1is given by

n
k [ 5, (8,0) 7 (148)
(17) () = @ &ﬁisi(a’e) :

i=1
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Now, provided B is not close to =1, the quantities si(a,e) i=1,
2, eess k) follow scaled x® distributions with appropriately
adjusted degrees of freedom and the quantity -2 log A(B8)/g(B) is
again approximately distributed as x2 with k degrees of freedom,
It is hoped in later work to develop this genexalization of
Bartlett's test from the Bayesian point of view. For the present
we concentrate on the problem for which k = 2 and do not consider

this alternative form,

VI. Uncertainty Involved in Comparison of Variances when B is

Not Known.

We continue to study the comparison of two variances and for
the time being to assume that 6, and 8z are given; We have then
demonstrated that “'parallel’” result for normal and non-normal
parents belonging to the family of equation (2) can be obtained
by Bayesian and by the Neyman-Pearson arguments. In most experi~-
mental situations we are unsure of the exact value of B and un-
fortunately, as we shall demonstrate, inferences about the variance
ratio are sensitive to the choice of this value. This uncertainly
can be easily taken into account using the Bayesian approach how-
ever,

Consider the data in Table I taken from Statistical Method

in Research and Production, edited by O. L. Davies (1949).
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This data were collected to compare the accuracy of an inexperienced
analyst Ay and an experienced analyst Ao in their assay of carbon
in a mixed powder; In the original analysis, the parent distribu-
tions were assumed normal; the null hypothesis was 6%/06% = 1 and
this was tested against the alternative o%/o3 > 1. Here we shall
assume instead that the parents are members of the class of distri=-
butions in (2) with identical B; The values of the location
parameters 6y and 6z for this example are of course not known,

but to simplify the analysis, we suppose at first that 63 and 62
are equal to the sample means of 6.55 and 5-77; respectively.

For each value of B, a significance level obtained by using
the appropriate uniformly most powerful criterion can be calculated;
This is numerically equal to the probability that the variance
ratio V exceed unity given B, and is plotted against P in Figure
(1a); It is 2. 08% if the parent distribution is rectangular
(8 = -1), 7 59% if the parent is normal (B = 0) and 9.90% if the
parent is double expomential (B = 1). It is well known that the
normal theory F criterion lacks robustness to non-normality, partic-
ularly to kurtosis but the type of sensitivity now being considex=-
ed is, of course, of a different character; The criterion itself
is being changed appropriately as the parent distyribution is

changed.
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ViI. The Posterior Distribution of V when B is Regarded as a

Variable Parameter.

The dilemma arising from uncertainty about the value of B8
is easily remedied when a Bayesian standpoint is adopted and B
is included in the formulation as a variable parameter. The joint

posterior distribution of V and B can be written,

(18) p(V,B|01402,¥2,532) = P(5|91:92,2;,23)P(Vl5;91,92a2;,13)

where p(V|B,01,02,¥1,y2) is given by equation (6)s The marginal

distribution of B can be written as the product,

(19) p(Bl01,02,¥15¥2) = p(B) 4(B101,62,¥1,¥2)

where p(B) is given by equation (4) and

2(B|61s025¥2s¥2) = k{}(l-i- %9)} (mma)iil‘[l-mi %@')][“i sj_(ﬁ,@)]"“j!&%g
which is the integrated likelihood for B. We can thus regard
p(B|01s02,¥1,y2) as containing information of two kinds: The
knowlege a priori about B is characterized by p(8) and the infor-
mation coming from the sample concerning B is represented by
4(B|615602,¥15y2). The marginal posterior distribution of P is

shown in Figure (1b) with "a" taken to be unity. This marginal
distribution thus essentially represents the information on §

coming from the sample alone.
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The difficulty in comparing variances rests on the “con-
founding' which occurs between the effect of inequality of variances
and the effect of kurtosis. 1In terms of the Neyman-Pearson ﬁheory,
the critical regions for tests on variances and tests of kurtosis
overlap substantially -- see Box (1953a,b) == so that it is usually
difficult to know whether an observed discrepancy results from one
or the other or a mixture of both.

Figures (la) and (1b) together illustrate how, in line with
our general discussion in section I, a satisfactory resolution is
provided by Bayesian procedures. Figure (1b) shows what we are
entitled to believe about the extent of the kurtosis of thz?gigzri-
butions, while the former shows what we should believe about the
equality of the variances given any particular degree of kurtosis.

