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SEQUENTIAL DESIGN OF EXPERIMENTS FOR NON-LINEAR MODELS
by

G.E. P, Box and William G. Hunter

1. Objective of the Experimenter

Suppose that an experimenter is interested in studying a particular
system for which there exists a mathematical model = = £(§, £), non-linear

8, which relates a measurable response 7n to the controllable

in the parameters 6,

variables £. The objective of the experimenter may be (1) to obtain an estimate
of a response m over some particular region of interest in the space of the varia-
bles or (2) to determine the underlying physical mechanism of the phenomenon
under investigation.

Mathematically, we could say for problem (2) the whole object is to
discover the nature of the function f(_g, £). In practical situations we can never
know this completely. However, we shall say that we have an adequate theo-
retical model when we have derived from a consideration of the mechanism a
function which closely predicts the results of actual experiments.

In problem (1), which has come to be called the response surface problem,
it is useful but not essential to employ such a theoretical model. [2, 3, 4, 10]
Ih many circumstances even though no theoretical model is available, perfectly
good empirical approximations can be obtained by fitting a polynomial or some

other flexible graduating function over the region of interest. [1, 5, 6, 15}
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Empirical models are, however, of limited value when the aim is to
develop a suitable mechanistic theory. The search for underlying physical
mechanisms constitutes a major portion of effort in a number of scientific fields.
To engineers, for example, basic mechanism studies are of interest principally
because a deeper understanding makes it possible to cope with engineering
design problems in a more intelligent and useful manner than would be possible
if the mechanism were entirely unknown.

In what follows we will be concerned with a particular aspect of this
second objective of trying to elucidate the mechanism. Such mechanism studies
consist essentially of two steps: (i) establishing an adequate form for the
theoretical model and then (ii) determining precisely the values of its parameters.

Step (i) is the model-building problem which has been discussed in
references [7], [12], [13], and [17]. Further facets of this important problem
are currently being investigated. In this paper we suppose that step (i) has been
accomplished and the form of the theoretical model is therefore known. The
problem which confronts the experimenter now is the evaluation of the physical
parameters {e.g., rate constants in chemical kinetics examples). The problem
of statistical analysis of data in these situations has been discussed by Box [3].
The purpose of this paper is to consider the probiem of generation of data, i.e.,

the statistical design of experiments.

Bayes' Theorem

The essential machinery we shall use in drawing inferences from data

is the well-known formula due to the Rev. Thomas Bayes
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where p,(8 |g, ) is the posterior distribution of the parameters @ after N

observations y have been obtained; P0 (8) is the prior distribution that exists
at stage N=O, i.e., before any observations are available from the experimental
program; and L(8|y) is the likelihood function.

The dependence of the posterior distribution on the design matrix D
as well as the experimental results y is made explicit when it is written
as py (0 |y, D). For convenience we shall write the posterior distribution as

DN(_G_lz) suppressing D; however, the dependence of p(ély) on D should

always be borne in mind.

2. Designs for Parameters

Tf experiments are not carefully planned the experimental points may
be so situated in the space of the variables that the estimates which can be
obtained for the parameters € are not only imprecise but also highly correlated.
Once the data are collected a statistical analysis, no matter how elaborate,
can do nothing to remedy this unfortunate situation. However, by selecting
a suitable experimental design in advance these shortcomings can often be
overcome,

The problem of designing experiments in non-linear situations has
received comparatively little attention. Some possible approaches have been
suggested by Box and Lucas [8], Chernoff [11], Elfving [16], Kiefer [18, 19],
Stone [23], and Wald [25]. In the next section of this paper we present a

Bayesian approach to the problem,
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Box and Lucas [8] proceed by attempting to choose D in such a manner
that the volume of the approximate confidence region for © is minimized,
cr, equivalently, under suitable assumptions, trying to choose D to minimize
the volume in the parameter space which contains a given percentage of the
posterior distribution, If the experimental errors are approximately Normally
distributed and the response relationship is approximately linear in the vicinity
of the least squares estimates ’g‘ then the volume of this region is proportional

to the reciprocal of the determinant A = | x*'x| where X = {xm} and

j"éf(g,g_u) )
X = ¢

ru ) 80 { vl

Unfortunately, since we do not know the values of :é: in advance,
we do not know the derivatives X, on which the design is to be based. In
most cases, however, some knowledge of the size of the ©'s will be available
and it was suggested [8] that preliminary guesses _e_o should be made, and that
the derivatives should be determined at these values 9_0 instead of f\Q. The
resulting determinant Ao = |X°' X°| is an explicit function of the settings of
the experimental variables §. It is therefore possible to find (perhaps analytic-
ally but, in any event, numerically) those values for ¢ which maiimize the
determinant a® .

