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1. INTRODUCTION

1.1 General Remarks

It frequently happens that an experimenter is interested in exploring a

functional relationship
ns= ﬂ(gl, gZ""’gk, .

Sometimes, the actual functional form is known. CQuite frequently it is
not; in this case, useful information about the nature of the actual relationship
in some particular region R of the § space can often be obtained by approximating
the relationship by a graduating function g{(£, £) where f is a vector of adjust~
able constants.

The graduating functions which have usually been employed have been
polynomials in the variables §, though other types of functions might be of
value on occasion. The problem of experimental design which arises in the

fitting of a graduating function has been discussed in reference [1] and will be
briefly restated here.

wWe desire to choose a design matrix _Ig of N rows and k columns which will
specify the levels of the k variables to be run in the N experiments. Denote
the u-th row of this matrix by ;u'. This vector has as elements the levels
(§1us Baup o ¢ o5 §,,) of the k factors to be employed in the u-th experiment, u=l,
2,000, N,

Our primary objective will be to choose these levels so that when the
graduating function g(£) is fitted by least squares, it will closely represent the

true function n(£), within the region of interest R.
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Subject to the satisfaction of our primary objective, we shall also require
that the factor levels be such that there is a high chance that the inadequacy
of the graduating function g(§, p) to represent n(g) will be detected.

As will be seen, a subclass of all possible designs can be selected which
will satisfy our primary requirement, v.e can then make use of our secondary
requirement to make a selection of a particular design from this subclass.

We now define how we shall interpret "region of interest, " volosely

represent” and "detection of inadequacy of model. "

1.2 Interpretation of "region of interest”

Let us call the region in the § space in which experiments can actually
be performed, the operability regionO. In practice, this region is usually large
and bounded although its limits are often known only vaguely. For example in
chemical experiments, there will often be conditions of temperature or pressure
which will be too severe to use safely on the apparatus, In biological work,
certain combinations of drugs for therapeutic use will produce death. For some
applications, the experimenter may wish to explore the whole region O, but
this is comparatively rare. Usually a particular group of experiments is used
to explore a rather limited region of interest R entirely contained within the
operability region O. Frequently, experiments are conducted sequentially and
a group of experiments designed for the exploration of one current region of
interest may lead to a further set exploring a different region. Often, an
alternative statement of the problem would be that it is desired to explore the

nature of a functional relationship "in the neighborhood” of a point P. The
latter statement is perhaps closer to the real desires of some experimenters with
its implication that the situation is one of a falling off of interest at points more
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and more distant from P rather than of edual interest at all points within R and no
interest outside R and within O.

As we shall indicate briefly below, by dealing with various types of
weight functions in specified regions (for example if R is a k-dimensional sphere

centered at the origin we can use weights which are functions of distance of a
point in space from the origin), these various possible desires can be combined
into a unified treatment. For the immediate purposes of this paper, however,
we shall soon revert to consider the "interest within R, no interest outside R"
formulation; while this may not suit all tastes, a great many experimental
investigations are undertaken with this thought in mind and the formulation is
thus not unrealistic.

1. 3 Interpretation of “closeness"”

Let i}(g_) denote the response estimated by the graduating function at the
point . Then we desire to choose D so that the difference ?(5_)-11(_;) will be
small over the region of interest R, The measure of closeness which we shall
use at a particular point § is:

E[¥(E) - n(g)]?
Over the whole region we may use the average
Q j}; E[y(£) -n(g)]* d§ (1.3.1)

where o ts f ag
R

In certain circumstances we might wish more weight given to errors at one
value of § than at another. e may therefore generalize the concept above by
introducing a weight function Wig) such that

Jwigdg =1
O
Our measure will then take the form

fo WE)ELY(E) - (E)])? A
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The previous formulation is a special case of this as is easily seen
by setting 2 inR
wig) =
-0 elsawhere
It is desirable that we should be able to compare designs which do not
contain the same number of points and that our criterion of closeness should be

independent of the variance ¢? of the observations, which we assume to be

constant. Thus we shall choose as our measure of closeness

1= [ wi(g) E[9(E) - nig)]? ag (1, 3. 2)
where °
wig)= NW/(£)/o?
Writing

HO-n(e) = FE) - ENG} + {EF(E) - n(e))
we can split J into two parts

Ja2V+B

where V is the average weighted variance,

V = [wi(g)F(E) - EXIE)]2 dg (1. 3.3)
O
and B is the average squared bias,
B = [ wig) [ESIE) - n(g)]® ag (L 3, 4)
0

In what follows we shall suppose that the graduating function is a poly-

nomial of degree d, in £ ,

glg) = £:" B

where the vector §, contains p, elements, all of which are powers and products

of gi, i=1,2,.44,k, of order d; or less.
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The true functional form over the whole operability region O is assumed to
be a polynomial of degree d; in §
n(g) = &1 B1 + 52" B
where £, contains p, elements, all of which are powers and products of
B1, E2p 00y gk of order d, or less but greater than d;.
Corresponding to any design matrix D, there will exist an N x p; matrix
X, which has E.'Iu as its u-th row, whose elements are powers and products of
order d, or less of the elements of the vector ;ﬁ .
There will also be a matrix X; with u-th row &%, whose elements are the
powers and products of orders (d;+), ..., d; of the elements of the vector éu .
Let Mn = N'l?,(_l' .
My, = N-I?_{_l' X
Mp = NT-X: X (1. 3. 5)

It will be seen that the elements of these matrices are of the form
-} N a; ay ax
N Z §1u Eau ene gku
=]
They will thus be referred to as the moments of the design points and will

be said to be of order a if
a=aytasteee “|‘ﬂk .

Then M), My, My, are matrices of moments of the experimental design.

Also write

pu = [ wig)g £ di
piz = [ wig) § £2" 98
poe = f wig) &2 £2' 8 (1. 3. 6)

where all integrals are taken over the region O.
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The elements of these matrices are of the form

[w 678 % e g R dg
and this is a moment of the weight function of order @ where a = ajtazte e +ak.
Now, proceeding exactly as in a previous paper (1959) by the same authors, we
obtain
J = Trace [&1:1‘_{1::—‘]
+ 8, [z paa) + (1\__411-!1\_/_113 - P )’ E,u(l\_f_iu-lwlz - ]:';,ll-l];‘;lz)] £z
=V+E, sy (1.3.7)

and, as our first objective, we shall choose the design matrix D in such a way that
this quantity is a minimum. Our formulation will thus ensure that the graduating
function will closely represent the true function n{f), in the way we have described,
after a suitable weight function has been chosen.

We see from the above expression that if we write ] = V + B, V does not
contain B, at all ard depends only on D, while B depends on both D and [, .

Mathematically
J(D, B2} = V(D) + B(D, £2) -

Thus, minimization of J depends on what value we assign to [, e shall

return to this point later.

