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1. INTRODUCTION

In the present investigation we utilize Bayesian methods to
analyze the regression model with errors generated by a first order
auto-regressive scheme, For a simple regression model, we derive finite
sample joint, conditional and marginal posterior distributions of the
parameters of the model. !lith these distributions, an investigator can
make inferences about parameters and investigate how departures from
independence, very often encountered in economic data, affect his
inferences about parameters. Further, this approach provides a unified
treatment of non-explosive and explosive models and in fact yields
results for deciding whether a process is or is not explosive. To
illustrate application of the techmniques, two sets of artificially
generated data, one set from a non-explosive model and the other from an
explosive model, are analyzed in detail. le then go on to develop
techniques for a Bayesian analysis of the multiple regression model with

autocorrelated errors.

2. SPECIFICATION OF MODEL AND DERIVATION OF POSTERIOR DISTRIBUTIONS

2.1 3Specification of Model

Initially, we consider a simple regression model with an error

term generated by a first order autoregressive process, that is,

(2.1a) 3 g X, + u

T
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In (2.la) B is a regression coefficient, s the tth observation, X, the
tth fixed element, and u the tth arror term,

Equation (2.1b) defines the autoregressive
scheme generating the error term u, which involves a parameter p and an
error term € . It is assumed that the et are normally and independently

. . ; . 2
distributed with zero means and common variance ¢ . From (2.1a-b), we

obtain:
(2.2) Vo P Mg + B(xt -p xt«l) Lt B & Ly 2 swnw s

We note that y, appears in (2.2). Without assumptions regarding how ¥,
is generated, it is impossible to proceed with the analysis. Below we
consider a range of assumptions appropriate for a variety of possible
“real world" situatioms.

If we assume that the process represented by (2.1la-b) has been
operative for t = 0, -1, -2, ..., —To, where T0 is unknown, we can write
9 B o= M+ €, where M = p(y”1 - B x_l). M is regarded as a
parameter since it depends on certain unobservable and unobserved gquantities.
Under these assumptions e is normally distributed with mean 5x0+ M and
variance 02. These assumptions are broad enough to apply to explosive
(lp[ > 1) as well as non-explosive (Ipl < 1) schemes and to situations in
which the process commences at any unknown point in the past.

On the other hand, it may be that the situation being represented
by the model in (2.1) is such that the initial value, Yo is fixed and
known. For example, if the observations relate to a price and if the
period t = 0 is the last period during which this price was fixed by a
govermmental body, then it would be appropriate to take vy, as fixed and

known. This situation can also be represented in the framework introduced



in the preceding paragraph by assuming that €, has zero variance. Other
assumptions which may be appropriate for other circumstances are that €5
is normal with known variance, oi, or that P is distributed independently
of Yqo Yoo vees YT and has a distribution not involving any of the
parameters of the model. As can readily be ascertained from what follows,
any of these assumptions regarding ¥, lead to the same joint posterior
distribution for the parameters of the model.

Under the assumptions embedded in (2.1), the likelihood function

for B, p, o, and M is given by:

-{T+1 1 2
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v 20
o 2
- B 21 [yt“pytﬁl'ﬁ(xt'pxt-l)]-}
o
with i< pLow, ~w<p<w -olMlo and o> 0.

In the next section, this likelihood function is used in conjunction

with Bayes' Theorem to derive posterior distributions for the parameters.

2.2 Derivation of Posterior Distributions

Je assume that we are in a situation wherein our prior
knovledge about the parameters 8, p, M, and log o, can be suitably
represented by locally uniform and independent distributions [cf. Jeffreys

(1948), Savage (1961) and Box and Tiao (1962)] ; that is,

(2.3) p(B) = k3 P(e) & ky3

p(o) = ?]: and p(M) = 113.



with these prior distributions and the likelihood function i6 {2:2)5
application of Bayes' Theorem leads to the following joint posterior

distribution:

-1
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where ﬂ(s,p,U,Mlyo,yl,...,yT,x) is the likelihood function in (2.2) and
k is a normalizing constant.