In general, the posterioxr distribution of V is obtained by
integrating out B from equation (18) giving

+1
(20) p(V|01,02,¥1532) = { p(B101,02,71,52)p(V|B,01,02,¥1,y2) dB
In particular, the probability a posteriori that the variance ratio

V exceeds unity is:

. -
(21) Prﬁ > 1|91:92:II.:2_2} = { ?Y{V > 1‘5;91:92311513 P(ﬁlel,aa,zuy
- : a5

where the first factor in the integrand is given in (11). In ob-

taining the above integral we are, in fact, averaging the various
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probabilities shown in Figure (la) by the weight function given in
Figure (1b). By so doing uncertainty in our inference about V
induced by our uncertainty about p is removed. In particular, for
the analyst example, Pr{b 5 llel,ea,z;,zg} is found to be T.91%.
For this particular set of data, this final value agrees very
closely with the value 7.59% obtained using normal theory; The
reason for this is seen from the figures, Figure (1b) shows the
posterior distribution of P is very nearly centered about the
value O, Further, a transformation on f that would tend to make
the posterior distribution in Figure (1b) approximately symmetric
would also tend to tramsform the curve in Figure (la) into a straight
line. The averaging of equation (21) can therefom be expected
for this particular sample to yield result close to the normal
theory value,

In order to facilitate comparison with the result obtained
by the more familiar Neyman-Pearson formulation, we have in the
above calculated only posterior probability of V being greater than
unity, since this parallel directly the significance level. We
should perhaps emphasize that in most problems, we should be in-
terested not in a single probability but in the whole posterior
density function. An example illustrating this fuller analysis is
used to illustrate the situation which we now discuss where the un-

realistic assumption that 61 and 6o are known a priori is relaxed,
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VI1I., Posterior Distribution of V when 83 and 05 are regarded as

Variable parameters.

To concentrate attention on important issues, we supposed
initially that the location parameters 8 and 6, were known., No
difficulties of principle assoclated with the elimination of
nuisance parameters such as 83 and 62 arise of course within the
Bayesian formulation, and this supposition is now relaxed;

We follow our discussion in section III and assume that 6,
end 62 are locally uniformly distributed a priori as in (31
Upon "integrating out” these two parameters from the joint posterior
distribution of the set (61,02,V,B), we can then write the poster-

ior distribution of p and V as:

(22) P(V:B‘leia) = P(Viﬁ:zl:XE)P(ﬁleaxa)

The conditional posterior distribution of V for fixed value of B

is given by:

.’%L -1 oo oo 1~t —-—"%'9-%(1+(3)
(23) p(V|B,¥u,y2) = k V [ [ [n=2s2(B,0)+V Pnyss (8)]
- =M
do,dez

where

2 ~ % ---(1+£3)
k-l p[n("l“;i) — ] E-E(l.yaﬂ _L [ngs (B,G)] de

and si(ﬁ,e), i=1, 2 are given in (5).
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When the parents are normal (B=0), the quantity

F=V %(yai = ¥1)2/ (n1-1)
%(yeq = y2) / (n2=1)

has an F distribution with (ni-1) and (naz-1) degrees of freedom,
Also, when the parents tends to the rectangular form (g = =1), the
quantity o = V(%i)a, where h; and hp are respectively the ranges

2

of the first and the second sample, has the following limiting

distribution,

nz-1 -1 3

(24) 4im p(w|B,y1,¥2) = k = [ (na+nz2) = (ni4nz-2)w®] for axl
B =1

..ng"'l_ 5

=k [ (ni4nz) - (n1+nz=2)w -] for upl
Ve (np-1) (na-1)
2{n1+n25 (n1+1‘12-1 (n3_+na-2) ‘ P

For other choice of parents, it does not appear possible to
express the posterior distribution of V in (23) in terms of simple
functions. Methods which can be employed to yield a close approxi-

mation to this distribution are now derived.

IX. Computational Procedures for the Posterior Distribution

P(Vlﬁ:ll.cy_a)'

The numerical evaluation of equation (23) involves, among
other things, computing a double integral for each value of V.