1. 4 Interpretation of "detection of inadequacy of model™

we shall suppose that a test for lack of fit is to be made by the use of an

analysis of variance in which the residual sum of squares
N P
- z
Sg=2 @, -v)
u=l

where yu are the actual observations,
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is compared with the experimental error variance, This test may involve the

comparison of S, either with a prior value ¢ of the experimental error variance,

R
supposed to be known exactly, or with some independent estimate s, In either
case, a parameter which determines the power of the test for goodness of fit will

be the quantity N A . ,
u§1 [EF,) -1, )* = ES) - vo

where v is the number of degrees of freedom on which the residual sum of squares
is based. While our ultimate object should be to make the power of the test as
large as possible, in any particular instance in which v is assumed fixed, this
will be esquivalent to making the expectation of SR large.

We shall interpret our secondary requirement, therefore, as implying that
the design should be chosen so as to make E(SR) large. It seems reasonable to
regard our primary requirement as being of major importance so that in practice
we shall proceed by first attempting to find the class of designs which minimizes
J and then attempting to satisfy the secondary criterion by selecting from this
class, a sub-class which makes large the expected value of SR'

1.5 Choice of R as a spherical region

Up to this point we have said nothing about the shape of the region of
interest R. Previous remarks would apply no matter what the shape of the region.
We shall particularize at this point and choose R to be a spherical region, a choice
which appears (to the authors at least) intuitively reasonable in many situations
for the following reasons.

R can be of any shape one can imagine and, given any particular region, the
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theory can be applied in a way similar to the way shown here. However, it is
impossible to forsee all conceivable choices of R and in order to develop results we
must make a reasonable assumption, Two reasonable assumptions are
(1) R is spherical or ellipsoidal, that i some deformation of a sphere attained
because of change of scale, so that mathematically only a sphere need be
considered (this case we shall treat).

(i1) R is cuboidal, or is some deformation of a k-dimensional cube attained
because of change of scale, so that mathematically only a cube need be
considered. (We shall not treat this case but will remark how it would
affect succeeding paragraphs. Instead of being later led to rotatable
designs where all odd moments are zero and even moments bear certain
relationships to one another as given by Box and Hunter (1958), we should
be led to "rectangular" designs, in which all odd moments are zero and even
moments bear certain (other) relationships to one another. As a possible
example in certain circumstances: Instead of obtaining, as for case (i),

a second order rotatable design with ratio (pure fourth moment)/(mixed
fourth moment) = 3, we should obtain a symmetrical design with all odd

moments zero but with the ratio (pure fourth moment)/(mixed fourth moment)al.8,

From these two reasonable formulations we select the first for further development,
It is, in the authors® opinion, probably the one more frequently in an experimenter’s
mind.
1. 6 Reasons for the consideration of rotatable designs only.

we now intend to consider only rotatable designs and this choice 18 closely re-

lated to our choice of a spherical region R as we shall now explain.
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In their previous paper {1959) the authors showed that no matter what the shape
of R, a sufficient condition for the bias B alone to be minimized is that the moments
of the design should be equal to the moments of the region R up to and including
order {d,+d;). It is clear from an inspection of equation (L. 3. 7) above that a

necessary and sufficient condition for the minimization of B alone is sim ply

Mn.li\_{fxz = En‘l&:z
since the first term of B is always positive as was previously shown (1959).
(This result is extremely interesting, incidentally, when interpreted in a numerical
analysis situation. The details will be found in Appendix l.) This implies
of course that a sufficient condition is {M; = p11 , M2 = p;2} which is just a
s tatement that moments of the design equal moments of the region R up to and

including order (d,+d;).

If the region R is spherical it follows that designs which will minimize bias
B only are rotatable designs of certain orders which depend on d, and d;. If
d;4d; = 2m , say, then the appropriate design is an m-th order rotatable design.
If d,4d,; = 2m+}, then the appropriate design is m-th order rotatable with moments
of order (2m+l) all zero.

A spherical weight function has no effect whatsoever on this conclusion;
since rotatability is entirely dependent on ratios between moments of the same order.
These ratios, which are attained for spheres, must therefore be attained for shells,
hence attained for any collection of shells and it follows that a spherical weight

function, which merely attaches weights to various spherical shells, cannot affect

“hese ratios.
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The the adoption of a spherical region R leads to the conclusion that bias B
alone is minimized by a rotatable design of appropriate arder, no matter what
(spherical) weight function is considered.

This persuades us to consider only rotatable designs when both V and B enter
into consideration, Of course we have still to determine the values of the design
parameters to be used for any given situation as well as the particular rotatable
design.

1.7 Choice of weight function

we shall choose, in what follows the weight function originally introduced,
namely

WIE) = {n in R
- 0 elsewhere .

It might be more appropriate in some applications to choose a weight function
which decreased as we moved away from the center of the region. In that case,
questions which would naturally arise would be "How quickly should W(E) fall off \"
" At what point should W(g) be made zero?" "Should the rate of all-off vary for
successive 'zones' as we move from the center of R: "

It is clear that the weight function could be chosen in numerous ways and
for any particular weight function the problem could be treated as it will be below,
Clever choice of the weight function might also contribute to the ease with which
J can be minimized but we shall not discuss this point further here.

Choice of the weight function as given above corresponds to the choice

made in the previous paper on this topic. Thus this paper will give results which

are a logical extension of those previously found.
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1. 8 Recapitulation of previous paper

In previous work (1959} it was assumed that n(§) was a quadratic polynomial
in k factor variables &), £z, 644, gk and that the graduating function g(§) was a linear
function of these same variables. It emerged, somewhat surprisingly that, in
typical experimental situations, choice of the design depended far more on the
effect of bias error than on variance error, Moreover, designs suitable when both
variance and bias contributions contributed about equally to the total error were
close to designs suitable for the "all blas, no variance"situation and completely.
different from those suitable for the "all variance” situation on which most previous

conclusions have been based.



-12-

2. THE PROBLEM AND ITS SOLUTION

2.1 Assumptions in the present paper

we shall assume that n(£) is a cubic polynomial and glf) 1s a quadratic
polynomial in €;, €2, 4., §k. In other words, d¢; = 2; d; = 3, Hence, d,+d; =5
and we shall consider designs which are second order rotatable with fifth moments
zero, for the reasons which were described earlier. e shall also assume that the
variables £ have been suitably transformed to variables x in such a way that the
center of the design is at the origin (0, 0,..., 0) and the scale is such that the
region R is the k-dimensional unit sphere. This is achieved by a transformation
of the type x, = {!,E,1 - &.1(0)}/3i where §1(0) and s, are suitably chosen.