If one is interested in investigating M, the initial level of
the process in (2.lb), it is possible to obtain the posterior distribution
of M by integrating (2.4) over B, p, and ¢, If interest does not center
on M, the influence of this parameter can be eliminated by integration
to yield:

(2.5) p(B,p,clyo,yl,--.yT) =k " (D) EXP{ - ;ig tﬁl iyt-pyt_l-ﬁ(xt-pxt_l)lé}
which is the joint posterior distribution of §, p, and o. We note that
in obtaining (2.5), y, vas assumed normal with mean M + B X and variance
62. It is straightforward to verify that employing the other assumptions
about Yo discussed in the preceding section, one would, in each case,
obtain the posterior distribution given in (2.5).
Upon eliminating the scale parameter o from (2.5), we obtain

the following bivariate posterior distribution:

It
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This distribution summarizes all the information about B and p. Although
the normalizing constant cannot be expressed in terms of simple functions,

for any given set of data the joint density fumction can always be evaluated



numerically and the density contours plotted. Further, the marginal

distributions of f and of p are respectively:

@ pely = dzo, e, 7 {Z(yt-xtﬁ)z
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Tn order for the distribution in (2.8) to be proper, the quantity'

2.8 % e
.8a -
G ) eZ1 (kt P xt-l)

must be positive. This implies that we must assume X, £p X 1 for all p.

For illustrative purposes, we have computed these demsity

functions with data generated from the following model:

N = 3 X, + u

Y TP T
where the €'s given in Table I were drawn from a table of standardized
random normal deviates. The x's are rescaled investment expenditures
taken from Haavelmo (1953), The first series of 15 observations was
generated with p = 0.5 while the second set, p = 1,25, Hereafter we
shall refer to the first set as the "non-explosive" series and the second
set as the "explosive" series, While we distinguish these two cases,

it is important to realize that the results given in (2.7} and in (2.8)

are appropriate in the analysis of both.



Table I
= “t *t Ve Ve
(for p = .5) (for p = 1.25)
0 -- 3.0 9.500 9.500
1 .69% 349 12.649 13.024
2 «320 6.0 18,794 19.975
3 -.799 4,2 12,198 14,270
& -.927 52 14,372 16.760
5 +373 4.7 13.909 15.923
6 -.648 1% 14,556 16,931
0 1.572 4.5 14.700 17.111
8 -.319 6.0 18,281 22,195
9 2.049 39 13.890 18.992
10 -3.077 4.1 10,318 18.338
11 -.136 2,2 5.473 14,012
12 -.492 1.7 &, 044 13.872
13 w211 2.5 6.361 17.855
14 ~-1.,994 Soud 7.036 20.099
15 .400 4.8 13,368 27 .549
= 0.5

The marginal distributions of p and of p for these data are
shown in Fig. 1. It is seen that the posterior distribution of p derived
from the explosive series is much sharper than that relating to the non-
explosive case. As will be seen in the discussion in Sectiom 3, one would
indeed expect such a result,

The posterior distributions of § in Fig. 1 enable an investigator
to make inferences about this parameter which incorporate an allowance
for the departure from independence postulated in the model. That

allowance be made for such a departure is extremely important because
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inferences will be markedly different if one analyzed these data under
the assumption of independence, It is well known that in the cage of
independence the posterior distribution of § can be expressed in terms of

a Student-t distribution, that is,

(2.9) P (g_;_,_g l Y> = p(ty_q)

n 2 2 ~ 2 2
where g = Z X, ¥y, / z X and s =2 (yt-ﬁ xt) / (T-1) L X,

as shown in Jeffreys (1948). It is to be remembered that in (2.9) E and
s are regarded as known quantities calculated from the data. For our
two sets of data the posterior distributions of B under the independence
assumption are shown in Fig. 2 by the curves labelled p = 0. These
distributions are far different from those shown in Fig. 1.

In order to appreciate the situation fully, it is instructive

to write the marginal distribution of p as:

(2.10)  pGBlym zfp(slo-,_ ) plely) do.

The integrand in (2.10) contains two factors, the conditional distribution
of B, p(Blp, y),and the marginal distribution of p, p(p[y), given in
expression (2.8). The conditional distribution of B for fixed values of

0> p(Blp, y), is obtained directly from (2.6) and is given by

1 T

r & = (8?1 3

(2:11) p(Ble, ¥) = T-1 s (p)} 2 1 } :
r (SHVIED s (0) (T-1)

& 2
where (2.11a) B(p) = Z(x_-px,_{) (¥ "P¥, ;) [ Z2(x -px _4)

and 2110 s2) = Sy, ey, PO Cempx, P17 1 (T-1) Zxpopry ) -



Fig, 23 CONDITIONAL POSTERIOR DISTRIBUTION OF p FOR VARIOQUS o

a, Non-Explosive Series (T = 15)
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It is clear that

Fad

2,12 ( - =
(2.12) 5y | Y> plty_q)
where tT_1 is a Student-t variable with (T-1) degrees of freedom. In

particular, when p = 0, (2.12) reduces to (2.9).

