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Recently a number of schemes for automatically optimizing the performance
of chemical processes have been proposed in the literature (6). These range from
the use of on-line digital computers to program the optimal values of controllable
variables to simple manual feedback as in evolutionary operation {1). For
continuous processes, a means of making evolutionary operation automatic has
recently been discussed by Box and Chanmugam (2). In order to understand the
dynamic behavior of these systems it 1s necessary to obtain mathematical models
describing their self-optimizing feature. Such models provide insight into how the
optimizing loop processes the information obtained from the perturbation signals
and guides one to the proper choice of the optimizing loop components. The purpose
of this paper is to obtain such a model for the adaptive optimizing chemical process

discussed by Box and Chanmugam.

Formulation of the problem

The chemical reaction automatically optimized is one in which a reactant
N, decomposes into N, which in turn decomposes into another chemical Nj It will
be assumed that the reaction takes place {n an ideally stirred tank reactor into
which N, is continuously fed in, Nz is the product of interest and it decomposes
into a useless product N,. In this reaction N;, called the yield, goes through a
maximum as the flow rate X, of N, is varied. Two other constants k) and k3,
called the specific rate constants, influence the process and the reaction may be

represented by

Kk, k2

N = Ni N,
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It will also be assumed that the instantaneous rates of decomposition of N, and

N, follow first order kinetics, that is, the rates are proportional to the first powers
of the instantaneous concentrations of N; and N, respectively. The process 1s
automatically optimized by employing a sinusoidal perturbation of the controllable
variable (in this case the flow rate X,) in conjunction with a phase sensitive
detector in the optimizing loop which sets the flow rate at its optimum value. The
process described above has been discussed in greater detail by Box and Chanmugam
(2). The chemical reactor together with the optimizing loop is shown in Figure l.

The purpose of the optimizing loop may be explained with the aid of Figure 2,
In this figure is plotted the yield n, as a function of the flow rate Xo with the
rate constant k, as a parameter. This constant usu‘ally depends on an unmeasurable,
uncontrollable variable such as catalyst activity. It is observed that for a fixed
k. equal to k;;, the yield is maximum at the optimum flow rate Xopt 1 The purpose
of the optimizing loop is two-fold; a) when k; is fixed, it automatically forces
the flow rate X, to the optimum and maintains it there and b) when k, varies with time
it continually adjusts the flow rate to optimal values corresponding to the variations
of ke The sinusoidal perturbation of the flow rate provides information regarding the
state of the process, namely, how far X, the actual flow rate is above or below the
optimum. This information is processed by the optimizing loop consisting of the

detecting multiplier and the integrator and used to automatically set the input flow

rate at the optimum value.
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One may now pose a number of questions.

1) How does the optimizing loop provide the information for automatically
setting the flow rate X, at its optimal value ?

2) How does the dynamic characteristics of the chemical system affect the
performance of the optimizing loop*®

3) what are the important parameters that influence the operation of the
optimizing loop and how does one find the "best" values of these
parameters ?

These questions are partially answered by the linearized mathematical model

of the optimizing loop derived in this paper.

An analysis of the self-optimizing chemical process

The differential equations representing the sinusoidally perturbed process

described in the last section are

%‘Eé- = (X, +m cos vti{l-n) - k;n, 1

'%%a = kyny - konp - (X% +m cos vt)n, @

4 . komp - (X +m cos vt) ny (3)
n,tn4n; =1 (4)

In the above equations (X, + m cos vt) represents the sinusoidally perturbed

input flow rate; m is the amplitude and v is the frequency of the perturbation.

The yield 18 n, and is therefore the interesting quantity. Equation (3) involves

the "waste" ns and further there is no coupling back from Equation (3) to
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Equation (2); Equation (4) is a constraint relation and thus these equations are not
directly useful in the analysis. Therefore, the analysis is limited to the solution
of Equations (1) and (2).

