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SOME NOTES ON NON-LINEAR ESTIMATION
G. E. P. Box

In a recent paper (ref. 1) the iterative nature of experimentation
has been emphasised. In this process of iteration there are two
essential components:-

(a) The devising of experiments suggested by the investigator's appre-
ciation of the situation to date and designed to elucidate it further;

(b) the examination of results of experiments performed to date in the
light of all background knowledge available, with the object of
postulating theories susceptible of test in future experimentation.

The main contribution of statistics to experimentation is in the
provision of tools to assist the experimentor in these tasks.

Now the iteration which occurs in experimental investigations goes
on simultaneously in a number of different spheres. Thus there wili
usually be a movement in the space of the factors in the location of
the centre of interest as the experiments proceed to regions of better
experimental conditions. Simultaneously there will tend to be a steady ~
improvement in the choice of relative scales, metrics and transfor -
mations on the basis of which the variables are considered, and in the
type of design which is used to study the relationship. Finaily as
experimentation proceeds a better understanding of the theoretical
basis of the equation under study may result. An example of such a
development is given in ref. 1. It is mainly with the last type of
iteration that we are concerned in the present paper.

Frequently, either after a period of empirical experimentation {as is
the case in ref. 1) or initially, some theoretical mechanism for the
process under study may be postulated. (It should be clearly understood
that we are not here necessarily concerned with an exact theoretical
picture; it is doubtful whether any physical system has ever been

described exactly. What is required is a description of the mechanism
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sufficiently close to the truth to assist understanding and to allow
useful, but not necessarily exact, extrapolation.) Suppose that

for some system under study a theoretical mechanism has been put
forward whose consequences can be expressed in terms of the functional

relationships

nrzfr(gl’ gz,oat’ gk;el, sthco, ep) -cv--l
r=1,2,...,m)

connecting responses M Moseves Mo with a number of variables

gl, éz, iy E.k in which 6., © Gp are unknown parameters.

1’ 29"'3

For instance in chemical problems M Myseee, N May e the vields
of various substances resulting from a chemical reaction; E‘l’ éz, § iy gk

operating variables such as time, temperature and concentration; and

91, ez, ..., 0 _chemical rate constants, activation energies, etc.
p

Occasionally the functions of equation (1) can be obtained explicitly,
but more frequently no such expression is available and the functions
are described by differential equations or in some other implicit form.

A very important tool, therefore, to enable progress concerning the
theoretical nature of the system to be made would be one which, given
a set of experimental data, would allow the adequacy of the assumed
mechanism in describing the data to be checked and which, on the
assumption that . the representational adeguacy of the system was
satisfactory, would enable estimates of the unknown parameters and
their standard errors to be determined.

Now where the functional form can be written explicitly and is linear

in the unknown constants © ez, v Bp (as in the case, for example,

1!
where this function is a polynomial in the £'s with coefficients
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8., 0 , 0 )Well known methods are available for doing all the

g By v
ttlungz menuoned above. In particular estimates of the parameters

and their standard errors may be obtained by Gauss's method of least
squares, or equivalently, if we assume normality by the method of
maximum likelihood. Again assuming normality, a test of the adequacy
of the assumed model may also be made by comparing the size of the
residual sum of squares with some measure of pure error such as that
obtainable from randomised replication. However, in common sit-
uations, even when the functional form is known explicitly, it is
seldom linear in the parameters and more frequently it is not explicitly
known.

A method has recently been described (ref. 2) whereby using numer-
ical methods on a digital computer a test of the adequacy of the assumed
model and estimates of the parameters and their standard errors can
be obtained for virtually any system whether the eguations are explicit
or not. The way in which this method works is perhaps best illustrated
by an example. A fuller account will be found in ref. 2.

Example l.

This concerns a consecutive chemical reaction in which a reactant

(concentratlon "'1} changed at a rate proportional to its concentration
to NI which then changed at a different rate to M3
k k

1 2
M, = M,, M, = M
This can be represented by the simultaneous differential equations
o
TR B
= 2
e Hh T
dn
3
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with boundary conditions n = 100% , n, = 0, ny= 0 attimet = 0.
Six duplicate experiments were performed in random order in which
measurements v, of n, were made at the times specified in Table 1.
Table 1.
(time in mins. ) 10 20 40 80 180 320
Yield of M ) 19.2 14.4 42.3 42.1 40.7 27.1
14.0 24.0 30.8 40.5 46.4 22.3