The conditional distribution p(B[p, y) provides inferences about
B for an assumed value of p. On the other hand, the marginal density
function p(p]y) which appears as the other factor in the integrand of
(2.10) reflects the plausibility of assertioms about the value of p in the
light of the data and our original assumptions. Thus the marginal dis-
tribution p(BlY) in (2.10) can be regarded as a suitably weighted average
of the conditional distributions p(Blp, y) with p(ply) serving as the
weight function. Unless the conditional distribution is insensitive to
changes in p, it is clear that assuming p equals some fixed value, say
p = 0 (corresponding to assuming the observatioms to be independent) or
o = 1 (corresponding to the assumption that the first differences of the
observations are independent), could lead to a posterior distribution of
g far different from that given in (2.7). To illustrate this point, we
have computed conditional distributions of 8 for various values of p
which are plotted in Fig. 2. This figure shows that for the non-explosive
series the center of the conditional distribution is relatively insensitive
to changes in p whereas the spread of the distribution is quite sensitive
to such changes. On the other hand, both the center and the spread in
the case of the explosive series change markedly as p is varied. Thus
an inappropriate assumption about p can vitally affect an analysis. This
fact underlines the importance of working with the marginal posterior
distribution of B which incorporates a proper allowance for the role of

p in the model.



3. SOME SAMPLING THEORY CONSIDERATIONS

It is of interest to compare the above Bayesian analysis with
analyses in the sampling theory framework. In the latter approach, one
may investigate the sensitivity of the distribution of a specific
estimator of B to departures from independence. For example, in our
model, Wold (1949) shows that while the least squares estimator
§ =3z X, yt/E xi is unbiased for B, its variance is in general quite
sensitive to the value which p assumes,

Alternatively, given a particular departure from independence,

say p =p_, an estimator with optimal properties is readily obtained.

For we may then write the model in (2.2) as:

(3.1) 3

e TPy Tyog SRR, mp E g v S

which is in the usual least squares form. It follows that the quantity

ﬁ(po) = 1B

(3.2) o 4 =
T-1 S(po)

has a Student-t distribution with T-1 degrees of freedom where ﬁ(po) and
s(po), now regarded as random variables, are given in (2.lla-b). The
properties of optimal testing and estimation procedures, which are seen
to depend critically on the value assigned to B in (3.2), can be studied
as a function of Py This latter analysis may be regarded as a direct
analogue of our use of conditional posterior distributions in the Bayesian
framework.

In the common situation in which both § and p are unknown, they
must of course be estimated from the data. In the sampling theory

framework it seems difficult to derive the distributions of optimal
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estimators of P and p even in the non-explosive case and only asymptotic
results appear to be available; cf. e.g., Hurwicz (1950), Durbin (1960),
Malinvaud (1961), White (1957, 1958) and the references in Anderson
(1949). This contrasts with the Bayesian approach which provides a
unified treatment of the explosive and non-explosive models and leads
to finite sample results.

While we emphasize the positive contribution of the Bayesian
approach, we recognize that many fruitful insights can be obtained from
classical analyses. For example, it is of interest to evaluate the
information matrix, I., for @ = (M, p, B). We have for the joint

density of Yoo Typs vony Yot
P(yo,yl, sea ,yT[X,@aQ,U,M)

e o‘—(Tﬂ‘) ex L—Lz" (yo-@x -M)2 wi: R

T 2 - (T+1) 1
2y [ypye -Blreox, )] }“= s e Q

and by definition:
g 3 103 P
2] o Si Gj

.
: 2 38, 38, *
o i i

On performing the indicated differentiations, we find:

=
i

]

.i 0 ® =
O
ok I 2 3
L= e 8 i 21 0% P téltxt-1€t+<xt'pxt—1)(yt-l'ﬁxt-1)]
i b P 2
Xy 21l %S Xy + B O PE )
e (xt-pxt-’l) (yt-l-BXt*l)] S
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To evaluate the expectations in this last expression, we utilize the
following results:

ol .

t i
- e <+
Ve - BE PNt 2,07 &,
E(y, ~ B x_) =ptM t =1, 2,400, T
- - 2 2e .2 2 1-p2t*D)
E(y., - px )" =p°" M +¢°
t t l_pz

That part of the information matrix relating to p and [ is then:

2tq o Fasy | ma-p’h 1—92<T;1) MLk - |

2 p2 dp OB 1 l-pz 1-92 (1-92) et tt_l |

(3.3) & = ox, )0 |
2 .2 ¢ |

9 970 L t-1 2 I 2

_ap aB 552 g l_{, tél(xtypxt“‘l) lv:\ x0+t£1(xt_pxt"l) —!