The use of block-diagram representation of physical systems in systems
analysis needs no overemphasis. This technique was used in analyzing the
chemical process discussed in this paper. The block-diagram representing the
differential equations of the chemical process and the optimizing loop is shown
in Pigure (3). [In this section p cos At and ¢ cos ut in Figure 3 are to be taken
equal to zero, These terms are non zero in later sections. ] The details of
the derivation of the diagram together with an example of how it is used is
discussed in the appendix,

It will now be assumed that the optimizing loop is open and the terms at
various frequencies comprising nz will be determined. This is easlly accomplished
using the block-diagram (Figure 3) as it clearly indicates the flow of signals in
the system. The terms of order m? are neglected as they are small compared
with the other terms.

1) D.C. term:

(n;) + O(m?) (5)

S0, Y
s " (Xotk H{Xo+k;)
2) Terms at frequency v:

_ mkgXy -4, - MKiXo -
{nz}, = abb, ~ °°8 (vt - d3) aa.b, cos (vt-¢;=-¢;)

+75 o5 (vt - ¢,-5) + O(m?) (6)
a;bl



where
1 1
a, = [ (Xotky)? + v¥]2 by = [ (Xo# k)? + v?]2
a z Xtk ’ b ~Xot k; (7

¢, = arc tan v/a ’ ¢, = arc tan v/b
The D.C. term represents the steady state yield of the chemical process as

a function of X, the flow rate, and the specific rate constants k and ke When

it is differentiated with respect to X, one obtains

8(n,)g _ kgl = XD 8)
9% (Xo+ k1) (Xotkz)

It is seen that (nz)’3 is maximum when X; = (k,kz)%. Superposed on the steady
value are the varying components due to the introduction of the perturbation at

the input; the component at frequency v being the one useful in the optimization.

The varying components are processed by the optimizing loop (lower half of

Figure 3) and yield the signal xf used to alter the input flow rate X,. The

important information regarding the yield and its relation to the input flow rate is
furnished by the slope of the process function gia%i « This information is to
be extracted by the optimizing loop and used to force the flow rate to its optimum
value, namely, to that value which maximises n;. One method of achieving this
would be to adjust the controlled variable(X,) set point at a rate proportional to
fé;:l’. . It will now be demonstrated that the optimizing loop as shown in

Figure 3 does this,



) Referring to Figure 3 it is assumed that the band pass filter passes the
varying components of n; freely (f. . with small phase shift and attenuation)
but attenuates the steady (D.C.) component. Thus at its output the important
components are the ones given by Equation 6. This output is multiplied by
cos(vt - ¢}. Keeping in mind that the varying components at the multiplier
output are attenuated by the integrator, the useful signal at the output of the

detecting multiplier (Figure 3) is given by

[tna), cos (vt = 9] e = L“zf&'.’.a. cos (¥ - ¢2)

+ mk)®_ (
2aa;h, cos (§ - b1-92)

z —e—— 9

The phase shift y used in the above equation is necessary to compensate for
the phase shifting of the perturbation signal by the chemical process dynamics.
The appropriate value equals ($,+ ¢;) as may be seen by algebraic manipulation

of Equation 9. vwhen this value is used, Equation 9 reduces to

X, mk{Kikz - Xo®)

a - (Xo'fkﬂz(xo"'k:ﬂl"'(‘xﬁlﬂt [+ (xo‘;kz)‘l*

a(nz)s

9%
As 4, and ¢, are functions of X,, k; and k;, when these change Y = $; + ¢ must

be appropriately altered. As pointed out by Box and Chanmugam, it is difficult to

do this in practice and one has to be content with a fixed phase shift, chosen
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judiciously, which hopefully will not be too different from the ideal value over
the range of variation of X,, k; and k,.

