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WRIDGE ANALYSIS" OF RESPONSE SURFACES
Norman R. Draper

University of Wisconsin

0. Introduction. In a 1959 paper, A. E, Hoerl discussed &

method for examining a second order response surface. This paper
provides a mathematically simpler derivation of the technique
and proofs of some stated properties.
1. Lagrenge's Undetermined Muitipliers.

A well-known (e.g. Kaplan, 1956) method of obtaining the
stationary or turning values of a function f(x;,xg,...,xk) of k
variables Xi,X2j5¢ce, Xy subject to restrictions on the x, such

as Sj(xzaxzs--- Kk) = 0, (3 = 1,2,¢00n)

is the following. Form the function
n
F=f- 321 X84 (1.1)
where Xi, Az, ... A are arbitrary. Differentiate (1.1)
partially with respect to each X and set the results equal to

zero. This will provide the k equations

*This research was supported by the United States Navy throu h
the office of Naval Research, under Contract Nonr - 1202(17),
Project NR O42 222.



F  _ af a dg.  _
=—z= 5 - % 1= 0, (1.2)
i i =1 bxi

(i =1,2,..., k)
These k equations, with the additional n eyuations

gj =0 , (j =1, 2, ..., n) (1.2)

provide (n + k) equations which can be solved for the (n + k)

unknowns Xj,Xsz,...3X kl,la,...,xn. Giften the guanticies

Kk’
}j are eliminated and not actually found; for this reacom the
words ‘'undeteriiined wultiplierc’ are used to describe theu.
In sone casec, however, the zolutions for X1,X2,...,X, are gasier
to obtain if the lj are evaluated first; in other caues, as
below, it way be eacier to specify valuec of lj in equations
(1.2) and regard other quantities in equations (1.3) as unde-
teriined”, in their place.

Suppose, now that (x;,xe,.ﬁl,xk) = (al,ag,...,ak) iz a

solution of equations (1.2) and! (1.2) after eli-ination of xj.

1 -

Let M(x) = M(xai,X2,...x ) = gaF J3%F J°%F
k S S aaog, | M
JO3F J2F J3¥
[Oxz0x, Oxz2= 7 Exzaxk
3%F  °F 32F
g-:a':n;kax 1 Bxkaxa axk! |
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be the matrix of second order partial derivatives. Then if
_Di(al,ag,...ak) = M(a), the resulting matrix after the golution
a'= (ax,aa,...ak) has been substituted into (1.4) is

(a) positive definite, ie y' My > 0,

(b) mnegative definite, ie ¥y My<oO
where y' = (yi,y2,..., yk) is any 1 by k real vector,
the function f(xl,xe,...,xk) achieves

(a) a local mininana

(b) a local maximum.
redpectively. For, if we expand F about a as a Taylor gerieg
of partial derivatives, remeubering that all first partial de-
rivatives of F are rero at X = a, we see that

F(ath) - F(a) = % h' M(a)h + O(h®)
whera h represents a vector of small increnents h, all of the
same order and O(h®) represents a reusinder of third order in
8uch increments8. Thus, to order hZ, if M(a) is positive definite,

F(a + h) > F{a) , for all smell h.
If h varies only in such a way tuat the restrictions are still
satisfied, this implies that
£(a + b) > £(a)

ie, f(a) iz, locally, 2 wminimum, subject to the resgtrictions

holding. As we can see from this discussion, it might happen



that
F(a + h) p F(a) , for all small b
but £(a + h) > £(a) , for all h which satigfy the

regtrictiong. Thus "M(a) is positive definite" is sufficient,
but not necessary for a local restricted minimum of f at x = 2.
Similar remark: apply to the negative definite case. If M(a) iz
indefinite, further investigation of the function near the point
a i8 required to determine what sort of stationary point has

been obtained.

2. Improvad derivation of the technigue.

Considei the second order responce surface in ik variables

X1,Ka, -+ 5Ky given by

M

y = bo + D1X3; + bpXz + ... + bkxk
+ b11x12 + b22x22 + +.. + bk.kxk2 (2.1)
+ Di1zxXiXz + ... + b,

k-1,k k- k'

The point (0,0,...,0) is8 the origin of measurement of the
variables Xi,Xz,-. X, . If the data u.ed to obtain (2.1) re-
sulted from a designed experiment, it would usually be the center
of the design also. Suppose now we imagine a .phere, center at

the origin (0,0,...,0) and of radius R, drawn in the x-space.