At first sight it may seem strange that in order to use this scheme one
must initially have estimates of the parameters since, after all, it is the

purpose of the experiment to obtain such estimates. Actually, however, this

is merely an example of the fact that any experimental design uses the
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experimenter's beliefs about the situation being studied, It is thus efficient
depending on whether the experimenter turns out to be nearly right.

In general, the more one knows initially the better he can design experi-
ments. As has been pointed out by Box [3], if nothing is known about the
experimental situation then strictly speaking no experiment can be planned. Or,
as Daniel [14] has stated, "All experimental plans reflect what you know, what
you think you know but don't, what you don't know, and what you think you don't

know but do. "

3. A Criterion for Design

It is usually the case in the study of physical systems that experiments
can be performed sequentially; that is, information from previous experimental
results can be used in planning further experiments. If this procedure is adopted
all the available information about the parameters 6 after N experiments
have been performed is contained in the posterior distribution function pN( (] by ¥)s
and a careful analysis of the estimation situation involves a thorough study
of this function.

To decide at what values the variables should bé set in further experiments
we select those which will yield the most desirable posterior distribution,
or equivalently, will produce the most desirable modification of the present
posterior distribution, Ideally, barring purely technical difficulties, one would
display the various possible posterior distributions which could result from
different choices of the experimental conditions and let the experimenter select

that which he thought best.
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This general approach to planning experiments involves no restrictions
with regard to the distribution of errors, the form of the response relationship,
the nature of the prior distribution, or the definition of "best
posterior distribution” that can be considered. In many common situations,
however, actually plotting the posterior distribution for every combination of
experimental conditions for a multiparameter system would be virtually impossible.
Fortunately, to do this would often be unnecessary for by making a set of
plausible assumptions the posterior distribution could be completely described

by a few summary statistics.

4, Assumptions

We shall consider, specifically, the situation where information from
the previous N experiments is available in planning the N-l-lth and experi-
ments are planned one at a time. Such a procedure will usually be most econom-
ical when it can be adopted.

Suppose that a posterior distribution pN(g) has been calculated after
N observations have been obtained, and that at this stage -G—N are the maximum

likelihood estimates of 6 . Suppose that we are about to take a further

observation YN + whose



true value is given by a known function of the settings for the

k variables & .,

= f(8, £

"y = 1S Ena) (3)

We now make two assumptions:
(1) that the yu's are distributed Normally and independently
as
> ; S

L u=1, 2,000, NH  (4)
NP

p(yu) B

with mean n and common variance o?, and
(2) that for a region in the @ space sufficiently close to the

A
maximum likelihood estimates 0,
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If the observation YNal were actually available then Bayes'

formula would give for the posterior distribution of 6
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This expression is true for any prior distribution pN(g) but to

make further progress we need to be more specific about it.



The Principle of Precise Measurement

One difficulty associated with Bayes' theorem has been the question
of what to take for the prior distribution. In most experimental situations this
{s not as troublesome as it might seem. Consider two cases with regard to
the parameters © of the response relationship itself. (1) The prior distribution
is nearly constant over a region where the likelihood function has an appreciable
value and the prior distribution outside of this region does not become
sufficiently great so that its contribution is appreciable when combined with
the likelihood function; i.e., the likelihood function dominates the prior
distribution; and vice versa (2) where the prior distribution dominates the
likelihood function.

In the second case almost all of the information about © will come
from the prior distribution and very little, if any, will be coming from the data.
In most instances of this second kind there would be little motivation for
carrying out experiments since knowledge already available is so much more
precise than any that could be expected from the data. Consequently, in
experimental situations case (1) is the one that usually occurs.

Since the prior distribution is virtually constant over the range where

the likelthood is appreciable it is spoken of as being locally uniform. In this

case it is not necessary to know the exact mathematical form of the prior
distribution since it cancels out from both the numerator and denominator in
Bayes' formula. The posterior distribution is then very nearly proportional to

the likelihood. The principle of precise measurement [22] refers to this
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situation in which most of the information comes from the data and not the
prior distribution.