Another quantity worth calculating is the so-called "hunting loss. " Referring
to Equation 5 it 1 seen that there 1s a term of the order m% This term arises due
to the perturbation and is negative; it consequently reduces the steady state value
of the yield. Physically, one may attribute this to the fact that it is necessary to
experiment on both sides of the maximum yield to know that one is at a maximum.
In large scale chemical processes even a 1% loss is of considerable importance
and thus it is necessary to know the parameters that affect this loss. The loss

is calculated using the block-diagram (Figure 3) and is

m3k

L= Za;zbl fab

(¥ v? + ab? + abk,) {11)

The effects of varying the amplitude and frequency of the perturbation signal on

the loss L 1s discussed in reference 5.

A linearized mathematical model of the optimizing loop

The self-optimizing system discussed in the last section is non-linear and
time varying. Further, the time variations of the system parameters are random.
Thus conventional methods of analysis are not promising. One has to understand
the basic purpose of the system to be even moderately successful. One of the
purposes of the self-optimizing scheme is the estimation of the flow rate variations
away from the ideal (i. e. the value giving maximum yield) and its closed loop
correction. As soon as this basic aim is understood, one is immediately led to

the "black box" representation of Figure 4; this is a conceptual servo, termed
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The signal of interest is the "detected" disturbance signal of frequency A. Thus

if the signals at frequencies v + \ at the point 1 are calculated, the useful signal

detected at point 2will be at the frequency A. Other unwantad frequency compon-
ents appearing along with the useful signal are termed "measurement noise
components, * and are displayed as such in the flow rate correction servo.

The useful signal at frequency A appearing at point 2 of Figure 3 is
calculated easily by enumerating the signals at frequencies (v + A) that appear
at 1. (The optimizing loop is assumed open). The "flow graph" of the disturbance
signal and the signal components that give rise to these is shown in Figure 5.
In this derivation it 1s assumed that the band pass filter introduces a negligible
amount of phase shift at frequencias near v and that v> X . This implies
that the band pass filter has been carefully designed and that the disturbance is
much slower when compared with the variations of the perturbation signal,

Thus the open-loop equivalent of the detection scheme employed by the
optimizing loop is represented in Figure 5. The detected disturbance signal
is fed back to the input flow rate set point in order to provide a closed loop
carrection for the disturbances. Thus this closed-loop control may be represented
by the "Flow Rate Correction Servo" of Figure 6. For slow variations of X,, not
necessarily sinusoidal but restricted to a narrow band of frequencies, the same
model 1s appropriate. If further, the disturbance frequencies are much lower than
the reciprocal of the chemical process time constants, the first box in Figure 6

may be replaced by a constant whose value is
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- mkl [ kl+b a]_zklb + azblz ] (12)

K= Za1b1 a+b aalz blz

It must be recalled that this model is for incremental charges in X, about the
optimum and the appropriate values of a, b, a;, by must be used.

The two power spectra Smb) and Sn(w) displayed in Figure 6 represent
respectively the measurement noise (discussed earlier), and the noise
appearing at the output of the chemical process (due to random noise sources
present in the chemical process).

A model to represent rate constant variations

So far, the rate constants k; and k; were assumed invariant. In practice,
they vary in an unknown fashion; the primary purpose of the optimizing loop 1s
to adjust the input flow rate optimally as these constants vary. The dynamic
behavior of the optimizing loop in this situation is investigated using the
method of the last section. It is assumed that k; varies as given by the
equation k;(t) = (ko + 0 cos ut) and that X, is set at the optimum value
corresponding to the rate constant values k; and k4. I k; is assumed
constant and k,; as varying sinusoidally, a dynamic model for variations of k,
may be obtained.

The block -dtagram of the system with sinusoidal variations of k, (with
the optimizing loop open) is shown in Figure 3 where p is set equal to zero
as Xp i1s assumed undisturbed. The signal at frequency p appearing at point 2

in that figure is given by B; ¢ cos ut where
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B = D 13)
The above result is obtained by enumerating the signal components at

frequencies (v + ) appearing at point 2 of Figure 3 and retaining the terms at
frequency p appearing at the output of the detecting multiplier (multiplier III
in Figure 3). When the optimizing loop is closed it is evident from Figure 3 that
¢ cos ut causes a feedback to the input flow rate set point Xf(t) = @ cos pt.
The dynamic model for time variations X, was derived in the last section. These
two ideas are combined to obtain the mathematical model of Figure 7.