This is laborous even on a fast electronic computer. However, a
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general expression for the moments of V is readily obtained in

the form:
(25) E(V']B,y1,y2) = k x
00 ~%(n+2r) (1+8) N
f [nxSL(ﬁ;G)] ’ dey ?)[nasa(a,e)] a(na 25)(L+ﬂ)
=00 s
0o - 20 (148) 00 - 2nz (14+p8)
[ [nis1(B,0)] do,, J [nz2sz2(B,6)] o
-00 =D
with
2
k = P[&(na+2r) (148)] ' [#(ne-2r) (1+8) 1/ _111 rlzn, (148)]
i=

Computation for the moments in the above expression only
involves the comparatively simple evaluation of one dimensional
integrals. It would now be possible to proceed by evaluating
these moments and fitting appropriate forms of distributions
suggested by the exact results obtainable when =0 and B “>-1;
The simpler and more intuitively satisfying procedure we actually

employed is as follows: We can write equation (25) as:

00 00
E(Vriﬁ,xuy.a) = [ f E(Vrlﬁ,B;,Sa,xl,‘Y_g}p(Gg_,%|5,21,22) de,dés

In the integrand, the moments of the conditional posterior dis~-

tribution of V for fixed choices of 01 and 02 are given by
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(26) E(V©|B,01502,¥1,¥2) =

M[&(n+2r) (148) ] TlE(na-2r) (148) ] {ﬁgsa%g,eg ;}_r(l-l-ﬁ)
183 B:e.u

2 n,
I ri==(1+8)]
i=1

and the joint posterior distribution of 61 and 6z is

2 -% n, (148) /0 -2n, (1+p)
(27) p(02,92]B,31,52)= 1 [n;s, (8,0)] [ [ngs, (B,0)] de,
i=1 -0

It was shown in our previous paper that, for fixed B, the functiomn

2

(28)  £(6) = n s(p,8) = Z ly,-0] 7+

has continuous first derivative and an unique minimum which is
attained at some point in the interval [ys,yL]. When R=0 or

B < = %, it is easy to see that f3(9) exists and is continuous.
Thus, for these values of B, we can employ Taylor's theorem to

expand £(0) into:
(29) £(0)~£(B) + & £7(6) (6-0)2 ,

where 3 is the point at which £(0) attains minimum, This
approximation will be satisfactory when B 1is not close to ~1.
Using this result, we find that the moments of V in equation (25)

is approximately:
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(30) E(V'|B,y1s¥2) —

P[jg&+2r)é1+a)~1] F[jg£~2r%(1+ﬁ)-1] ggl:igg,ag} r (148)

2 ni(L+5)-l
nr(g)

i=1

This implies that, to this degree of approximation, the moments of

1
G1 e = v g
are the same as those of an F wvariable with ni(14+8)~1 and nz(1+f-1
degrees of freedom,and hence that the posterior distribution of
c(V) can be closely approximated using ordinary F tables; In
this approximation, the nuisance parameters 6; and 6z in the post~
erior distribution of V are eliminated by the very simple process
of replacing them by their maximum likelihood values and reducing
the degrees of freedom by one unit; Although calculating these
maximum likelihood values still require the use of numerical
methods, this is a procedure of great simplicity compared with the
exact evaluation of multiple integrals for each V;

The justification supplied above for this simple approximation
is, unfortunately, only valid when B=0 and when B is less than
%-but not close to -1, However, it secems that in practice the
approximation has a much wider usefulness. Using the previous ana-

lytical data without now the assumption that the location
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parameters 0 and 0, are known, we find empirically that (30) and
(31) give a very close approximation over the range -0.6 < £ <1
and a tolerable approximation even when B = -0.8, although this
representation rapidly becomes inadequate as P approaches -1. The
excellent approximation over the range -0.8 < B < 0;8 given by
equation (30) for the first four moments of v 1o 62/08 using the
analytical example is shown in Table II. The exact and approximate
posterior distribution of V"1 has been obtained for various values
of P and specimen values of the probability densities are given in
Table I1I. Some discrepancies occur when p = -,8, but for the
other distributions the agreement is very close,

The authors are somewhat embarrassed by the fact that the
approximation seems most accurate where the present mathematical
justification is weakest, némely for - %-< B<Oand 0B <1,

A possible reason that such good agreement is found in these cases

is that only values close to 3 have sufficient weight to matter

very much.

X. Posterior Distribution of the Variance Ratio with all

Nuisance Parameters Eliminated.