In the case tp[ > 1, information about p is extemsive even in
moderate-sized samples since the upper left-hand element of the information
matrix in (3.3) is of oxder p2T. This suggests that p can be estimated
quite precisely in the explosive case, In the Bayesian approach, this
phenomenon seems to be reflected by a posterior distribution for p which
is sharply concentrated (see, for example, Figure 1b).

On the other hand, for !p] < 1 and relatively large T, the off-
diagonal elements in (3.3) are small relative to the diagonal elements

and thus the information matrix is approximately,

-g T -

1- 2 °
1 P
2 T , |-
0 2y Epoex )
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This implies that the maximum likelihood estimates of B and p will be
asymptotically uncorrelated. Also note that information about p is
asymptotically independent of 62.

The sampling theory approach can also be utilized to provide
an intuitive explanation of the fact that in our two computed examples,
the conditional posterior mean of P is insensitive to p in the non-

explosive case but very sensitive in the explosive case, That is, with

~ T T 2
5(@) - tél (xt-pxt-}.)(yt-pyt'l) / tél (Xt-pxt‘l)

we have that

aA T - T 2
SRR R RN L o N R NP I

As T becomes large, we see that (3.4) approaches zero if ]pl < 1 but
grows without limit if [pl > 1. This suggests that in samples of
moderate size, the conditional posterior mean of P will be insensitive
to p if the data are generated from an non-explosive model, but
sensitive if otherwise.

With these observations made, we now turn to discuss the multiple

regression model with autocorrelated errors.

4, GENERALIZATION TO THE MULTIPLE REGRESSION MODEL

In this section we generalize the results in Section 2 to the
multiple regression model with errors generated by a first order

autoregressive process. Our model is:



13

(&4.12a) y =X+ u

(4.1b) u=p uﬁl + €

or alternatively,

(4.2) y=py . +t E-pX )P+e

| B 1 -
where y' = (yl, wadery yT) and vl = (yo, 5 o 053 yT—l) are (1XT) vectors of
observations; u' = (ul, oiwvs uT) and ufl = (uo, s uT-l) are (1XT)
vectors of autocorrelated errors; B' = (61, S BK? is a (LxXK) vector

of regression coefficients; p is a scalar;

X x® X

§3 g e Byg *o1 *02 won B 1Y
(4.3) X = . : > and X»l = . . :
oy Bpyovre Fag Xe-11 -2 *a-ne

are (TxK) matrices of fixed elements; and €' = (el, ceea eT) is a (1xT)
vector of random errors.

As in Section 2, we shall make the same assumptions about the
distribution of the et's, the prior distributions of p and o, and the
initial conditions., In addition, we shall assume that the regression

coefficients are a priori locally independent and uniform, that is
4.4 p T (=
(4.4) p() « I pBY = <

Under these assumptions, the joint posterior distribution of (B, p) is

readily obtained as:

Mo =3

4.5) p@B.p]y) = {i (y-¥B)-p(y_-X_ 1" i(y-xm-o(y_l-x-lﬁﬂ}

Ny

o {[ (y-py_l)-(X-pX_,l)ﬁi' [ (v-py_y)- E-0X_;)F] } :
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For any fixed value of p, the conditional distribution of P is

[ﬁ-@(o)] 'H[ﬁ-é(p)] } - %

(4.6) p(Blp,y) = const. {1 s >
(T-K) s (p)

with 1 _K
replul® {s?‘(p)} 2
const., = K
r &K II(T—K)} ?
B o= (X-pX ) (K-e X))
By =H (x-pX D' -0y
s2(0) = ‘ff’ﬁ [y-py‘l-é(p)ix-px,l)} ’[y-py_l—g(p)(x-px_l)] .