2 ¥y

It was required
(a) to ascertain whether the form of the differential equations was
consistent with the data:

(b)to estimate the parameters k, and kz; and

(c) to estimate the accuracy witi) which these values were determined.
The method used was as follows: Guessed values of the unknown
constants kl and kz were substituted in the differential equations,
which were then integrated using the step-by-step method due to
Runge and Kutta, as described by Gill (ref. 3). By this means 6
values n{kl, kz) of the yields at the 6 times were calculated. The
extent by which these values differed from the observed values was

measured by the sum of squares of discrepancies,

Sz(kl, kz) =% [y-q (kl, kz)] 2. The problem was then that of proceeding
via a series of trial values to these quantities kl, k2 which made the

sum of square S2 a minumum. This was done by a method precisely
analogous to that which has been employed in the exploration of response .-
surfaces except that calculations on the computer were substituted for
experiments. Initially a first-order design of irial parameter values was
carried out, and if it appeared that first-order effects were dominant

the direction of steepest descent was followed till no further decrease

in the sum of squares of discrepancies was obtained. The process was

then repeated. When a point was reached at which it appeared that



55

first-order effects were no longer large compared with those of second-
order, a second-order design was carried out, From this either immedi -
ately or after one or two further iterationg which might involve trans-
formation, the minimum was reached. The course of such a calculation
is shown in figure 1. On this figure the approximate contours of S?

were al.so stown, (These would not normally of course be known. They
have been obtained in this instance by carrying out a grid of computations
and drawing smooth curves through the points.)

The grid on which these contours are based is as follows:-

Values of s for various 6y,_8.

2
91 =3 + log kl
(0,75 | 1L00 125§ L5
; ' ]
.25 | 2,232.09 | 1,372.88 | 1,450.04 | 2,337.43
1.00 | 1,290.10 450.84 | 698.48 | 1, 750.89
0,=3 +logk, 475 1 790,15 138. 82 721.91 | 2,156.28
i
0.50 | 1,034.53 | 864.87 | 1,921.95 | 3,748.56
Conditioning.

In this particular example the method is seen to converge rapidly,
as is to be expected from the nature of the surface of sums of squares
of discrepancies, which can be seen to be very well-conditioned. This
state of affairs cannot be expected to be general, however, and in
many problems if the sum of squares surface were plotted in terms of the
original parameters, extensive ridges would be found.

An example of a poorly conditioned surface arises from consideration
of the simple case where it is desired to fit the expression y = bo + b.x.

1
Suppose x = 9, 10, 11; then the matrix of independent variables will be
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1 10 , sothat X'X =
1o 130
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and the sum of the squares surface

2

3 2

Smin

2

EAS
+ I'l{l::t0 - bO)

) A Fal 2 N
+2 "z:x(b0 - bo)(bl - bl) +Zx (b1 -b

consists of a very long attenuated ridge.

Thus X'X is very nearly singular,

2

)

If an attempt was made to

minimize by first-order steepest descent, or by "one-factor-at-a-time, "

one would have an extremely long and painful task. However if the model

is rewritten as

y = (by +bX) +by(x - )

!

w
L=

then for this model XX =

minimization would rapidly converge.

()

=A+bx

and almost any system of numerical

Diagrams showing the appearance of

the sums of squares surfaces in the two cases are shown below.
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bx

The above example is a linear one, but suppose one were fitting y = ae

This could be written in the alternative form

Iny=1na + bx

If the coefficient of variation of v was not large, then the S-surface for
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In vy would be similar to the S-surface for y. Unless the nean of x was
close to zero, therefore, a ridge-like minimumwould result as before.

When fitting y = aebx and other similar expressions, it would usually be

b(x-x) where A = aebx . In general, whenever this

better to consider y = Ae
sort of expression occurs it will be better to work in terms of transformed
parameters. However, cases will frequently arise where the nature of the
transformation that should be emploved to enable the surface to be thrown
into a state of satisfactory conditioning will not be apparent.

One method for finding a linear transformation in which the surface will,
locally at least, be better conditioned, is to fit a second-degree equation
and then to define new parameters Yir Ypseeos Yp ,which are orthogonal
linear functions of 91, 92, .
equation can be written

—_— ep, chosen so that the second degree

p
min i=1 i

This can, of course, be done in a number of different ways (Gram-Schmidt,
canonical reduction, etc.).