Simulator study of the self-optimized process.

The chemical process discussed in this paper was simulated on a high speed
analog computer (with 1 millisecond unit of time) in arder to gain insight into its
operation, and investigate the validity of the dynamic model of the optimizing
loop proposed earlier. The values of the different parameters of the chemical
process are {Equations 1 and 2) k, = 0.1 min~} , k2 = .05 min"l. A time scale
change of .05t = T was used. The frequency of perturbation was 340 cps which
is 1000 times larger than if real time simulation had been used. In practice, the
flow rate can never be negative and its maximum value will also be limited. An
extra loop consisting of a high gain dead zone unit was used to simulate this
feature in the computer. The input flow rate (set at the optimum) was sinusoidally
disturbed at a low frequency. The gain and phase of the signal detected by the

optimizing loop was measured at the output of the integrator in the optimizing loop,
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with the loop open and closed. In order toeliminate experimental errors due to
measuring instruments, the theoretical medel of the optimizing loop (Figure 6)
was also simulated on the computer and its open and closed loop gain and phase
characteristics were measured using the same instruments, The results are
plotted in Figure 8. The continuous curves are for the thecretical model and

the individual points are those obtained with the actual system and the
agreement is close,

Selecting parameters of the optimizing systems.

As in all engineering problems, there are a number of opposing considerations
in choosing the "best" values of the parameters of the optimizing system. The
important factors to be taken into account are:

1) Uncertainty in the operation of the optimizing loop due to random noise

appearing in the system.

2) Speed of automatic optimization, that is, the speed with which the

optimizing loop is able to reset the input flow rate to the optimum value
when it is disturbed, and the rapidity with which it is able to track a
moving optimum when rate constants vary.

3) The hunting loss discussed earlier.

There is a certain amount of freedom in choosing the following parameters

that influence the three factors mentioned above. They are:
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1) Amplitude m and frequency v of the perturbation signal

2) Gain A of the optimizing loop

3) The transfer function of the optimizing loop. In this paper it is assumed

to be an integration but it may be advantageous to use a complicated
transfer function (3).

Some general comments regarding the choice of these parameters can be made
by inspecting the model of the flow rate correction servo. Referring to Figure
6 it is seen that there are two sources of noise in the system. The first source
1s the random noise present in the system and its spectral density is denotaed
by Sn(w): the second source is due to the unwanted osctllatory terms generated
by the perturbation signal and its spectral density is denoted by 8 m(w). The
gain K of the first block in the figure is a function of the perturbation amplitude
and frequency. K increases with m and decreases with v.

A large value of m improves the signal to noise ratio at the output of the
system but it increases the huniing loss. A high perturbation frequency also
improves the signal to noise ratio by a) dispersing the spectral components of
Sm(m) and b) shifting the spectrum of Sn(w) to Sn(w_-g-_ v}. {If the information
bearing signals are confined to low frequencies this shifting of noise spectrum
is highly desirable.) This dispersion of spectral components inCreases the
speed of optimization as the flow rate correction servo could be designed to
have a higher bandwidth. Practical considerations, however, limit the high

values of v that could be used; the most serious objection being the difficulty
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of proper compensation of the large phase shifts at these frequencies.

In this study the controller used in the optimizing loop was assumed to be
an integrator. The gain of the integrator A is thus an important parameter to be
chosen. The higher the value of A, the larger is the bandwidth of the servo
of Figure 6 and thus it is capable of faster operation. The choice of an optimum
A depends on the nature of the noise spectrum and the nature of the spectrum of
the input signal (namely time variations of Xo, k; and k;). If one can estimate
from measurements these spectra, it will be possible to use analytical servo
design techniques (4) to find the best value of A, An integrator was assumed
to be the controller in this study for simplicity. It might be preferable to use
more complicated transfer functions for the controller if the various information
and noise spectra are known or postulated (3).