The distribution in (4.6) is in the form of a multivariate Student-t
distribution. This result is, of course, not surprising since for
given p, (4.2) can be regarded as a usual regression model and it is well
known [e.g., cf., Savage (1961) and Tiao and Zellner (1964)] that the
posterior distribution of regression coefficients is of the Student-t
form,

We note that in deriving the distribution in (4.6), it is
implicitly assumed that the matrix H is positive definite for any fixed
value of p. A sufficient condition for this to be so is given in the

following lemma.

Lemma : Let X! be the Kx(T+l) augmented matrix X, = {x;IX'] where
: 2 T

B, F (X01, e XOK) and let z' = (1, P, P 5 eees P ) be a Lx(T+L)

vector, If Z and X, are linearly independent, then H is positive

definite.

Pxoof: Tt suffices to show that the matrix X - p X-l is of rank K.

We can write
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vhere

-0 1

is a TX(T+l) matrix with all elements not shown being zero. It is easily
seen that A is of rank T and w = 2 is the only non-trivial solution of the
system of equations Aw = 0, Since X, and 2 are assumed linearly independent,
there exists a (T+L)X(T-K) matrix C such that B = [zEX*;C] is a (T+1)x(T+1)

non-singular matrix. Thus the rank of the product AB is T. But note that,
AB = [0:a X,:a c],

has only T non-zero columns, Hence the rank of A X, must be K and the
lemma follows,

One can easily establish that the above condition is in fact
also necessary. This condition implies that any linear combination of the
columns of X, the matrix of independent variables for periods 0, ..., T,
must not satisfy an exact first order autoregressive scheme. This does
not appear to us to be a very restrictive condition. For K = 1, it
coincides with that given in connection with (2.8a),

To obtain the marginal posterior distributiom of B, p(ﬁly), and

ofp5 p(p[y), we simply perform the following integrations:

©a [s]

4.7 p@®Bly) = fp(ﬁ,ply)dp = J pl]y) p@Ble,y) do

=00

and
(o] [+= [es]

3 K K
“.8)  plely) =j..:/ p(B,e|y) ) B, = j...[ pC|y) pC[Py) I 4B, .

=00 =0 -00 -00
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It is clear that each of these integrations can be interpreted as an
averaging of conditional distributions with the weight function being a
marginal posterior distribution. On performing the integrations in

(4.7) and (4.8), we obtain:

-t

@.72) pElY) = L(y_-X_B)'(y_;-X_ Bl (v-XB) " (y-XP)

A } =

(V17X P (v X P)

T
5 K
(4.82) ple|y “J J {(T K)s (p)+[f3 ﬁ(p)]' HlB- ﬁ(p)]} 2 g d Bi
. LK
« 572 [(T-R) s*@)]
T-K

« |n|” 2{(3’—03! )'[1-(X-pX_ )H (X-px )](} Py _ )} z

Note that the conditions of our lemma insure that H is positive definite
and thus the distribution in (4.8a) is proper.

If interest centers on the marginal posterior distribution of a
single element of B, say 51, its posterior distribution can be obtained
in principle from (4.7a) by integration. However, this integration,
when viewed analytically or numerically, appears quite difficult to
the present writers particularly when K is large. Therefore as an
alternative, we suggest first obtaining P(Bl’ ply) and then deriving

p(Blly) by integrating out p numerically. Note that

(4.9) Py, oly) = pely) pByles ¥

with p(ply) given in (4.8a) and p(ﬁllp,y) is obtained from (4.6) by
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integration with respect to the elements of B other than Bl' It is

well-known from the properties of the multivariate t-distribution that

51 - §1 ®)
(4.10) £ = i1
s(p) Vh

has a Student t-distribution with T-K degrees of freedom. In (4.10),
hll denotes the (1,1)th element of H-l.

For greater computational simplicity, we can obtain p(ﬂl, ply)
in a different form by integrating p(ﬁ,'ply) in (4.5) with respect to
52, o4 5y ﬁK' To perform this integration, we partition B' = (B 55'),

= (x-

X = (x:X) and X_ i

1 1:%_1), where x and x_. denote the first column

of X and X_l, respectively. Then with

(4.11) W=1vy-p 4 (x -p x_l) Bl’

we have

N

; I e e
p(Bl,B,piy) o iFW-(X~DX_1)B] [w-(X-OX*l)ﬁ{} .

Integration with respect to B, performed as indicated above, yields:

i _ Ikl
“12) p@poly) « [8]7F {uli-eek pE Gk T W f
where
(4.13) H= R -p X' @-0X).