Then at .ome pointg on the sphere there will be a waximux ?’and
elgewhere a minimum §§ and poggibly also (depending on the type
of quadratic curface (2.1) obtained and the value of R) values

of ¥ which are local maxima or winima, that is, maxima or minima
for all nearby points on the sphere, but not absolute maxima and
minima when all point: of the gphere are taken into consideration.
If we investigate the stationary values of the function ? on the
sphere, ie the stationary value: gubject to the restriction

g(xy,%X2,..., xk) Z X124+ X224+ ...+ xK2 -R¥ =0, (2.2)
we shall be able to find all theue locai and absolute waxima
and niniua.

We can then plot against R ag abucissa the following (k+1)
ordinates: Xi,Xz,.-., Xy s ? for, say, the absgolute maximum of ?
found on the gphere radius R.

If we change R slightly the appropriate values of Xj;,Xz,...,
Xy and ?‘for the abgolute waximum will algo change slightly and so,
by varying R, we can congtruct (k+l) curves showing how the
position and magnitude of the absolute waximumn ? change as R
changeg. We can thus find, for any gelected R, the place of
maximum yield on the response curface. Such a plot can also be
wade of abSolute minumamor of the loci of intermediate stationary

valued, as degired. Mathematically, then, we wish to find the

stationary values of § = f(xl,xa,...xk), from equation (2.1),
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gubject to the re:triction g(xl,xg,...,xk) = 0 as in equation
(2.2).
Uging the method of Lagrange multipliers we s2t F = 9 ~ Mg

and equations (1.2) after rearrangement and diviszion by a factor

of 2 becgme*

(b1 - A) x1 + Hbioxa + ... + éblkxk = - b,
éblle + (baa - X)Xz + ... + ﬁbakxk = = ébe
L B ] (2'3)
#byxy + Bbop + ... + (bkk-X)xk *!&bk

or in watrix notation

(B-x»1)x=-% (2.4)
where
- - .
B = biy #biz cev. Bby b = by
. - &
'é'bla bzg .- as '&bak » b:g (2 ')
l -

and I is the ik by k unit watrix.

*
Note: If we set k=2 and a = 2(\ - bsa), ie A = %a + bas,

we reduce to the unsymmetrical equations obtained by Hoerl

with a as parameter.



Then, theoretically, the (k+1) eguations (2.%) and (2.2) can be
solved for sects of X1,Xz2, - X5 and ) corresponding to the vari-
ous stationary values of 9 .on the sphere radius R. Since the
solution in this form leads to involved calculationg, a simpler
and equivalent method of solution may be used as follow:.
(1) Regard R as variable, but fix A instead.
(2) Insert the selected value of A in equations (2.4)
and solve them for R1,Xz2, .- Xy o The solution is used
in steps 3and 4.
(3) Compute R = (x:%4x%+...+ xka)é - (:_{_'_:g)'é, where x' =
(X1,%2,. .. ,Xk)
(4) Evaluate ¥.
We now have a get of nunberg (A, %1, X2, ..., X, o R, 9)
and know that on the sphere radius R, center the origin there
ig a gtationary value of ?, value determined, at the point
(X1, Xos «ony xk)' Several different values of A will give risge
to several stationary point: which lie on the same spherc radiu:z
R. Whether a particular stationary value is the absolute maximum,
absolute minimum, a local waximum or a local minimun is deter-

mined, as we shall see, by the value of X.

3. Properties of the stationary values.

Let the eigen values or latent roots of the matrix B be

denoted by u. (i =1, 2,... k). Then the ., are such that
i i



Bx=ux (3.1)
or (B -ullx=0. (3.2)
Hence det (B - 4 1) = O, (3.3)

where ‘'det"” denotes "the determinant of", provides a kth degree

equation with roots u;, pz, ... W o 83Y. Note that when a

standard canonical reduction is made of equation (2.1), MHi,yda,
ces Wy are the latent root: needed to reduce 9 to the form

AN 2 2 2
Yy =% 4+ X1 + ugX2 4+ ...+ !.l.kxk .

Canonical reduction is another way of examining a gecond order
regponge surface for its main features (C. L. Davies, 19%6).

By comparing the value A, which corresgponds to any particular
ataticnary value of ; on a gphere of radiug R, with the latent
roots uﬁ we ghall be able to determine what gort of gtationary
value haé been obtained.