As Box and Tiao [9] have pointed out, our assumption that the prior
distribution is locally uniform is appropriate in those situations where, if we
were to compute a sensible confidence region for the parameters, then we
could state honestly that a priori any point in this region would have been
about as acceptable as any other, This serves to indicate that the assumption
of a locally uniform prior distribution is of rather general application since
a statement similar to the one above could be made in most experimental
situations.

Returning to Equation 11 and appealing to the principle of precise
measurement just dgscribed, we could regard the initial prior distribution as
being locally uniform. This is a particularly innocuous assumption in this
instance since certainly after a few observations have been taken the effect of

any moderate non-uniformity a priori would have become negligible,



wlls

To obtain the posterior distribution Py +1(_€1 |y_) by using Bayes'
- : th
formula, the posterior distribution at the N stage pN(g_ | y) can be

used as the prior distribution pN(‘g} for the N+1th stage.

5.  Obtaining pyl 8)

The probability density for the first N observations is

2.cr2 y (y “ )2

1 e (12)

P(_}_f_)’—p(yl cery V) T mm——
’ S ('\lZm‘)N

Using the linearity assumption (2) and Equation 7,

we have
- - - - - ' - . 3
Yoo, = s tE ) v, YB L8 0 (13)
The likelihood function L(6 | y) for the parameters @ can then be

written as
A (Ro-X (080} (R.-X.(8-8)} (14)
52 Ry=X(8-8y NNt

Lely) = il o,
(N 2ne)
where - ~ 2 <
" v~ HEpky)
£
rz & Ya" (“""‘N’ __g_z)
*rN ! f((—)N, _§_N }
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Now the likelihood (14) is maximized if and only if
Consequently,
5=2 (RR +(e 8, Cyt 8.}
- N = ~N
Lely) = —— (16)
(N2wo)

where CN-— NXN

Using Bayes' formula
e) L(6|
[ (@) Liely)de

But if po(0) is locally uniform as we have assumed

Lely)
() (8ly) =——— (18)
fL(er) e



13-

e"‘i‘éz VRN -3k (e-8y) Cyfe-D)
fuely) de = = [e de (19)
('\fz—; o)

Using the well-known integral

1 ]
— Ax (N Z:rrc)p
e T

fez 7 Tdx (20)
ial®
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friely) de =2 2 o) (21)

p——— T 4
(N Zmr)l\ ICN‘ 2
Hence, by substituting Equations 16 and 2l into 18, we obtain the
posterior distribution of & after N observations.

1

z e | (0-8.)" -
pN(_?_lz) R (22)
W~ 2mo)
This expression can be used as the prior distribution pN(_Q) for the I\T+ltr

6.  The Posterior Distribution py _H(gl ¥) stage.

The posterior distribution after N+l observations can, of
course, be obtained by writing N+l for N in Equation 22 However,
for our purposes we wish to express this distribution in terms of
the information available to the experimenter at stage N, the
contemplated levels EN H of the experimental variables, and the
observation YN e This can conveniently be done by deriving
(e lx) from pN(_@_) by a further application of Bayes' theorem

PN+
by substituting Equation 22 intc 1ll. Then
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We now employ a useful matrix result mentioned by Tocher [24],

(1 + ap)~' = I- A{1q+BA)" (30)

where A is a p X g matrix and B is a ¢ X p matrix. The advantage

of this formula is that where q is less than p the size of the matrix

that needs to be inverted is smaller on the right hand side than

on the left. In our particular case g =1 so that Iq + BA is

a scalar.