The posterior distribution of ﬁl can be obtained from (4.12) by numerical
integration over p. The advantage of the form (4.12) is that its use
involves inverting a (K-1)xX(X-1) matrix, H, whereas use of (4.9) would
involve inverting a KxK matrix H. We note further that H is a A-matrix

of second degree in p. Thus the inverse can be expressed as a A-matrix
of degree 2(K~l§2d€v1ded by a scalar polynqmial of degree 2K in p. Putting
the inverse of H in such a form is computationally convenient since this

will avoid the necessity for inverting a matrix for each value of p in

the integration,



18
5. A LARGE SAMPLE PROCEDURE

In this section we discuss a procedure for analyzing the multiple
regression model with autocorrelated errors which can be conveniently
applied when we work with large samples. Essentially, this procedure
is the Bayesian analogue of a sampling theory approach suggested by
Fuller (1962) and involves linearizing our model and applying linear
theory to the linearized model, The goodness of this approximation can
be checked within the Bayesian framework since we have the finite sample
results of Section 2 and 4,

From (4.2), our model is:

(G.1) y=py,+ E-pX)B+re

the
with pB being our non-linearity. If we expand pP about, maximum-likelihood

A ~
estimates, say p and B, we obtain:

Ca T WY o~

(5.2) vy =y q+ XX, {gg+(9~p)5+p(5~f3)] + €
or
An ~ ~

(5:3) y~x_1pf3 = D(Y-:L'X-IB) + (X-pX )P + €
which is linear in the parameters p and B, Uith the locally uniform
prior distributions with which we have been working, application of linear
theory leads to a posterior distribution of p and P in the multivariate-t
form.

To apply this approximation procedure, we require the maximum-
likelihood estimates ; and g. These can be obtained using non-linear
regression techniques in connection with (5.1) [cf. e.g., Fuller (19%2),

Box (1958)]. However, it appears computationally more efficient to
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utilize a step-wise procedure, suggested in Cochrane and Orcutt (1949),
to minimize €' € with respect to p and B. From our model in (5.1), it
is seen that the conditional minimum of €' € for a given p will be attained

if we take

(5.4)  Bo) = [(®pX_)" (Repk_D17" X-pX_D' (-py_y)

whereas for a given B, the conditional minimizing value of p is given by:
(5.5) 0@ = [y X B X7 (7 X B)' (-XE).

Thus, we can choose an initial p, say p = I compute (5.4) to obtain
a ﬁo' Substitute this value of B in (5.6) to obtain a new value of p,
say Py and so on. When the computed values of B and p become stable,
we have the minimizing values of p and B, namely ; and 5, which are maximum-
likelihood estimates if these values are associated with the global
maximum of the likelihood function.
Since the problem of local maxima of the likelihood function may

arise, it is suggested that the following procedure, described in Klein

(1953), may be the safest to utilize., In
(5.6) €' e= [y~py_1-(X-pX~1)B3' [y-py_l-(X-pX_l)B]

we substitute the conditional minimizing value of B given in (5.4) to

obtain

(5.7) ¢€'e

i

[y-oy_;- X-pX_)B()]" [y-py_q- X-pX_})P(0)]

1]

(y-py_l)‘(y-oy_1)~(y-py_l)'(X~px_l)ﬁ(p)
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which we minimize with respect to p. The necessary condition on p will

be in the form:
(5.8) £(p) = 0,

where £(p) is a polynomial of degree 4K + 1 in p. The roots of the
polynomial equation (5.9) can readily be obtained using standard
numerical procedures. TFor each real root, evaluate (5.7) to determine
which one is associated with the global minimum. Then use (5.4) to
compute é.

We have applied the linearization ?rocedure to data generated
from our non-explosive model described in Section 2 for samples of
sizes 15, 20, 30 and 40. 1In Figure 3, the resulting approximate
posterior distributions for our scalar P are compared with the exact

distributions computed from (2.7)., It is seen that for T = 40, the

approximate and exact distributions are in fair agreement.



Fig. 3: EXACT AND APPROXIMATE MARGINAL DISTRIBUTION OF B
FOR SEVERAL SAMPLE SIZES AND HON-EXPIOSIVE SERIES

( Exact; === Appmximate) :

p(Bly) p(8|¥)
T =15 i N T = 20

4 st i R

p(8]¥) p(Blv)
T = 30
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