In the example above of fitting y = a + bx (where,of course, this procedure
will be guite unnecessary) the transformed parameters obtained by this
method would be equivalent to b0 + bx and b. (Equivalent to and not
egual to because the transfornation is obviously not unique, and any ortho-
gonal transformation of the canonical variables, of which the transformation
to bQ + bx and b would be one, would do as well.) We could condition
the surface by this method, and then proceed by means of steepest descent
till we came close to the minimum or ran into trouble.

If a second-degree fitting method is to be used, however, alternatives

would be either to follow the second-order formula for steepest descent, or

to use the second-degree equation to estimate the minimum direct. An

iterative procedure could be based on either method, but the second is



sl
probably better since it is less dependent upon choice of scales.
Concerning this latter method, in which the second-degree equation
15 used to estimate the minimum it is probable that, where the
minimum is far from the region of the “design, " its direction is indicated more
precisely than its position. For this reason a procedure may be used in
which explor atory points along the direction are computed and the estimated
minimum used as a new starting point, It is convenient to employ three
such points which can consist of a point at the predicted minimum, a point
half-way and a point the same distance on the other side. Interpolation
between these values provides a starting point for a new second-order
design. It is,of course,not necessary to employ designs with minimum
variance properties in this connection. It is simpler to use those illustrated
below. The designs are of 1st and 2nd order respectively and are for two

parameters; the extension to other cases will be obvious.

1st order 2nd order
~ = - —
l 0 0 0 0
1 0 1 O
lo 1 0 1
' 2 0
0 2
1 1

The latter design was used in what was probably the first example of this
type of technique in ref. 4.

Example 2.
This concerns the fitting of the equation y = cekt . Again in order to
draw the type of surface encountered, a grid of calculations has been

performed. It was assumed that the observations of y at times

t'= ,125 .25 .5 1.0 2.0 4,0
were y= 2.093 1,650 1.717 1. 245 . 683 . 285
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The sums of squares of descrepancies for various values of ¢ and k are

then:-
ixi -2 -1 0 | 1 2
X, C ;k . 25 . 3536 . 50 L7071 1.0
2 2.8280 4583, 6 2902,0 1624.1 868.1 652.17
1 2.3782 1825, 3 893, 3 316, 8 163.9 441.9
0 2.0 658. 4 2244 89.7 300, 7 862. 4
. 1. 4140 952.0 1023. 8 1312.7 1833.3 2589.7

The contours of the surface obtained from this grid are shown in figure 4, to-

gether with the second-order designs emplcyed. For convenience the calcu-

lations are conducted in terms of the standardized parameters x]L and xz

where

X, = 6.64logk +2

1
X 13.28 log ¢ - 4

2

i

The progress of the calculations is shown below.

Starting at the point k
c

L7071, f.e. x, =1, where S =163.9,
2. 3782, X, =1

P
a second-order design of the type described in the previous section was

calculated. The values of S2 were:-
X

1
X, 1.0 1.1 .2
1.2 224. 4
L1 189.8 193.8
1.0 163.9 172.7 185.8

From which the estimated minimum was calculated to be at the point (~0. 329 3,

-0,0242). Values of S2 were calculated along the line passing through this
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point as follows:-

X 1 0. 3353 -0,3293 -0. 9940
X, 1 0. 4879 -0.0241 -0. 5363
S2 163.9 71.4 97. 4 230, 3
By interpolation with these 4 values, the lowest value of S2 on the line was found
to'be S2 = 67.2, at the point x, = .158, i.e. at k = .528
x2=.351, c= 2125

A new second-order design was now carried out with this point as base-

point, and gave an estimated minimum at the point x, = 0.2183 . Values

X, = 0. 2911
S2 calculated along the line to this point were:-
X . 1581 . 1882 . 2183 .24.8_4-
X2 » 3513 « 3212 .« 2911 . 2610
S%  67.48  66.13 66,84  69.15
By interpolation from these 4 values, the lowest value of S2 on this line was
found to be S° = 66. 11, at the point x =, 1918, Le. k= .5344
x2=.31?6, c=2.1131.

An Alternative Procedure

Consider fitting a function relationship
n, =€, ,6)
where 0 is to be estimated. Then if there are N observations, u=12,...,N,

the above equation will define the locus of all possible solutions in the N-di-

mensional space of the Ny * For example, if N = 3, the locus might appear

like that shown in figure 5. -
nof'}.