The graduating function g(x) is
¥ = bo# by +baXo e o o +b, % +buxd hoes ¥by XE +bygKiKa heee 4Dy 1 X ) K o

or, in matrix notation "
Y =x'b

where ’
Ql' = (bo i bl- .a bk= bll’ L bkk: bll’ e bk"l’ k,

Z‘_l' = (1: x,...xk: xlz’o.o,xkz: xlxz,ooo,:{k-lxk) .
The true relationship which applies over the whole operability region Ois assumed
to be the cubic polynomial function

N=Pot FrXi +E2Xz e e +kak +EnX? .. +f:'kkx; +B 12X Xpte o o +ﬁk': K % -k
, -

or, in matrix notation
n=x'f + XL

where x, 1s as above, [; is defined like b, and where
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Ba' = (Fany Prazpesey Byyy 7 Eaazs Farny o 3 Boppivee ﬁkk, oy F1za Przayeiey r"k--s,, k-1 k)

3 r .
X' = (%1) Xi%p%y 000, x,xk"'; Xa} X%y 0 0 0y XX, e oo XK iK1 XX KXo Xdpo o 0y

X 2%

Exactly as in the previous paper {1959) we have ] = V + B where

v=Nafx' (X X xdx
R ‘

and 2
B=No @f 8'[Ax% - %][x'A-x%"] f2dx
R

where now

X' = [Xiy 000, &iu""’le]
1sa  i(k+)(k+2) by Nmatrix with X, " = (L, X}, X, ey Xy xm‘, ceny xku’-,
Flu*2u***? k-1 u *ku

X' = [ﬁ"""ﬁzu""’-’sz]
is a kik+1)(k+2)/6 by N matrix with X, =X Xk e, Xy X 5 X0 g e i X103 %0, %u
TL IV R and A = (gl'gg,)"lggl'gc} is the 3{k+1)(k+2) by
k(k+1)(k+2)/6 “alias matrix, ¥ This last matrix has, for its elements, quantities
which measure the extent to which the estimates b; are biased by higher order
coefficients in accordance with the equation

E(by) =1 +26

By making the necessary substitutions we can evaluate V and B as follows.

2.2 Evaluation of B

1
writing &, = f,N%/0 we see that

Q7B =g A [’ dx) g - 20 (l{éﬁx'dz’ Agz +a'( | %" dX) 2, (2.2.1)
R R
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A straightforward series of calculations will provide the following results.

Since the design is second order rotatable with fifth order moments zero

Ae2 T o 0 0 o ]
=" N2 - - | - i
31aael I
{ 314001
*ee -0-
3100l
9 ] ) v
where 34N = Z =3 Z X, xjuil and A\;N = Z X 2 are the parameters
1 u:l

of the second order rotatjé%fe design, The columns of A correspond to the elements
of x;' and the rows of A correspond to the elements of x;» Let us denote this fact
by saying that A i8 (x))(x;')e Only k* elements of A are non-zero, and these are
shown. They occupy the second, third, ..., (k+l)th rows. Inthe second row they

are in the first k columns, ..., in the (kH)th row they are in the columns numbered
(k*-k+l) to k% Evaluation of any simple special case will quickly show the reader
how these numbers arise, if it is not at once obvious. The divisions in A
correspond to the semicolons in the x-vectors mentioned.

Further straightforward calculations will show that

B " ]
ofxx' dx = T ik 2
R 0 ul, 9 8
" .
ufly 0 VeL #,1, ) | ©
° o 0 vl
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where u(k+2) = v(k+2)(k+4) = 1, and as usual, L denotes the k by k unit matrix and
l-k is a column vector of ones. This matrix is shape (x10(x,') in our notation, the
divisions again corresponding to the semicolons, and, since i(k+){k+2) 18 the
number of elements in x;, p = $(k+H)(k+2) = 2k - 1 = }k(k-1).

Similarly, we can show that

s

ofxx' dx = v
R

e s e (N

1©

—es g (D
jo

e e N

9 9 °

where v(k+2)(k+4) = 1. This matrix is of exactly the same dimensions and is similar

element-wise to the transpose A' of A

Again similarly we find that

panse

G -

Q fxzx;' dx = w
R G

,Lm

AH
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where G, = [15 3 3 .. 3] , all i,
3 3 1 L R J 1
3 1 3 . 1
3 1 l [N N 3

and w(k+2)(k+4){k+6) = 1. The matrix divisions correspond to the semicolon
divisions in the vector x,. Hence, since each G, s a k by k matrix,
q = k(k?+3k+2)/ 6-k* = k(k-1{k-2)/6,

The values of the four matrices we have just quoted must now be substituted
in equation (2. 2.1) for B.

M.aking these substitutions, carrying out the appropriate matrix multiplications

and collecting the terms element-wise in the matrices we find that the blas

contribution B 1s given by

B=a;' Qe ,
where 9 = B Q_l l 7]
Q.l »
| 2
1
i | 12
aiu agz ans s aikk

o
"

E E [N N ] B aiil
C D ase D aizz
D C

LA A J L] 0133

m

U-Jo
U Q
Q o

ikk



and
Q; = _I_‘{(k+2)(k+4)(k+6) = w‘I_q

The @, 3 indicate the positions of the elements of Q, and show how the

quadratic form will arise, The elements of C; will be mulitiplied by terms like

) where 1, ] and £ are all different.

If we define
9 = 3LJ R.a »

U = [8 -3/( k+4)]¥/9(k+2),

W = 1/ (k+2)(k+4)*(k +6);
then A =9U + 6(k+)W

E =3U - 6W

C=U + 2(k+3)W

D =U -« 2W

We can now carry out the tedious, but not difficult, evaluation of the
quadratic form and we find, eventually, that
B=PU +[k#4d)Q-2P] W
where U and W are as defined above and where
NP/o? 2 (3By1#B1aate o o #B1kK) 4o o o HBPy ) 16, Fe e Hy ke, k_l!‘
NQ/o*= A3811, %+ 1257 e o +f31kkz)+° vo t 2(35154:'”31(“2 Foee +ﬁ]z<, k-1, ket )
Henfhet b g
It is shown in appendix 2 that P and G are both tnvariant under rotation, This

means that given a true relationship of any particular kind, the bias will be

independent of the orientation of the contours.
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2.3 Evaluationof V

The matrix (_}51'2{_,)'1 is found from the formulae given in Box and Hunter {1958)
for the inverse of certain matrices which frequently arise in response surface work.
If we pre-multiply this inverse by x,’', post-multiply by X, and carry out the

appropriate integration we find

3(k-l) + (k+2)(k+4) 6¢c + 3-2(k+4) ©
2(k+4)oc ' (k+4) c[{k+2) 6 - 3kc]

ve=d4
C

where 6 = 3A4 /\;, as before andc s A;.

2.4 Minimization of ]

Altogether, then, we have

J]=V+B
_1 + 3(k-1) + (k+2){k+4)0¢C +3~-2(k+4) &
¢ @ 2(k+4)6c ' (k+4)ci(k+2) 6 - 3ke

+ P{0-3/{ k+4)]%/9(k+2)

+ [(k+4)Q - 2P}/ (k+21{k+4)*(k+6) (2.4.1)
and we should Mke to choose ¢ and 6, which is equivalent to choosing \; and A\,
in order t® minimize J.