The above discussion shows that the optimization of the optimizing loop
parameters is dependent on so many factors that it is an extremely complicated
problem. A practical approach seems to be the "design of experiments” on an
analog computer to determine the best values of the parameaters. The mathematical
models derived in this paper provide a basis for an intelligent design of
experiments.

Conclusion

The dynamic characteristics of an adaptive optimizing chemical process has _

been determined using a block-diagram method of analyzing time-varying systems,

This method has led to an approximate solution of a complicated problem almost
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by inspection. It has been shown that the adaptive feature of the overall system
can be described by a simple mathematical model. This model, called the flow
rate correction servo, has the configuration of a simple servomechanism with
two transfer functions in cascade in its forward path. The first one accounts
for the dynamics of the chemical process and the second that of the controller
in the optimizing loop. There are two sources of noise which affect the
performance of the adaptive optimizér; one of them is the unwanted spectral
components introduced due to the perturbation signal and the other the random
noise inherent in the chemical process. If enough information about these noise
spectra and the nature of time-variation of the chemical process parameters is
avalilable, one can use the configuration of the proposed servo model to find
the "best" transfer function for the optimizing loop controller,

The flow rate correction servo model for more complicated chemical processes
using the Box-Chanmugam optimization technique can easily be obtained using

the mathematical method presented in this paper.
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APPENDIX
Consider the equation
EBJ' 4 ()(o + m Ccos vt)(l-h;) - kln; (14)

dt
A perturbation technique {7} is used to solve this equation. Rewriting the

above equation with the time-varying coefficient on the right (¥, and k, are

assumed constant)

%‘- +(Xptk))n, = m cos vt + X; + (m cos vtin, {15)
The zeroth order approximate solution is obtained by neglecting the term with
the time varying coefficient. (viz. the last term on the right side of Equation 5).

Successive solutions are obtained from the recursion equation.

dn;qo
ar +{ky¥in, = “mhy(, 1) COS vt
a = 1’ 2,3-.. (16)
The complete solution is the infinite sum
ap
mt) z ) Ml (17)
a=0

Consider the zeroth order solution., This is obtained by solving the equation

98 4 (Kotkdnp = mcos vt 4 X (18)
The solution ny{t) of this equation may be thought of as the output of a linear
system described by the transfer function(l/p + X;+k,} whose input is

(m cos vt + X;). Referring to Eguation (16), the first order solution is obtained
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by solving

9-:—;-:-1- + (Xo+k,)ny; = m;ny cos vt {19)

This solution n,,(t) may again be thought of as the output of a linear system
with a transfer function I/p + (X+k,) whose input is (m, cos vt) multiplied by
the zeroth order solution n;, obtained from Equation 18.

Successive solutions are obtained by an entirely analogous technique. This
method of solution ¢an be represented pictorially by the block-diagram shown
in Figure 9, It is evident that terms higher than the second order have
coefficients of power greater than m®. If the perturbation is small, m< 1 and
these higher order terms may be neglected. Thus in the block -diagram only
the first two stages in the solution of the equation need be taken into account.

This block-diagram will now be employed to derive some simple results to
demonstrate the use of this approach.

The approximate steady state solution n, 5v ny, + n;; is calculated as follows:

By inspection of the block~diagram

e = Xa * m
0 2 %tk | N (Rgtka)® +07

cos (vt - &) (20)

where the first term 1s due to X, at the input of the system and the second term is
due to m cosvt at the input.

Using trigonometric identities

m?

2
-m
32, cos (2vt « ¢;) =~ o cos ¢y (21)

m
-m COS vt Ny == _3)_(1 cos vt -

where a, a,, ¢, are defined in Equation (7).
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