Fig. 5
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We have a set of N observations defining a point y, indicated by the star
in figure 5and according to the principle of least squares we adopt that
estimate ® of 9 corresponding to the point g:'" on the line which is such that
the distance between the points y and ¥ is as small as possible, where
Y= {y,} and ¥ = nlx,, ?) .

In the case of linear estimation the solution locus is a straight line (or
for more than one parameter a plane or hyperplane ) and the contours of
constant © in this line (plane or hyperplane) are equidistant. In the non-
linear case this is no longer true, but we proceed by supposing it to be

approximately true locally.

/Jﬁ
/

S S

%

©
0
Consider the simple case of one unknown, The method of solution outlined in

ref. 2 used two procedures which we can call the first-order (steepest

descent) procedure and the second-order procedure.

{a) The first-order steepest descent procedure would involve the determin-
ation of at least two values of S (or for k parameters, k +1 values
of S). From this we could determine which to move, but not how far
to move,

(b) The second-order procedure would involve determination of at least 3
values of S (or for k parameters, 1/2(k +1)(k + 2) values). From
this we could determine the position of the minimum (exactly if the
problem were really linear, approximately otherwise).

Both procedures use only the distances between the point y and the
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points corresponding to the ©'s; not only do we know these distances but we
also know the distance between the parameter points. Thus knowledge of the

location of the points y, 8, and 8, enable us to determine the three

0 1
distances, Syo’ Syl and SOl . For
27 1/2
5 = 1% 2) 1/2
2) 1/2

8y = 1Z[n(8y) - n(8)]

and making the assumption of linearity knowledge of these quantities is
clearly suffiecient to fix the position of y relative to the solution locus,
and consequently to provide an estimate ?. Inthe general case bf k
parameters, from (k +1) points calculated on the solution locus there will
be 1/2(k +1)(k +2) quantities available, viz. the (k +1) distances from
y to the calculated points on the solution locus, and the 1/2k (k +1) dis-
tances between them. These are just sufficient on the linear assumption
to fix the position of the point y relative to the solution locus and con-
sequently to enable the k parameters 91, 92’ seey Bk to be estimated. It
can be seen that, although this method would involve the calculation of only
(k +1) points, it should nevertheless be of comparable accuracy to that
obtainable with a second-order procedure using the previous method, which
would involve the calculation of 1/2(k + l)(k + 2) points.

In practice the simplest designs will again be those in which a base
point is first calculated and then each parameter is varied in turn. Suppose
the calculated values at these points are Mgy Mpseees M+ The situation

for 3 observations and two parameters is illustrated in figure 6.
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The approximation that we are making is now seen to be capable of
expression in a familiar form. Geometrically the method of least squares
(multiple regression) consists of selecting a linear combination

V=5 =z -i-cB +...+<Fz

- 1 4 3 k
such that the vector v'3 is the projection of the vector of observations w

in the plane of the vectors =z What we require for the numer-

1 , -%2. ] * e ] Z"k [ 4
ical method of minimization outlined above is to find a vector W which is

the projection of the vector y- s on the plane of the vectors

M " 0gs Dy~ Mg seers My -0, e Consequently we obtain what we need
by performing a multiple regression of w on 51, 52, cevy By where
w =- Mg » 23 =M = Ny (t=1, 2,..., k), the coordinates of the solution

then being given by

Yy
Bi { ¢i}9 +¢i i (i=1’ 2,&.-, k)

where 91 and e; are the two levels of 91 used in the design, and 4’:} is
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the ith regression coefficient. Normally this procedure will need to be
repeated a number of times before sufficient accuracy is obtained. When
this point is reached the approximate standard errors for the quantities
$i’ and hence for 61
formulas treating the Zys Zpseeey By BS independent variables. Sim-

—k
ilarly the residual sum of squares for w will be a close estimate of the

may be calculated from the usual least squares

residual sum of squares for y and will be distributed approximately as
xz 02 with n-k degrees of freedom if the model is representationally
adequate. (The quantity D‘Z is the experimental error variance.) When
some other estimate of experimental error variance is available, comparison
of the estima tes provides a test of the adequacy of the model in the usual
waye

As a first instance of the application of the method, consider again the
example given in ref. 2. Using three of the points in the first design, and
denoting the calculated value at the points (1.18, 1.18), (l.20, 1.18) and