Suppose now that we fix 6. Then B is fixed and V depends only on ¢. Thus,

it 1s possible to choose ¢ as a function of 6, so that, for each fixed 6, V{and thus
J over all) takes on the lowest possible value. This gives us J(8) in terms of © alone,
after we substitute the appropriate value for ¢ = c(6) and we can then minimize Jin
terms of § if we are given the values of P and Q which are functions of the § 1k
'Thus, for each pair of values (P, Q) we can choose 6 so that the linked pair

[e(e), 6] give rise to a minimum value of J.
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In fact, the minimizing design parameters ¢{@) and © depend only on P since
Q enters only in the constant portion of B. However, as Q varies, for fixed P,
the ratio g = V/B changes since the amount of B changes as C does,once P is
fixed,

As a matter of practical calculation we shall not specify P and Q and then
find the design which minimizes J. Computationally, it is far simpler to specify
a value of 6, then determine ¢ as a function of 9, ¢(6), so that V is minimized
and, finally, see for what value of P this design would be best, {.e., which P
would give these specified c(6) and © as the ones which minimize J. ‘e can
then vary Q and see the effect of changes in C, for fixed P, or the ratio V/B = g.
Since the design depends only on the value of P, it will not change as we vary Q.

we shall carry out the numerical calculations outlined above for the cases
k =1,2,3,4 and 5; first we obtain the necessary formulae in terms of general k.

2.5 Obtaining designs which will minimize J

vwe refer back to equation (2. 4.1) for
] = V(c, 8) + B(o, P, Q) (2. 5.1)
Fix 8 and remember that P and Q, though their values are unknown, are constants,
Then we must choose ¢ = ¢{(0) so that V (and hence J) are minimized for this 6;

thus we get av
% (c,8) =0

A lengthy, straightforward evaluation will give

g 2(k+40+3(k+1) ] [ (k+2)*{k +4) 0%~ 6k{k+4)6 +9k]}a -3k[ 2(k+4)9+3(k+1)]}
3[ 20%(k+2)(k+4) - 6k(k+4)9 9k(k-1)] (2. 5. 2)

c(e)= 0

‘and we can, in principle, substitute this value in equation (2. 5.1) so that now
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] =V(e) +B(s, P, Q) .

Fortunately, as mentioned above, it is not necessary actually to make the
substitution. we now differentiate J with respect to 6. Differentiating equation
(2. 5. 1) with respect to 8, remembering that ¢ is a function of 6, and equating the
result to zero we obtain

8V dc

v, dB

3c a6 Toe Yas -0
9V , dB _ av _
or -é—g-l-de-O, since ac=°'
Since
v _ 3 k-1 ki(k+2)(k+4)c? - 2k(k+4)c +(k+2)
26 = (k+4)c 20° [ (k+2)@ - 3kc)?
dB _ 2 3
and T Swem ©wed) P
it follows that the equation 9V/96 + dB/d6 = 0 implies
po 27k+2) k=1 k(k+2)(k+d)c?- 2k(kidic +(k+2) s 5.3
2c[(k+a)0-3] 262 [(x+2)0- 3kc]? (2.5.3)

where ¢ = c(0) as given in equation (2. 5. 2).

Thu_s, if we select a value for k and then a value for 6, wa can use equations
(2. 5. 2) and (2. 5. 3) to tabulate sets of values of (6, ¢, P). Although obtained in
that order, they can be interpreted as follows. A design which minimizes J must
necessarily have moments related by ¢ = ¢(0), as in equation (2. 5. 2), when there
is a contribution from V. e shall choose the appropriate “all-bias" design so that
it, too, has moments related by the equation ¢ = c(6). Then, for a given P, we can

find the appropriate value for 6 from equation (2. 5. 3). Additionally, for a given Q,
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we can evaluate B for the situation being considered (V will already be available)
and the ratio V/B can be determined. e now have to use these calculations to
arrive at some general conclusfons about the correct design to use in “typical”
situations which might arise.

2. 6 The calculations and their interpretation

The calculations described above have been performed for k = 1, 2, 3,4 and 5 and
for sufficiently many representative values of P and Q so that the behavior over
all possible(P, O) can be predicted.

In the case k = 1, P and ¢ are both multiples of f,;; which is the only cubic
coefficient and so C is fixed if P is given and the possible situations are

0<P< w, {,e.,, One ~-dimensfonal. Table 1 shows figures for the best design

moment values in various situations, i.e., for various possible values of P, For
the all-bias situation we should choose c%: 0.606,\ = 1,632 where A = 8/c = 3IN/A4
and is independent of scale. As situations arise where the bias contribution to J
becomes smaller and smaller we see that the best design moment values increase.
For example, when V = 8B approximately, the best design is such that c%= 0.7,
A =2.0 approximately, which is quite close to the appropriate design for the "all -
bias" situation and far from the appropriate nall-variance" design which is, as
always, the largest possible (denoted in the table by infinite moments, but in
practite as large as possible until restricted by the operability region O), when
V = B approximately, a situation we can regard as "typical, * {as described in our
earlier paper) the best design is such that approximately , c%= 0,621 A = 1,669,

very close to the "all-blas" figures.
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When k > 2, the possible situations are O<P<®, 0< Q0 <, Le.,
two-dimensional. The best design in a given situation depends only on P,
however, though the value of Q (when P is considered fixed) affects the relative
values of V and B and hence affects g = V/B, The graph, Figure 1 which applies to
the case k = 2, is typical of the results for each k> 2. The appropriate design for
the all-blas situation has c% = 0.515, )\ z 1,887, Over a very large range of
possible values of P, the optimum design changes only slightly, the moments
becoming, progressively, slightly larger compared with those for the best design
for the all-bias situation. Only when quite small values of P are postulated do
the moments of the best design increase appreciably and, of course, as in all
cases, when there is no contribution from bias at all (P =0 )} the best design is the
largest possible. Note that a situation can arise where P is very small or zero
and, at the same time, Q is large; thus, the total bias could be quite large
{because of the size of Q) but the appropriate best design would be the largest
possible because only the V part of ] can be affected by altering the moments. In
such a case, the lack of fit would be large but the coefficients would be elther
unbiased (P = 0) or not very biased (P small).

This last-mentioned set of circumstances (P =0 , C large) is somewhat
unlikely and we should like, now, to consider what "typical” situations might
arise in practice. As in previous work (1959) we shall regard as a "typical"
situation one in which V and B are, approximately, of the same size, i.e.,

g = V/B = 1, approximately. Figure 1 shows several curves on which g 1s constant
and we shall consider what designs are appropriate as P and Q vary in such a way

that the point (P, Q) stays on a curve ge constant, The same sort of conclusions
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we arrived at when considering P alone are true here too,

Assuming now that the point (P, C) 15 on the line g = 1, we can say:

#hen P and ¢ are "very large" or infinite the appropriate best design is the
all-bias design c%= 0, 515, A= 1, 887. As P and Q become smaller, the best
design has moments which become larger than, but not very different from, those
of the all-bias design. Until quite small values of P and Q are examined the
appropriate best design is only slightly more spread out than the all-bias design
and is completely different from the all-varlance design which is the largest possibk
as always.

As is evident from Figure I, aven when the variance contribution V is several
times greater than the bias contribution B, the same conclusions still hold.