We now reconsider the analytical data of Table I, The dia-

grams in Figure (2) show the computed distributions of

§ A A
%1 Variance of Analyst Ai

o]
o3 Variance of Analyst Ap

v

for various choices of B where this time the simplifying assumption
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that the location parameters 03 and 8z are known and equal to the
sample means is not made. In computing the posterior distributions
of V-l for B= «0;6 and B = 0,99, 61 and 0z are eliminated by actual
integration and also by the approximation procedure mentioned above;
In each of these two cases, the curves obtained by the two methods
are practically indistinguishable; For the cases pB=0 and P= =1,
the exact distributions are easily calculated.

We see from these figures how the posterior distribution of
the variance ratio changes as the value of B is changed; When
the parents are rectangular (B — =-1), the distribution is sharply
concentrated around its model value; The degree of concentration
is considerably less pronounced when the parents are normal (8=0)
and the model value is smaller; Finally, when the parents are
nearly double exponential (B=;99), the distribution has an even
smaller modal value and becomes rather flat with a long tail to=-
ward the right; It is evident that inferences concerning the
variance ratio depend heavily upon the form of the parent distribu-
tions,

As in the case 63 and 8> assumed known, the uncertainty in
our inferences about V can be removed when information concerning
the parameter P is taken into account; In the joint posterior
distribution of V and B in (22), the marginal posterior distribution

of p is given by
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(32) p(Blyi,y2) = k ﬂ(ﬁlz;:za) p(B)
where e )
2 1B
Hr[l.;,.-ié--—] e -n.j_(1+B)
L(Blyi,y2) = {jl' GR ) [nisi(B,a)} e d 6,
i=1 ~co

P(l-l’_@‘)}n1+n2

which is the integrated likelihood of B, p(p) is the prior distri-
bution of B given in (4) and k is the normalizing constant. Upon
integrating out P from (22) the final posterior distribution of

the variance ratio V is then

+1
(33) p(Vlyasy2) = { p(V|Bsy1,y2,)p(Blyr,ye) dB

For the analytical data, the posterior distribution of B in

(32) and the final posterior distribution of the variance ratio

- *
Ve o2/62 are shown, respectively, in Figure (3a) and (3b) .

*
in computing (32), we again take the value of the parameter

"a'" in p(B) to be unity.



Table I
Results From Analysis of Identical Sample

x = (% of carbon =4.50) x 100

Analyst A Analyst Az
Sample No, X1 Sample No. Xz
: | -10 | - 8
2 16 2 - 3
3 -8 3 20
4 9 4 22
9 5 2, 3
6 -5 6 5
Il 5 7 10
8 -11 8 14
9 25 9 -21
10 22 10 2
11 16 11 7
12 3 12 8
13 40 13 16
14 0
15 «5
16 16
17 30
18 -14
19 25
20 -28

Mean 6.55 5.TT
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Table III

Specimen of Probability Densities of the Variance Ratio V“lﬁqi?/qai

for the Analytical Data for Various values of B+

01%/62% B = =.8 B ==.6 B = =.2
0.5 .005 020 017 021 048 -049
1.0 .099 «159 +229 +245 «299 .301
1.2 «209 + 264 378 388 389 «390
1.4 «353 .388 . 507 +510 o BUY o UhY
1.6 503 510 +583 +580 461 461
1.8 619 « 597 o 594 «588 449 o448
2.2 .628 579 ATh . 468 «372 .371
2.6 JAl2 .380 .301 «297 276 275
3.0 206 <194 .168 +167 192 .192
4,0 .026 .028 .032 .032 .070 .069

B= .2 B.= .6 B= .8
0.5 .070 069 .090 .089 . 100 .100
1.0 <274 <274 .258 « 257 «253 «253
1.2 «329 .329 . 294 «293 .282 .283
1.4 359 359 L S «294 295
1.6 367 .368 .313 313 «295 .296
1.8 «359 360 .305 .306 287 287
2.2 314 +315 o272 273 256 257
2.6 «255 256 .231 .231 .219 .219
3.0 200 200 190 .190 .183 .183
4,0 « 100 » 100 ,110 .110 .111 .111

=+ For each value of B, the densities in the first column are obtain-
ed by direct evaluation of equation (23) using Simpson's Rule,
and those in the second column are calculated using (31).
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