(1.18, 1.20) by and the observed values by y , we obtain

Joo Tp» 32

t (mins. ) Y Ny n n,
10 16.600 13,010 13.574 12.963
20 19.200 22.365 23.253 22,206
40 36,550 33.047 34.115 32.579
80 41,300 36,077 36.719 35.066
160 43.550 21.498 21.274 20.316

320 24.700 3.817 3.573 3.412
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Whence we calculate the guantities

t s = - = - = -
t (mins) w=y-n, Z.= Mz Mg Zy = Mpm My
10 3.590 . 564 - . 047
20 -3. 165 . 888 -.159
40 3. 503 1.068 - . 468
80 5.223 . 642 -1.011
160 22.057 - 224 -1. 182
320 20.883 -, 244 - . 405
and the matrix of sums of squares and products for w, 2 and z, isas
follows:
w 2 2,
w 985. 067, 001 -3.727, 610 -41.114, 341
2 -3.727, 610 2,769, 140 -0. 952, 998
z, -41,114, 341 -0. 952,998 2,829,784
whence the normal equations are:
2,769,140 4;1 - 0.952,998 ¢z = -3727,610

-0.952,998 ¢, +2.829,784 ¢, = -41.114,341

and cpl = -7.1783, ¢, = -16, 9466
providing a first estimate for the minimum ('é‘l : "52) of (1.,0364, 0.8411).

A second design was now carried out in the region of this point, Each
parameter was varied by the same amount as previously, the 3 points being
(1,04, 0.84), (1,06, 0.84) and (1.04, 0.86)s Denoting now the calculated
values at these points by s M and N, 5 We obtain



t {mins. ) Y
10 16. 600
20 19, 200
40 36, 550
80 41, 300
160 43, 550
320 24,700

~16-

%
10, 020

18,330
30, 684
43,058
42, 670
21. 492

Whence we calculate the quantities:

1 (mins.) WS-,
10 6. 5797
20 0.8696
40 5.,8665
80 -1.7576
160 0.8796
320 3.2082

5]
10, 473
19. 111
31,831
44,245
43,097
21112

=" heds

0. 4530
0, 7802
1. 1470
1. 1871
0, 4267
-0, 3802

The matrix of sums of squares and products is :

w
w
2, 7. 457, 062
z, -5, 604, 270

.

7. 457, 062
3.865, 361

1,012, 682

from which the normal equations are:

3.865,361 ¢, -1.012,682 ¢, = 7.457,062

-1,012,682 ¢, 43,573,636 ¢,

-5, 604, 270

2
10. 003
18. 269
30, 477
42. 468
41,458
20, 184

Ezjiﬂzlﬂg

-0,0172
-0.0617
-0. 2066
-0, 5892
-1.2126
-1, 3074

£2

-5, 604, 270
-1.012, 682
3,573, 636
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¢2 = I, 1035

A better estimate of the parameters (B1 ’ 92) is therefore
61 = 1.04 + (1, 6401)(0.02) = 1. 0728

92 =0,84 - (1,1035)(0,02) = 0.8179

These may be compared with the values (e1 4 92) = (1,072, 0.819) ob-
tained in the same example in ref. 2.

An example containing more parameters, in which these techniques
have been studied, is that discussed inref. 1. The primary purpose of this
paper was to demonstrate the way in which an empirical relationship might
lead to the deduction of a more fundamental thecretical description of a
physical system. The method used for fitting the theoretical function was
crude, but sufficient for this purpose. The data are valuable, however,
for exemplifying the techniques we have discussed,

The example was one in which M1 and M2 were assumed to react
with M,, which then further reacted with more Ml to form M 2 in

3
accordance with the scheme:

M_+M. =

1 2 Mg, M1+M e N

3 4

i A
If Mo Mo Mg and 7 4 Te the concentrations of Ml’ M., My and M A
relative to the initial concentrations C20 of Mz, o, Bp. and p are
unknown constants and T is the absolute temperature, on assumptions set
out in ref. 1, the progress of the reaction is represented by the following

set of differential equations:
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- IR

—l . g
g = ~PC,0@ MM, eXP (= /T)

i

dt Coo2m (P my = ny) exp (“5/1')

e 2 B

with the boundary conditions =My My T | Ny = 0 attime t= -t

where in the treatment discussed inref. 1, t, was assumed to be zero.
Experiments were performed in which the temperature T, the ratio of

the initial concentration of the starting materials, Mo and the time

"on temp. " elapsing before the reaction was stopped, t, were varied. Al-

though the initial concentration of Mz, CZO’ could have been varied, it

was in fact held constant in these experiments, The data is set out in

Table 2.
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Table 2

Experiment Levels of Variables Observed Yield M5

T (°C.) c{%) t(hr.)