Suppose A = A; and A = A, are gubstituted in equation (2.4)
and the solutiong x;' = (a;,az, ..., ak) and x} = (cl,ca,...ck)
result, thus providing twc stationary values 91 and 92 of 9 on
the spheres x'x = RY and x'x = REZ -, regpectively. Then the
following results are true.

N A
Regult 3.1: If R; = Rz and A, > Ap, the y1 Dya.

Proof: We know that
(B - 2 1)73:_1 = - , (2.1.1)

b
(B~ 2z 1) x2=-3b, (2.1.2)



x:'%x; = x4 x» = R® , say, (3.1.3)
$1=%"Bx: +x:'b+b,, (5.1.4)
and J2 = X2' BXa+ X2' b+ b_. (3.1.5)

Premultiplying (5.1.1) and (3.1.2) by x;' and x.' respectively
and gubtracting, and remembering (3.1.3), gives

x1'B xa - 3.‘..2'.1,3. X2 + #(x; - x2)' b= (A1 - A2) R?, (3.1.6)
whence, using (3.1.4) and (3.1.5),

F1- Yo = #(x2 - E2)' B+ (A1 - x2) R? (3-1.7)
Premultiplying (3.1.1) and (3.1.2) by x»' and x,' respectively

and gubtracting gives

(Az = A1) X2'x2 = #(x1 - x2)' B (3.1.8)
since xp' B xy = x;" B x» and x2'X:1 = x:'x. . Hence from
(3.1.7) and (3.1.8)

) N 2 ]

Y1 = ¥a = (A1 - 22} (R® - x2"x1) (3.1.9)
But R? - x2'x: = (8:% + a2+ ... + ake)é (c1® + ¢2® +...+ cka)é

- {ajc; + azca + ... + akck) > 0, always, by a well-known

inequality (Hardy, Littlewood and Polya, 1952).

Hence 23 > Az implies 91 > ?2-

Result 2.2: If Ry = Rp, M(x:) is positive definite and M(x-)
ig indefinite, then ?1 < ?2.
Proof: By hypothesis

y'(B-221)y < 0, for at leagt one y = g, gay

y'(B-2 1)y > 0 , for all y, including y = g.
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Hence *2gq'y 2 g'B3 > mgla

which implies Ao > A1

By Result 2.1 then, 1< 92.

Similarly, i+f Ry = Rz, M(x:) i. negative definite and M(x2) is

~
indefinite, then ?1 > Ya.

Result 3.°: If X > g (all i), then x; 13 a point at which

? attain: a local maximum on the sphere radius Ry; 4if Ay < ui
(all i), then X1 is a point at which ’y\ attains a local minimum
cn the sphera radiue Ry. (As will be seen later, we obtain the
absclute meximus and minimum in this way, not only the local

maximum and minimum. )

Procf: It will be seen that ejuation (1.4) becoumes
M{x;) = B - A 1
for the stationary peint xy. Then if y is any n by 1 vectcr, the

quadratic form

i

'@ -2 1Dy

¥'By - y'y

y'M(x:) ¥

3'y (b= 2)

if W i any latent root cof B.

Thus, if X >, (all i), M(xi) is negative definite and
hence x, is a point on the sphere radius R at which § attains
a maximum, if Ay < ug all 1, M(x;) is pocitive definite and

hence xi ic a point on the .pnere, radius R at which ? attains a
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minimum.
Result 3.4: Suppose, a:; R increaces, we trace a locu. cf
stationary pointc (the absolute maximum, absolute minimum, or
a lccal maximum or minimum) and examine the changing
values of 9; Then, as R increases, Qlchanses in one of.
the following wayc {(when the re_ponse surface is quadratic):
(a) decrea.es monctonically
(b) increaies monotonically
(¢} pac.e: through a2 maximum and then decreases moenotonically
(d) passe. through a minimum and then inerea:ze: monctonically
If (c) and (d) happen, it i. because the locus has pasied through

the center cif the quadratic system.