Letting

we obtain
: iy (31)

-1
Com = 1-On ZyalECx Zna

N+l
-] .
; G, _}i %'
- I N=N+ =N+  -! (32)
Ix' o Cox N
N+1 N N+1

] i .
a4 = 2{-1\7+1X1\1+1¢1\1r (33)

I+ XNHCN AN+

=1 tt (34)

"_.‘C -——--n-n‘--—-———
N 1+t§N+1

"
where t is a p x 1 vector GN -)EN-H "

It follows that
A -1 P -]
N T 2-‘-N+.‘ccN-’-‘4N+1351~J+3FNfr (35)
XN+ ONH N T AN U NN S N+l
N4 N EN#
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Thus we may write the posterior distribution after N+1 observations
A
entirely in terms of quantities Q_N and q\[ that are known before the

last observation is taken and quantities r and x associated with

N+1 =N+l
the choice of the final experiment
z
| IC +XN+1—-N+1|
l:)N-i-l(a ) P
(N2wo)
G & ) i
| S ~—N+er+1 . N5N+1’N+1 1
- 6-9 (C BEE 6
. zcrzi l+x e’ 1278y e j
+ICN--N+1 51\1+ﬁ\l AN+
(37)
This posterior distribution pN +1(g | y) is multinormal with
mean C-x =
& A N EnaNa
2) =0, + (38)
-~N+1 =N 14x Clx
N+1 N-=N+1
where e Ons1 is the maximum likelihood estimate at stage N+l and
dispersion matrix
-l
39
Cha = [CytEypX N+1] e

The expression for the dispersion matrix CN 41 doas not depend on YNH and

can be calculated exactly at stage N for any given set of contemplated



experimental conditions § N Since the posterior distribution is multinormal

+1°

this dispersion matrix contains all the information concerning the precision of
the estimates that will result from running a particular set of experimental

conditions £ On the basis of ()"'1\7[1_1_1 the experimenter can therefore choose

2N+1°

the best experimental conditions for the next run.

7. A Portmanteau Criterion

In practice even the calculation of the elements of the dispersion
matrix for a number of different possible experimental conditions may prove to
be too prodigious a task. If there were only three parameters, for example,
there would be three variances and three covariances that would have to be
calculated for each set of contemplated experimental conditions. The number
n of quantities to calculate increases rapidly as p the number of parameters
increases; in fact n = %(pz-i-p).

It is desirable in many situations to have some kind of overall criterion
that involves the calculation of only a single quantity; however, it is clear
that as soon as one tries to economize by using such a portmanteau criterion,
every possible need cannot be satisfied.

There will be investigations where there is particular interest in one
parameter but less interest in the remaining parameters, and in other circum-
stances there may be a special reason for wanting to minimize the correlation

between a certain pair of estimates. In such



situations one could proceed by calculating the variance and covariance
term which are of special interest in addition to the overall criterion. At an:
rate , if an overall criterion is adopted for sequentially planning
experiments, a facility should be provided for being able to look at

these other quantities if the experimenter so desires.

If one overall criterion must be chosen, in the absence of special
needs, it is reasonable to take for the next experiment those conditions
which give the maximum posterior density to the most probab_le values,

i.e., maximize the posterior density with respect to

both © and §-N+1 .

The posterior distribution after N+l observations will ve
H )

|CN+1| R CE ’e‘NH

Wz o)®

(6-0

e N+l

& ) (40)

The maximum probability density will be at the point §_=§N 4 whatever

the settings of éN 1

Bl
p, =max p,..(0|y) = —— (41)
g p e (NZw o)P

—

where ¢ is a positive constant. (The quantity pe is necessarily

e

i i i = A< N
positive if CN 4 18 positive definite.) Now CN 4= CntonTg

If we are at stage N, CN is fixed but x is a functicn 5@ £ d

EN+ =N
A

6

AN to maximize the determinant

so settings can be chosen for E’-N |
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This criterion of maximizing the determinant A has previously been
suggested in other situations and on other grounds (e.g., Box and Lucas (8],
Kiefer [ 18, 19], and Wald [25]). A number of alternatives for an overall
criterion are discussed by Kiefer [18] . Of these, the most important competitor
is perhaps the trace of the dispersion matrix which is to be minimized
(Elfving [16])s This criterion suffers from the disadvantage that it is not
independent of the manner in which the parameters € are scaled and we shall

not consider it further here.