1 162 25 o 0, 459
2 162 25 8 0. 533
2 162 30 5 0. 575
4 162 30 8 0. 588
5 172 25 5 0. 606
6 172 25 8 0. 580
7 | 30 5 0. 586
8 172 30 8 0. 524
9 167 27.5 6s 5 0. 569
10 177 27.5 6. 5 0. 554
L1 35 27. 5 6.5 0, 469
12 167 32.5 6. 5 0. 575
13 167 224 5 6.5 0. 550
14 167 205 9.5 0. 589
15 167 27.5 35 0. 503
16 177 20 6. 5 0,611
17 177 20 6.5 0. 629
18 160 34 7.5 0. 600
19 160 34 7.5 0, 606

The time recorded is the time on temperature. In practice a preliminary
heat-up period occurs during which a small amount of reaction probably
takes place. It seemed appropriate to allow for this approximately by
assuming that the effective time on temperature was t-to and to is some
negative quantity to be estimated, representing the effective time for which
the reaction had already been proceeding at the commencement of the
period studied. There are therefore four unknown parameters to be estimated,
a, B, p and to « Applying the conclusions of an earlier section,

in which methods for improving the conditioning of the sums of squares sur-
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face are di scussed, we should prefer to consider the parameters
y - lnea - %3, and B, rather than « and p, where K is the average
reci procal absolute temperature.

The example was fir st considerad fiom the paint of view of the earlicer
method of estimation. To obtain some insight into the situation, an
extensive grid of calcul ati ons was performed, the results of which are
shown in figure 7. ( see following pages) These 16 contour diagrams show
sections of the 4-dimensional contour surfaces for §? regarded as a
function of vy, B, Ln p and t. It will be seen that t his estimation
surface is reasonably well-conditioned and should allow rapid convergence
by the methods of descent. The very different situation which would have
occurred if the transformation y - Lna - X had not been made can be
seen if an attempt is made to replot these graphs in terms of o rather
than y. The square sections in Yy and p shown in figure 7, become
parallelograms, whose width are 35 times their height. As can be imagined,
the contours whose axes are reasonably parallel to the axes of the parameters
in the transformed variables, become exiremely attenuated diagonal ridges,
so that the application of any simple procedure of minimization in terms of
the untransformed parameters would have been fruitless.

Method 2 has been applied to this case with the following results:

In ref. 1, an approximate method, based not on the value of 0, alone,

but on the observed values of both 1, and m,, gave a point which
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corresponds to the values

Y R - 6. 06
g = 10091
In p = 1.224

where to was assumed to be zero. Working with the values of 3 only

this point gave a sum of squares of discrepancies of 230.2 . The design

in this neighbourhood was carried out as follows:

First Design

Levels of parameters

Base Variant
Y -6, 45 -6, 25 whence vy = -6.45[1 - ¢1) - 6425 b
B 11000 14000 B = 11000(1 - ¢,) +14000 ¢,
L p T2} 1,32 Inp= L2l (1 - ¢) +1.30 o,
t0 1 2 to i - ¢4)+2¢4

The sums of squares and products corresponding to the quantities w, z,, 2,,

Zyy Zy for this design were as follows:

w Z A Z

1 2 3
w 3814 967 350
Z 3814 13790 -2284 5838
z, 967 -2284 3982 -3531
Zg 350 5838 ~3531 7976
z 2322 9369 -1886 4930

2322
9369
-1886
4930

6798



D

This leads to the estimates
whence the first improved approximation is

¢ = 0.5846 y ==6.3331
b, = 0. 4367 B =12, 310.1
s, - veU386 Ln p= 3.3651
$4 = 0, 3709 t_= 0.6291

0

for which the value of S? is estimated as 90. 00,
Second Design

Using this estimated point as a new base, a second design was performed.
As the accuracy of the calculations was extremely high, an interval of only

1/100th of the previous interval was used,

Levels of parameters

Base Variant
Y  =6.331 -6, 331 whence Y = =6.3331 (I-¢)) - 6, 3311 ¢
B 32,801 12, 340l B = 12, 310.1(1- ¢,) + 12340. 19,
Lnp 1.2134577 1,214, 3577 Ln p = 1. 2134577 (1=¢3) + 1. 2143577 ¢,
t, 0.629 0. 6391 t = 0.6291(1-¢4) +0.6391 ¢,