Curves for g = V/B = 2, 4 and 8 all lie between the g=l curve and the line P =(k+2)Q
which is the boundary of possible points(P, Q) since, as can easily be seen after a
little calculation, (k+2)C>P,

Thus, overall, we can conclude that in most situations, and even in circum-
stances where V is expected to be several times as large as B, the appropriate
experimental designs to use to minimize ] have moments slightly larger than the
moments of the appropriate all-bias design. As a practical matter in situations
where no informatton about the possible sizes of V and B exists, about 10% greater
is suggested by the authors. Tables 1 through 5 consist of selected values from
larger computations and contain specific recommendations for the cases k = 1,2, 3, 4
and 5. (The suggested values are obtained as follows: Take 110% times the value

L L
of c? when P = @, Select the table entry (with P # ®) which has a value of ¢?



nearest to this calculated number. It is of course possible to find the exact
pair (c%, A\) which has c% equal to 110% of c% when P « ©, by use of equation
(2.5.2). However, since the "10% greater” is a guide and not an exact figure,
this is hardly worthwhile. )
2.7 Use of the secondary consideration to select a design

Even now we do not have a specific design, but only a certain subset of
designs, since the requirements vsecond order rotatable, with zero fifth moments,
and 1; and A, of a given size" can be satisfied by a number of designs for every
value of k, How, then, do we select an individual design from all those with the
correct sized moments? To do this, we appeal to our second criterion which
specifies that our selected design should make large the quantity
ZI;\I {E 2 2 2
L v, - 'qu} = E(Sp) - vo* = NF, sav.

As explained in our earlier paper (1959), this quantity can be written

NF =B A X KRR - 26 N K AL YN Bk
X KAL tRE K (2.7-1

since one term cancels directly.

The matrix N™{X;* X A) is square and of dimenston k(k-1)(k-2)/6. It
consists of a number of submatrices down the main diagonal. The first k of

these are of dimension k by k and have the form

{(continued on page 30)
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Table 1: Best design moment values for various P, when k=1,

i

P Vv B g c A

o 2,961 0 0 0, 606 1,632
5785 2,917 14,714 0. 198 0,610 1. 640
1728 2,835 4, 446 0. 638 0.617 1. 657
933 2,763 2. 457 1.125 0.623 1.674
602 2. 697 1. 640 1. 644 0, 629 1. 691
426 2. 638 1.208 2,183 0.635 1. 709
245 2,534 0. 777 3, 260 0. 647 1,745
131 2, 409 0. 508 4,737 0, 662 1. 801

60 2,254 0. 340 6. 621 0. 685 1. 896

30 2,124 0. 262 8.100 0, 709 2, 009

20 2,058 0.234 8,795 0,723 2,084

0 1. 000 0 0 o o0

i
Suggested values for"unknown"situation: ¢ = 0, 667,A= 1,820
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Table 2: Best design moment values for various P, when k=2,

P v c% A
oo 5.936 0. 515 1. 887
3896 5. 297 0.535 1. 923
1709 4,912 0. 549 1. 957
957 4, 605 0, 562 1.993
604 4, 353 0,574 2,032
411 4, 144 0. 585 2,072
295 3,966 0. 596 2,112
169 3,681 0,615 2.194
88 3,368 0, 640 2. 316
33 2. 966 0,683 2. 549
15 2. 680 0.725 2,798

0 1. 000 © o0

Suggested values for "unknown" situation: c%= 0.562,\ = 1.993

Note: In this table B is not shown because it depends on both P and Q. The
above moment values are appropriate for P no matter what Q may be,
since it cannot affect the choice of the'design: see text,
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Table 3: Best design moment values for various Fwhenk = 3

P v cé A
w0 9,920 0, 462 2. 062
2346 7.093 0, 508 2.170
1463 6. 599 0. 521 2. 212
986 6.193 0. 533 2,254
702 5,852 0. 544 2,298
397 5.310 0. 564 2. 385
249 4,897 0. 583 2. 471
118 4. 307 0,616 2,638
87 4,987 0, 630 2. 7117
45 3. 671 0. 664 2.906
21 3,238 0.709 3. 181

0 1. 000 ) o0

Suggested values for "unknowr! situation: c* = 0, 508,\ = 2.170

Note: In this table B is not shown because it depends on both P and G. The
above moment values are appropriate for P no matter what Q may be,
since it cannot affect the choi®e of the designs; see text,
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Table 4: Best design moment values for various Rwhenk = 4

N

P V' c A
© 14. 907 0. 414 2,189
2062 8. 549 0. 493 2,384
1442 7.976 0,505 2. 430
615 6,725 0. 537 2. 566
392 6.138 0. 556 2,654
189 5. 301 0. 589 2. 822
121 4,856 0,612 2,941
58 4, 231 0. 651 3.163
30 3.754 0. 690 3.399
15 3. 348 0,734 3.674
9 3,071 0,772 3.923

0 1. 000 0 0

1
Suggested values for "unknown"situation c® = 0,493, = 2,384

Note: In this table B is not shown because it depends on both P and Q. The
above moment values are appropriate for P no matter what Q may be,

since it cannot affect the choice of the designs; see text,
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Table 5: Best design moment values for various P, whenk = 5

i

P V') c X
o 20,898 0.328 2,286
2433 10,106 0. 477 2. 540
1762 9. 407 0. 489 2. 588
1319 8.814 0. 501 2.634
1614 8. 306 0,511 2. 680
791 7.865 0. 521 2.725
518 7.139 0, 540 2.813

300 6. 323 0.566 2.939

144 5.398 0.603 3,136
59 4, 502 0. 653 3. 421
12 3.372 0.758 4,072
0 1. 000 00 o0

Suggested values for "unknown" situation: ct =0, 477, » = 2.540

Note: In this table B is not shown because it depends on both P and Q. The
above moment values are appropriate for P no matter what Q may be,

since it cannot affect the choice of the designs; see text.
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All other elements, apart from the k* mentioned above, are zero, in the matrix

N X A) .
Thus,
B X XiAL, = NAy" {9(B11124e o o JH6(B111 Crzate o o ) HE L2 40 0 0 )+ 2(Erzafmstens) }

= MA {31 b1zt es Hagp) e H3By o Hopntene +§k, k-1, k-)z}

- hf lz-l P.
The matrix N'l(_}_{_;'_)_(,) is also square and of dimer sion k(k=I)(k-2)/6. It

consists of (k+]) submatrices down the main diagonal. The first of these is of the

form
N N 2 ey i EhE

leﬁxlua leu zxgu‘ «ne nguz}(zu zxkuz

LR R ]

Ladxeu? D Xayaey® oo Z',x,u‘xku ¢

and the second, third,...,down to the k-th are similar but with the obvious

variation in suffices. The (k+l)-th matrix is of diagonal form with terms such as



N T2 %, %5, » All summations are over u. The pattern of suffices can be
seen by imagining the vector §, to be written out along the top and side of the
matrix X,' X;» Apart from the elements already mentioned, all elements of X;' X, are
zZero,

To make further progress on our examination of F we shall make use of a
concept introduced in our previous paper (1959), namely that, since the orientation
of our true surface with respect to our design is unknown, we shall average the
value of F over all orthogonal rotations, denoting the average value by ;. Only
the second term on the right-hand side of equation (2.7.1) for F is affected by
this rotation; as we have seen above,the first term, which is a multiple of P is
independent of the rotation, The details of the averaging process are given in

Appendix 3, Our result is that

N
~ -1
F=(P+Q) ), 1y / Nki(k2)(k+4) = AFAe" P
u=l
Since A, and A, are already determined by the work given above, for given

{or suggested) values of P and Q, only the quantity Zru" is capable of allocation
as far as the design is concerned. It follows that ou;:l requirement that the design
should be such that ; is made large implies that Zru" should be large.