Examination of the Portmanteau Criterion

The portmanteau criterion has some interesting implications which we

shall now discuss. To maximize the determinant A we can maximize

- ' 43

ZnA En‘CN"'«}EN—i-lEN«i-II (43)
= =l ¢ :

iyl |1 Gl xyy %'yl (=4)

-] '
=ilcy| +mlmcy xe x| (45)
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But at stage N we are faced with the choice of -§~N+1 with CN
-l
fixed, so we want to maximize 2n|I tCy Enn 2 N+1| .
Now if A is a latent root of a p x p matrix A so that
uwAzu'l (46)

thenl + \ is a latentroot of I + A since

u'(I+A) z u* + u'A = u'(1+\) (47)
Thus
[ 1+a] o (1+x,)
= + 4
1=l i (48)
an|14a| = f In(l+),) . (49)
izl

If the \'s are < 1,

3
i=1 izl i=1
tr 2 3
".."trA- "'"'2"%" ;t'r"s—@_" = s00e (5})

where tr A is the trace of A. If the \'s are sufficiently small

inl1+Al 2tr A (52)

Since the latent roots of CIGI iy R will be of order

_1_ & =1 ' T .
N? maximizing fnl1+ CN ->EN+12{-N+1[ is equivalent to maximizing
ir C e x' - tr x! Cdx (53)
N  =NH=N# -~ =N+ “N-N4L W
&l
and x' . % is a 1 x 1 matrix or scalar. Thus

= N+l "N =N+
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trxn © N+ ON ENal

-1
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p=1, P

pp %

= Cnxl?‘ + szx;z +eeetC xpz"l' Cllle){z +oeeC

X
p-1p
(54)

ij -1 th ik Zo Ju
where ¢ “and Z{C:ij }"'is the i,j  element of C and ,Lcijj =Cyp 1o,

N | af(e, _E,_u) of(e, gu)
c1j = L —, —
u=l 20 00,
_ i i o
8= -E?-N

and x, is the i-th element of x. .,

Therefore, to the degree of approximation employed, maximizing the

i. Sy ":'('lN'I’]. = (xl,xz,...,xi, ...,Xp).—

determinant A 1is equivalent to maximizing the quantity

-l
P ’px X

1502 222, PP, 2 12
CH 2 U F e TC X “+CH X Feas +C .
1 2 P 1X2 . p-1"p

The terms cﬁ' are proportional to the variances of the estimated parameters
31 at stage N, and c:1j (i # j) to the covariances.

If there is no correlation between the estimates it is clearly desirable
to make the x;'s as large as possible. Using the criterion of maximum & we

are essentially weighting the x; terms with the corresponding variances

V(’B\i), and we are thus giving most weight to those terms xiz which are

associated with the estimates 61 which are known least precisely.

To shed some light on the role of the weighting of the cross-product

terms consider the case in which there are just two parameters.
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Let

If c!? is positive (negative), i.e., the correlation between 3, and 33 is
positive (negative), then c;; is negative (positive). To maximize the cross-
product term c¢'? x,x, if c'? is negative the quantities x; and X, will be chosen
to be of different sign if possible. If c'? is positive, x; and x, will be
chosen to be of the same sign if possible. This means that if correlation exists
between 3, and 3?_ at stage N, the overall criterion we have adopted will tend

to pick out a set of conditions -E-'-N n which will cancel out this correlation.

8. Conclusions

Under the assumptions of

(a) Normality and independence of homoscedastic errors

(Equation 4)

{b) Approximate linearity near QN (Equation 5)

(c) Locally uniform prior distribution po(g_)
(1) The posterior distribution of 8 after N+l observations is multinormal and
is therefore completely described by the vector of least squares estimates
__@_N 4 and the dispersion matrix C’I:Il+1 .

(2) Information on how the precision of our estimates is improved is supplied

by the change in the dispersion matrix
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1
al e Cn Ena X On
e N o Do (55)
N e 1+x'  Cox
EN+ N EN4H

(3) If we are going to use the general design criterion of trying to ensure

the best posterior distribution, we can calculate all the elements in the disper=~
sion matrix (or alternatively the changes in these quantities from Equation 55)
for any give values -é-N 4
(4) If we are going to use the special overall design criterion of trying to
choose those conditions which yield the maximum posterior density for the
most probable values, we find those settings for EN +1 which maximize the

N+11‘
(5) Maximizing the determinant |C

determinant |C

N +1| is approximately equivalent to

maximizing the quadratic form

E\ i AN
i L Gov (6,0, xx,
i=l j=1
where
9£(8,E 0y 4y)
i B My B oS
8=y

This quadratic form can be regarded as a weighted sum of the squares and
cross~-products of the xixj terms. A large value of x; is desirable in increasing
the precision with which a particular parameter is estimated; and under certain

conditions if this overall criterion is used, most weight is given to those

quantities , associated with the parameters about which least is known.
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9. Example
To illustrate this method for sequential design discussed above we
apply it to a constructed example, A chemical reaction of the type
R — P+P (56)

is being studied and the true model is

n = f(g,g_) = &_@L_g.!_.. (57)

146,§,10,€;

where
n = the true rate of the chemical reaction

£, = partial pressure of reactant R

£, = partial pressure of preduct P

6, = adsorption equilibrium constant for reactant R
8, = adsorption equilibrium constant for product P
0, = effective reaction rate constant.