Proof: ? +x'B x +

S

= b 'b

0 ——
=b_+ X x'x +#'h , (%.4.1)
uzing equaticn (2.4).
Suppose we make a small change &) in Aj this will induce cmall
changes 6x in X, in eyuationz (2.4), a small change 6R in R and

finally a .mall change &9 in 9. Then, from (%.4.1),

Prof=b_+ (A+80) (x+8x)' (x+ 0x) +H(x+ ox)'b
(.4.2)
Subtracting (*.4.1) from (-.4.2) and rearranging the recult, we

find

6y = 22 x"6x + &\ ¥'x + % 6x'b + Q2 (:.4.3)
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where y» denotes termg of gecond order in oh..and "8x.
But if we get Ao = A + O\, Ay = A, Xp = X + 0x and X3 = X in
equation (3.4.8), we gee that

orx'z + #ox'b = Qg (3.4.4)
where Qa! denotes (other) terms of second order im 46X and 5x.
Thus (3.4.3) and (3.4.4) auply that

89 = 2 x x%ox + QU (3.4%.5)

ie 6% = 2 X RER + @B, (3.4.6)

since x'x = R®. Dividing by éR and letting all infrements

tend to zero gives

%%:2)@{ (2.4.7)
which 18 zero wnen R = O and wien A = 0. When R = O we are at
the origin and the value of 4 woen R = O 18 the starting value
for the locus of ab8olute maximum and absolute minimum ?. when
R % O, ?‘is stationary with respect to R only when X = O, but
if X = 0, equations (2.4) yield, as solution, the center of tne

second order suriace, since we shall obtain the point at which

af\
5§ = 0. (i =1,2,...,%k) (3.3.8)
S
The stated result follows. Any locus passing through the centey
ot the surface satisfies {c) or (d). Otherwise it satisfies

(a) or (b).
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4, Comments

Hoerl (1959) states similar but not quite identical properties
and ascribes their proof to Dr. R. Jackson of the University of
Delaware. No proof, nor any reference, is given in the paper
however.

The four results have the following implication. If we wish
to follow a locus of the absolute maximum ? for increasing R, we
should substitute in equation (2.4) only values of A greater than
all the latent roots of B. This will make M(x) negative definite
and will ensure that 9 is a local maximum for every solution X.
(It is in fact an absolute maximum as we shall soon see.) No
value of ) less than the greatest latent root should be consider=-
ed in such a case for, while values of A between eigen values may
provide a local maximum or minimum they caonot provide an absolute
maximum or minimum.

In fact the total range of A, namely -co to co is divided
into sections by the latent roots Ui, Pz, sees Hpo Suppose
Ri € Bz < see < My Then we have (k+1) intervals (- co,u1),
(basbads eee Gy s ) (4o @ ).

As A = p.i( i=1,2,+++,k), the resulting solution X = i @ 80
that R— . As A=+ 00, x = 0 and so R— 0. Furthermore the
value of %;5 is positive for all R # O.and is zero when R = 0.

For we lknow that
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3 (4.1)

B-x1)x

E"E = Ra (’4.2)

Ditferentiating once with respect to A givec
ox

- X —
(E }') 'gi”?_(_: (4-3)
and
x! E§ = R oR
TSN (4.4)
A second differentiation with veuspect to A giveu
3%x ox
B=Al) gmm = 2.5 (4.%)
B-2Vgw = 25
and _ '
2 S3x! 2 AR\ 2
i . i i aexu
1f we prawuletiply (4.-) and (4.%) by =
2y
and oK' respeccively, cubtract, and trancpose, we find
A

2 L] 2
3R _ . & x '(%) (4.8)

Thus, uzing (4.9) in (4.8), .
2 . 4 )
o B e X b X 3 o e

3w iy
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The first part of the right member of (4.10) is always non-
negative and is zero only when R=0 or when %’f = 0, The second
part of the right member of (4.10) is always nom-negative by
a well-known inequality (Hardy, Littlewood and Polya, 1952) and

is zero only when x = 0, ie R = O, or when g% = 0, When %‘0’

x = 0 by (4.3) if A # i and thus R = 0. Thus g;% is positive
except when R = 0, when it takes the value zero.
Note that %—% = 0 does not imply that %— = 0 (and so that
x = 0 and R = 0) because the left member of (4.,4) can be zero
due to the cancellation of positive and negative cross-products.
From the above, we see that the graph of R, plotted as ord-
inate against A as abscissa, acts as follows.
At A = = o, R = 0 and R increases steadily to infinity at
A = |3} between pairs of latent roots, R passes dowm from infin~
icy at u, through a stationary value and up to infinity
again at gy Finally R passes from infinity at Wy to zero at
A = o0, (See Figure 1).
Suppose we consider what happens for various values of R.
Each value of R can give rise to, at most, 2k corresponding values
of A. The number will be less if some of the loops in Figure 1
have their lowest point above the value of R being considered.
It is clear too, that if we wish to find the locus of the absolute

minioum of § as R varies we can substitute any values of A less
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than the swallest latent root py into (2.4) and obtain a point
on the locus, since there is only one such locus and thu: there
can be no ambiguity. A simzlar reuark is true for the locus of
the absolute waxismuin ? a: R varies. When we choose value: of A
between latent roots, however, we way be on either of two loci
of stationary values , depending on whether we are to the right
or left of the value of A for which R is stationary.