It should be noted that this conclusion is bases on the assumption that the

true model is of exactly third order; if this were indeed so we should choose a

design which maximizes Z ru". However, if blas coefficients of fourth and higher
u
order were present in the tfue model,we should find our treatment led to a rather
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different conclusion - that Z‘, ru" should be kept small, at some suggested
u

value, and that a quantity of even higher order be made large, Thus as a hedge

against the possibility of presence of higher order terms we shall, as a practical

matter, require Eru" to be large but not necessarily maximal. This will achieve
u

an intuitively reasonable compromise for the choice of design, as we shall see

in the example which follows.
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3. APPLICATION OF THE SOLUTION TO PARTICULAR PROBLEMS

3.1 An application of the results the case k =1

~hen k = 1 we have
?’bo + bk +b11x.z ’

N =fo + ax + Fux®+ Pux
Suppose,for the purposes of this example, that we wished to have a design

with N =10 points and with not more than five distinct levels of x, one of the five

being the origin and the others symmetrically placed as in the sketch

| | P I

~b -a 0 a b

How would we allocate the ten points to the five levels to get a design which
would be judged best by the criteria used in this paper”
The appropriate design for the all-bias situation is one for which

1
¢® = 0,606, A=1.632. However, if we felt that, probably, V and B would be of

-

the same size, we could choose ¢c® = 0.62, A = 1.67 ; or if we felt that variance

error would probably be about eight times as bilg as blas error we ¢could choose
c’i’ 20,70, Az 2.00,

For any particular choice of moment values, several ten point designs at five
or less levels are possible and the situation is shown in Tables 6 and 7. Note

that both levels a and b must be used in order to satisfy the specified values of

L
c®and \.



Table 6: Possible Designs when ¢® = 0,62, A = 1,67
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1
2

Number of points at Value of Number
Proportional to

-b -a 0 a b a b Zru"
1 4 0 4 1 0. 478 1,009 142
1 3 2 3 1 0. 567 0.984 125
1 2 4 2 1 0. 790 0.828 75
2 1 4 1 2 0,777 0.815 68
2 3 0 3 2 0. 358 0.880 62
2 2 2 2 2 0, 452 0.873 60

All the above designs have the same (c, \).




1
Table 7: Possible Designs when ¢®= 0,70, A = 2,00

=35~

L

Number of points at Valuz of Number
Proportional to

-b -a _0 a a b Zru"
i 4 0 4 0. 500 1. 225 45
1 3 2 3 0. 587 1.210 42
1 2 4 2 0.755 1.166 39
2 3 0 3 0,303 1.054 37
2 2 2 2 0,376 1.053 37
2 1 4 1 0. 553 1.047 36

All the above designs have the same (¢, A).
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We now make use of our secondary consideration to choose a particular
design from whichever group we decided to use. We recall that our theory told
us to choose a design which makes large the quantity Zru".

If we thought that only cubic bias need be guarded against we would select
the design which gave the largest value of ), r, *. However, if, as usual, we
would like to hedge a little against the possibility of higher order blas we would
like Zru“ to be large but not necessarily maximal, for as we indicated in our
earlier paper, minimization of higher order blases would require Eru" to be kept
small and for an even higher order quantity to be made large. Thus, as a compro-
mise in our present situation we would probably select the second design in each
table as the appropriate one to use in the circumstances we have assumed in this
paper.

Note especially that the "evenly spaced” design (3, 2, 2, 2, 2) is not a
particularly good one in our assumed circumstances, depite the fact that it might
seem the natural arrangement to choose.

3.2 An application to certain rotatable designs for 2< k< 5.

Consider, in k dimensions, a rotatable design consisting of a cube plus
octahedron plus center points, the basic central composite rotatable design. This
consists of N = (2k + 2k + ng) points where n, is the number of center points. Let
the points of the cube be {+a, +2,...,1a); of the octahedran (b, 0, 40050}y 00,

(0,0,¢00,+b)s Necessarily, b = 2"'/43 for rotatability. Thus to achieve given
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values of c%, \ for this design we must allocate values to a and to n, since
¢ 2%+ 2Y% a¥N and
I W4 WL 2* at/c?N = 1\1/(1+zk/2)z
It is thus clear that, if we choose a value for ng, A is fixed, hence c is fixed
since the (c, \) pairs are linked, and thus a is fixed. We can examine possible
variations of this type of design, therefore, by considering various numbers of
center points to be added. The upper 'portion of Table 8 shows the parameters of
the designs which result when 0 < n, <12, for the case k = 2. Recalling the results
of our theoretical work we see that for an “all-bias, no variance” situation we are
told to use a design for which (a, c%) = {1.887, 0,515)s This would be approximately
achieved by using a cube of half-side a = 0,565, an octahedron with b= 0.799
and two center points, as we see from Table 8. FHowever, if we felt that the
situation to be investigated was not all bias we should want to use a bigger design.

L
We can see from Table 2 that pairs (X, c?) between (1.887, 0. 515) and (2. 798, 0. 725)

are suitable design "sizes" for possible values of P between infinity and 15, where

P =N {{(fani+fiz2) + (Pazz 222 e,
and where N = 8 + ng» The extreme suitable designs for these extremes of P are,
respectively (no = 2, a = 0,565, b = 0,799) and (np =7, a = 0,996, b =1.408), The
region of interest R, it should be remembered, is the unit circle. We can thus
observe that, as we expect less and less affect from the blases of the coefficlents
we add more and more center points to the composite design and place the points

further and further from the origin, even outside R the region of interest. (Recall
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that for two factors, E(b) = 6, + (P31 + P12z) and Ekbz) = B + (f222 + Ei12) are the
expectations of the estimates of the linear coefficients in a fitted quadratic model
when cubic terms exist and this particular type of design is used. Hence P is
proportional to the sum of squares of biases in the estimates of the linear
coefficients). This is extremely reasonable. As we become surer of our model
(i. e. blas is thought to be small) we spread out the design; but since variance
error becomes a greater and greater part of the total discrepancy between fitted and
actual model we add more center points to provide a better estimate of the error
variation. On the other hand, if we doubt our model (1. e. bias is thought to be
large) and we believe variance error to be a small part of the total discrepancy
between fitted and actual model we contract our design into the region of interest
R and use only enough center points (two or three, say) to provide some estimate
of o2,

Succeeding tables, Tables 8 through 11 contain calculations, similar to those
described, for the cases 2 <k<5 and for two types of rotatable designs, (a) cube
plus octahedron plus center points and (b) cube plus doubled octahedron plus center
points. Similar comments apply to all cases, Note that for designs (b) where the

octahedron is doubled, rotatability implies b = z(k“l)/ ta
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Table 8: Parameter values for certain rotatable designs when k = 2

{a) Cube plus octahedron (8 points) plus n, center points.