The sums of squares and products corresponding to the quantities w, ZI’
Zps Z 39 By for this design are

% 2 3 %
w  =15,031,344 4,282, 350 12,531,670  ~1.85L,217 {x10~%)
z)  159.562,904  -15,477,099 65,052,009 120, 334, 432(x 10™0)
z, 40,975,777 -32,737,568 13,554, 382(x 10~%)
2 72.830,157 57,995,115 (x 107°)
2 96. 386, 239 (x 10'8)
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This leads to the estimates

¢1 = -5,982,795

¢, = -3.114,475
¢4 = -15.586,066
¢, =  3.467,003

whence a second improved estimate of the parameters is

vy = -6.345]
B = 12216.7
Inp = 1.19943

t = 0,6638
for which the residual sum of squares is 89.6788.

Higher order approximations

So far we have proceeded by employing an iteration based on the idea
that the n's were. iocally linear in vhe ¢'s. The solution locus of
figure 6 is then assumed to be locally approximated by a plane on which
the contours of ¢1 and ¢2 are equally spaced straight lines. It is clearly
possible to use a higher order approximation, in which the solution locus
is represented by some curved surface and a logical next approximation
supposes that the M's are locally guadratic in the ¢'s rather than linear.

It will not of course happen necessarily that a higher order approxzimation
will provide a better iteration rule than a lower crder one.

The relative values of different iteration rules will depend on the relative
amount of computation that has to be doné and the convergence and rate of
convergence of the procedures. Representation of the solution locus by a
surface which adequately represeénts it locally is 1mportanf however for - .
another reason. Such a representation makes it possible to carry out an

investigation in any given case of the associated distribution theory



-2 4=

concerning tests of significance, tests of goodness of fit, and confidence
intervals,

Second and higher order approximations are most readily arrived at by
noting that the golution we have used is equivalent to representing the
function by a first order Taylor's Series expansion in the 6 where deriva-
tives are replaced by differences.

The first order procedure uses an {teration rule which consists of

fitting successively by least squares

k
FaY
- = 2 ¢, 2
Yu nuo i= ¢.1 i
8.-0
A k =
o Co = z i i o~
i.e % o e by, 1) (@)

A
where n:[u = 11{9 !'n LY ,ej.: eoosy ek: gu)t and

.~ A ~ A
where after each iteration the solution 91, Bz, e .,61, seebd k replaces the

gtarting solution 91. 92, ey 91, “aay Bk.

A
If we let 9;-61 tend to zero this becomes

i k
Yy Tou S i=1 (ei ei) aei (b)

where the derivatives are taken at the 'starting' values 91, Bz, . ’Gt" . "Bk"

In practice we should usually work with the form (a) rather than (b).

In both cases we are involved in the evaluation of N{k+l) quantities but

with (a) the function to be evaluated n{£, 9) is the same all the way through
the calculation whereas with (b) k+l different functions — n(§, 6) and its

k partial derivatives - have to be evaluated for each of the N trials. This
involves extra labour in differentiating the function but more importantly where

a digital computer is employed, it would be necessary to programme the ma-~



chine for the k+l different functions. Furthermore, where the function
n{€, @) is not given explicitly but appears, for example, as the solution
of a set of differential equations which must be evaluated by some nu~
merical subroutine such as the Runge-Kutta, the derivatives could not in
general be explicitly obtained,

The second order approximation couesponding to (b) is
Y o= e §§:saazqu

e EEE R
i {:}9189j

e

A =
where 6t = Bt - @ ¢ and the derivatives are taken at some fixed value
el, 92, L LI ] ek’

Fitting by least squares we obtain the k normal equations

[w,k]

5, {le:i1- [w,o1]]

s 1= 36 % . obl+ 2l 1 b]}
g h : =
~
5 5[gh,1i]‘g
= )

g=h ]

1i=12,...ke

Bq ]
whete w = ¥y =% . [w,i] = -E wuiT j
[ e amn, \ oty
i,gh (d and so on.
Bi j 206 E)Bh

As before in practice the derivatives are evaluated numerically using the
type of second order design suggested for the second order minimization

procedure,

G. E. P, Box
Computer calculations carried out by G.A. Coutie
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