A; indicated above, not all of the loci appear for every
value of R, but a. R increa.e:, more and wore appear. Since the
fitted model can be considered accurate only witnin the region of
the experimental design, loci which do not appear except for large
R are usually of little intereut.

To sumarize the main practical feature of thiu wouk: Suppose
we wich to follow the absolute waxiwum predicted value of ; on a
sphere of radiuc R, as R increasec. Find the latent roots of B,
choose value: of A greater then all of these roots and .ubstitute
them into (2.4). Solve for x, evaluate R® = x'x and ? and plot
9, xl,xa,...,xk against R. (similar work, choosing value. of M\
les. then all of the latent root. of B, can be carried out for
an investigacion of the absolute winimum value of ? on spheres of

radius R).
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5. Example:

This exauple was used by Hoerl. Consider the vespon.e sur-

face in two factors

‘Y\ = 80 + 0-1X1 + 0.2%3 + 0-2X12 -+ 0.1x22 + X1 X2 (5-1)
Thus - -
0.2 0.5} 0.1
B = b= (5.2)
0.5 C.1 0.2
Equations (2.4) become
(0.2 - A)xy + 0.8%z = = 0.05,
(£.2)
0.5x; + (0.1-A)}x2 = -0.10,
with solution
xy = (9 + 10)) / 2D
(5.4)
Xz = (1L +20x) / 20D

where
D = 100 det(B - A 1) = 100A% - 301 - 23 (5.5)

The eigen values or latent root. of B are given by D = 0, whence
A = 0.672 or - 0.3:2. (5.6)

{Note: Hoerl's perameter, which we ghall call a, is such that

A = bos + B, ie a = 2(x - 0.1) for the example. This will

lead to his corresponding eigen values of a = 1.105 and - 0.3505,

apart from rounding error. Note that when » = 0.2, a = 0.2.

In general putting M and a equal to the same number would produce

different stacionary points in the two calculations and the fact

that our calculation below with A = 0.2 produces the same station-

ary point as Hoexl should have obtained with o = 0.2 is pure
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coincidence due to the number. involved.)

If now we wizsh to look for the locus of the absolute minimum
(or maximum) of § on circles x32 + x2° = R® of radius R, we should
insert in equations {(5.4) values of A less(or greater) than both
eigen values (5.6), ie A < - 0.352  (or A > 0.652).

Suppose we select a value A = 0.2. Then equations (5.4)
and (5.5) yield solution (x,,xz) = (-0.22, -0.10); there is a
calculation error here in Hoerl's paper. Then R = 0.242, co that
on the circle x;% + x% = 0.242, 9 is stationary at the point
(-0.22, -0.10) but, since -0.352 < A = 0.2 < 0.682, thic station-
ary value 9 = 79.99 is neither an absolute maximum or winimim.

Continued substitution of values of A into eyuations (5.%)
and (5.5) will yield four loci of stationary values as R increases
and these, a:s evaluated by Hoerl, are shown in Figuve 2.

The loci of absolute maximum and absolute minimum, curves
1 and 4, begin at R = O and correspond to values of X beginning
at » = oo and A = - @, respectively. The two loci of intermed-
iate stationary values do not begin until R = 0.195 and correspond
to A = -0,002, when %% = 0, ie we are at the bottom of the loop
of R, plotted againct A, which lie. between the latent voots
By = =0.%52 and pp = 0.652. Because of the scale of the diagram,
the difference in starting pointc cannot be distinguished.

The response suiface given by eguation (4.1) is in fact a

saddle, rising in the first and thizd quadrants of the (xy,%2)
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plane, falling in the second and fourth quadrants, with ridges
oriented approximately 450 to the axes and with center slightly
off the origin at (- 9/46, - 1/46). Thus the locus of absolute
maxima in Figure 2 passes from the origin out the first quadrant
of the (x1,xz) plane, the locus of absolute minima passes out the
fourth quadrant and the other two loci of stationary points,
which are loci of neither absolute maxima or absolute minima,

pass out the second and third quadrants.
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