N

ny ¢ A a b
0 0,628 1. 500 0. 628 0. 880
1 0. 578 1. 688 0.613 0. 867
2 0. 505 1. 875 0. 565 0, 799
3 0. 583 2,063 0. 684 0. 967
4 0,627 2. 250 0, 768 1,086
5 0. 663 2. 438 0.846 1. 196
6 0.696 2. 625 0.921 1, 303
7 0.727 2,813 0.996 1. 408
8 0,757 3. 000 1.070 1. 514
9 0,785 3.188 1.145 1. 619
10 0.813 3.375 1.220 1.725
11 0,840 3,563 1. 295 1.832
12 0. 867 3.750 1.371 1.939
(b) Cube plus doubled octahedron (12 points) plus n, center points
g c% 3N a b
0 0. 618 1. 544 0. 689 0.820
1 0.583 1.673 0,677 0. 805
2 0. 528 1. 802 0.636 0. 756
3 0. 538 1.930 0.671 0,798
4 0.582 2, 059 0,749 0.891
5 0.614 2. 188 0.814 0. 968
6 0. 640 2. 316 0,874 1. 040
7 0. 665 2. 445 0.933 1. 109
8 0. 688 2. 574 0. 990 1. 177
9 0. 709 2. 702 1. 046 1. 244
10 0.730 2.831 1. 102 1. 311
11 0. 751 2. 960 1.158 1. 377
12 0.770 3. 088 1.214 1. 444 ;

(Note: The recommended "all blas" design for k =2 has k= L 887, c2: 0,515,)
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Table 9: Parameter values for certain rotatable designs whenk = 3

{a) Cube plus octahedron (14 points) plus n, center points
N ‘

Ny c? A a b
0 0. 536 1. 802 0,542 0. 912
1 0. 507 1. 930 0. 531 0,894
2 0,453 2,059 0. 490 0,825
3 0. 514 2.188 0. 573 0, 964
4 0. 548 2,316 0. 630 1. 059
5 0,577 2. 445 0.681 1. 145
6 0. 603 2.574 0,730 1,228
7 0,628 2. 702 0.778 1. 309
8 0. 651 2,831 0.826 1, 389
9 0.673 2, 960 0,873 L, 468
10 0. 694 3,088 0.920 1. 548
11 0, 715 3. 217 0,967 1. 627
12 0.735 3,346 1.014 1, 706
(b) Cube plus doubled octahedron (20 points) plus n, center points
g c% A a b
0 0,522 1. 875 0. 583 0.825
1 0,493 1. 969 0. 565 0. 799
2 0, 457 2.063 0,535 0.757
3 0.503 2. 156 0.603 0,853
4 0,532 2. 250 0. 651 0,921
5 0,555 2. 344 0,694 0,981
6 0,576 2. 438 0,734 1,038
7 0,595 2.531 0.773 1. 093
8 0.613 2,625 0.811 1. 147
9 0. 631 2.719 0. 849 1. 201
10 0,648 2.813 0,887 1. 254
11 0,664 2. 906 0,924 1. 307
12 0. 680 3,000 0.961 1. 359

(Note: the recommended "all bias" design for k = 3 hasA= 2. 062, c%-a 0. 456)
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Table 10: Parameter values for certain rotatable designs whenk = 4

(a) Cube plus octahedron (24 points) plus n, center points

i

ny c® A a b
0 0. 475 2. 000 0. 475 0.950
1 0. 459 2.083 0. 469 0.937
2 0. 421 2,167 0. 438 0.876
3 0. 450 2. 250 0. 478 0, 955
4 0, 479 2.333 0. 517 1.034
5 0. 502 2, 417 0. 551 1. 103
6 0.522 2. 500 0. 584 1. 167
7 0. 541 2.583 0.615 1. 229
8 0. 558 2. 667 0. 645 1. 290
9 0.575 2. 750 0.675 1. 349
10 0. 591 2.833 0.704 1. 408
11 0, 607 2,917 0.733 1. 466

Please Note: Because of the later addition of tables, there

is no page numbered 4l.



Table 11; Parameter values for certain rotatable designs whenk = 5

(a) Cube plus octahedron (42 points) plus no center points
1

Ny ct A a b

0 0. 430 2. 149 0. 423 1. 007
1 0. 421 2. 200 0. 419 0.997
2 0. 402 2.252 0. 406 0.965
3 0. 397 2.303 0. 405 0.963
4 0, 422 2.354 0. 435 1. 034
5 0. 440 2. 405 0. 458 1. 089
6 0. 455 2. 456 0. 479 1.139
7 0. 469 2,507 0. 499 1. 187
8 0,482 2,559 0.518 1,232
9 0. 495 2.610 0. 537 1. 277
10 0, 507 2. 661 0, 555 1. 321
11 0. 518 2. 712 0. 573 1. 363
12 0. 529 2.763 0. 591 1. 406
(b} Cube plus doubled octahedron (52 points) plus n, center points
np c A a b

0 0, 428 2.167 0. 445 0.890
1 0. 419 2. 208 0. 440 0. 880
2 0. 403 2. 250 0. 428 0,855
3 0. 389 2,292 0. 416 0.832
4 0.413 2.333 0. 447 0,893
5 0. 430 2.375 0. 468 0.936
6 0, 443 2. 417 0. 487 0.975
7 0, 456 2. 458 0. 505 1.010
8 0, 467 2. 500 0.522 1. 045
9 0. 478 2. 542 0. 539 1. 078
10 0. 488 2. 583 0. 555 1. 110
11 0. 498 2.625 0. 571 1. 142
12 0. 508 2.667 0.587 1.173

(Note: The recommended "all bias" design for k =5 has \= 2.286, C

i
¢ = 0,328.)
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ARPPENDIX I

A problem in numeri¢al analysis (see section 1.6)

Suppose we have a function n{x) , known exactly without error. Suppose
we wish to approximate to this function over a region R by a polynomial of form
?1(5_) = X' Y1, say, and of order d,.

we shall choose y, so that the integral defined by

Z\-' Q f('l(zt) - x))*dx  is minimized .
R

Now
2= @ f(n(x) - x'y)? dx .
R

Thus 8

-5-4= 2 [x{n(x)-x'y}dx=0
X R
implies that
afxmaxdxz{efxnx'ddyn .
R R

Using earlier definitions on the right-hand side and calling the left-hand side
t4n by analogy, we can write this as
Bin = B Y.
Therefore, X1= };'_-1-1&1:1
no matter what n may be, assuming that p, is non-singular.
Let us now apply this to the case where
n(x) = X,"8,+ X" , a polynomial of order d,, with

X, as before,
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then yizuot {2 xgxd gi+x; o) dx )
R

= {mps + el
=Pt pe B
= By +& B2 (where J& = p B2
What is the value of the average integrated discrepancy between the fitted and

true model in this case? It is, of course, minimal and has value

- - 2 ~ ’

Z(mm) = jl; {n(x) - n(x}} dx , (where n(®= X" y1)
=0 [ {x'B + "B X fam X B B, I dX

R .
=2 [ (%'-%' &% - L dx

R
= Q [{x%" - x5 K - K 0x +& K L) dx

R
U Vs RPN UL WU A -1
TRy sHz i M2 vpaba P TR ppa B2
T3 - &z'&l'lﬁz

Thus, if we knew the polynomial n(x} = x," +x,' B, exactly and fitted
:i(_:_c_) = %' y) to it to minimize Z , then E(min) is the value of the average integrated
discrepancy or bias which we cannot avoid; it is the smallest bias we can achieve.

But, if we fit, not to a known function, but to a function whose value is known
only at a few points, then we know that the bias which arises is

- - ’ -
B(min) = Z’(min) +(A-%"mA ‘E)

as shown in Box and Draper (1959).

Thus by choosing A, which is at our disposal and involves design moments, in
such a way that A = & we can make

B(min) = Z(min)
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Thus even if we do not know our polynomial function n(x) exactly, we can choose
the points at which to evaluate n{X} in such a way that the bias incurred when we
graduate by 3(5) is exactly what it would be (and no more! ) in the situation where

we know the function exactly at every point,
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To show that P and Q are invariant under rotation (see section 2, 2)

We know that
P= (3&111 + Q122 L "'alkk)z"" . +(30’kkk + d’ku'l"o Y] ‘lﬂ’k’ k"l’ k,l)z
Q = 2(3@2111 + azn;*h . Wzlkk,"‘o o +2(3szkk+ azk“h eet a"k’ k-l, k”l)

2
+(a2u$+. s t k'Z: k‘l’ k)
2 - 2 2
where @y = Nﬁijk/o' .
For the proof that these quantities P and Q are invariant under rotations of the

surface about the origin we shall make use of the matrix direct product which has

the following properties (Marcus, 1960},

Imhll& b)zé se e bln_A_ ]
- = baA  bgpA coe ban A

bmj_A_ bmzﬁ s e bmn..&

(A*B)'=A'*pB
(A*B)*C=A%C+B*C
(A*B) (C*D) = AC * BD

Let H be the matrix of an orthogonal transformation taking x into X by x = H X'

where
E' = (XI,XZ,OOO’XR)

X' = (X, xa,-u,xk)
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Now

X *x = {x X, Ky eeny X )i eeni X, (%1, %2y 0 00, X )

and _
x' * 32' * 3(_' = [xl{x;(xl, xz,-oo,xk);ooo:xk(x;, x;,;-o,)ﬂl()},-oo,xk{xl(xh x;,---,xk)

HY ..:xk(X]_’ K2y oou,xk)}]
write
1 1 1 1 1 1
B' = {E1y 3Puzgns, ... y3fuki 3huzzfizaghzsse e }

Then

B'x' *x' % x') = Buu¥s® + PrzaKaXz t e
=X'B2 .
where the right hand side consists of all the cubic terms, with appropriate
coefficients, of the cubic response surface model. Employing the transformation
x* = HX' we can write
Bl * x' * x') = pUH X * HX * HX)

= UH*H* HE *X X

=B(X EX *X),
say, where B' = £'(H * H * H) is the new " vector” for the transformed conrdinates.
Thus, for these transformed coordinates, C would be given by

Q=B'B

=p'E *H*H(H'*H' *H) {

<E'(HE *HHE'*HH) |

=pI*I*Dp

=g E
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using the fact that, since H is orthogonal, EH' =1, the unit matrix of appropriate

dimension. Hence Q is invariant under rotation of axes (or equivalently under

rotation of the response surface relative to the axes).

Now letu =(0,0,004,0,1,0,...,0) be alby k vector with unity in the i-th

place and zeros elsewhere. Further, letu' = {w;', W', +00,1, ') so thatu' is alby

k? vector with k unities in the appropriate positions and zeros elsewhere.
Finally, let U = u * I where I is a k by k unit matrix. Then U is a k® by k matrix

consisting of submatrices u in the diagonal and zeros elsewhere as follows:

v 0 u 0
Y= - where u = - , u = .
u = :
a. . : 0
° u =k 5
'0 L

In these terms, and recalling that B* = p'(H * H * H) , a little thought will

show that for the transformed coordinates

)
i

B!

£
=g’

-]

|:r: =

* H)(u * IMu'* I)(H*H'*H") §

{(E*H)u* BHu'(H' *H)*H' }p

(.e here use the fact that, since H is orthogonal {H * H}u =u .)
-l B E E

=guu'*HH)E
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gluu* * D p

f

SEu*xDu' *Dp
=g'uutge

Thus, P also is invariant under the transformation H.
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APPENDIX 3

The average of F over all prthogonal rotations of the response surface (see section 2.7)

we need consider only L£,' X' X; p, since the other portion of NF is unaffected
by the rotation.
Write

A = average value of (%),, and similar terms,

B = average value of B,),p;z; and similar terms ,

C = average value of (%), and similar terms ,

D = average value of £1;;F133 and similar terms,

E = average value of p%,; and similar terms .
Only three of these quantities are independent and two relations exist between them
as will be shown,

Then
F' = Rotational average of [,' X;' X; £,

= A 21: Z,L;x"m+282;, % xL (rfl-xzu)
v D 3, U, -4
u i
+D 21: 2:; xiu (j;i xzju xz.eu)
2+#1

j1

+ (E/ 6} E Z x2 x* x?
f ! ﬂ
1% u iu ju fu
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_ 6
-AZru
u
\ 4 2 - 2
+(23+c-3z\,,{}i]xm(ru x5, )}

+{D+E/6)-AH Y ) K x X 1,
G igjey W ou MU

z -
where 17 = xfu Fo oo +xzku .
Since this is a rotational average it is necessarily a function of the rzu only.
A little thought will convince the reader that this necessarily hinples the relationships
2B+ C -3A=0
D +(E/6)-A =0
It follows that ]
F. = A Z I‘u -
u
We now recall our earlier definition
P = (3ﬁ1]1 'l' ﬁ]zz‘l'- . +ﬂlkk)z + (k-l) Similar terms
Q= 2(36%,; + Blaz +eee +pAKK) + (k=1) similar terms + (Pias +ee.)e
Hence, averaging over all rotations, we see that
P =k {9A + 6(k-1)B + (k-1)C + (k-1)(k-2)D }
Q =k {6A + 2(k-1)C } + kik-D(k-2}T/5

and P+ Q = k{15A + 6(k-1)B + 3(k-1)C '+ {k-3*¥-%} D + (k-1)}(k-2) E/6 }

= k{ (k+2)(k+4)A + 3(k-1)(2B+C~25) + (k-1 {k-2)(D+[E/6] -A) }
= kk+2)Mk+4) A,

because of the relationships mentioned above.



Substituting for A, we find

and so

F' 2 P+ Q) (], D) / klk42)ic44)
u

F = (P+Q( 2, r;)/ Nk(x42) A4y -
u

12

A

LY

P v -
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