This model has been reported by Laible [20] to be applicable to a number of
catalytic reactions of the type R — P + P where the reactant R is one of
certain tertiary or long chain primary alcohols, the product P is an olefin,
and the product P, is water,

For realistic values for the parameters 6, whose values of course are
assumed unknown to the experimenter, the results found by Laible [20] for the
catalytic dehydration of n-hexyl alcohol at 550° F. are used, namely,

61 = 2-‘9 ez = 12- 2 93 =0, 69 (58)
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We further suppose that the region of operability is defined by those values
of & and &, for which

0 < ¢ 3

A

0 < g < 3

If the true situation, i.e., the situation with no experimental error, were
depicted as a contour diagram (See Figure 1) for n with £, as the abscissa and
£, as the ordinate, then it can be seen directly from Equation 57 that all constant

n contour lines are straight lines with the same intercept

-
a-----ea (59)

but different slopes b depending on the value of 7

0, , 0,
= el SES " 0
b 0, ( . 1) (60)

A contour line for a fixed value n s could, therefore, be represented by the

equation
1 91 93
= am— 4 = (== ] 6l
S 0; 6. (ﬂo = (6l

A contour line for a high value m, will have a small slope b.

To construct an observation y for a fixed pair of values £ and § a
random Normal deviate with standard deviation = 0,01 was added to the true
value m obtained from Equation 57.

Tt was supposed that initially a 2% factorial design was performed

with the following results:
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3 €2 y

1 1 0.126
2 1 0. 219
1 2 0. 076
2 2 0.126

Whence applying the method of non-linear least squares [21] to these data,
we obtain

9, = 10,39 0, = 48,83 0, = 0,74 (62)

We are now in a position to select the settings of the levels of £, and &,
for the fifth experiment. In accordance with the criterion we are using we

choose those levels which maximize the determinant
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(63)

where each summation goes from u=l to u =5 and where

9£(8,§ 5) "
%e*| “H | ¥* evaluated at 8 = 8, the current least squares
i
4
values given in Equation 62 The quantities ¢, = ? X, X, have
ij et iu ju

fixed and known values.
We suppose that the experimenter wants values for the best

settings of £; and £, to the nearest tenth. In this case it is feasible

to calculate the value of A 5 at each point of the 31 x 31 grid for &, and

£,, this computation being easily programmed for a digital computer. A
print-out of this kind which can also be set up to produce the whole or

selected parts of the dispersion matrix would normally be presented to

the experimenter for study after each run. In this case we have assumed

that the conditions which give the maximum value for the determinant are

selected.
The maximum value for the determinant /_55 occurs at £; = 0.1 and

£, = 0.0, The fifth experiment was "run" with these setlings and the

result was Yg = 0. 186, Fitting the first five observations yields

B2 &W 8, = 15,19 AR
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(Upon comparing these estimates to those obtained after four observations,
we notice that both 3, and ﬁéz are much closer to their true values and
33 is now slightly farther away from its true value.)

With these current values for §_ and N = 5 we can maximize & 6
with respect to the settings of £, and §, for the sixth experiment. The
computer print-out after the fifth experiment is summarized in Fig. 2
The maximum determinant A % odcurs now at £, = 3.0 and §,=0,0.
The sixth experiment was "run" there, Ve was obtained, new estimates
31 and 82 were obtained, and so on. The results from thirteen cycles
of this kind are summarized in Table l.
Discussion
(1) The example has demonstrated the feasibility éf. such a scheme for
sequentially designing experiments. In summary, at stage N the
experimenter would in general supply the computer with (a) the model,
(b) the data, and (c) the current least squares estimates for the parameters
and the computer would produce (4 the new least squares estimates,
(b) the best conditions for the next experiment, (c) information on the
nature of the relationship between the determinant & and the conditions

3

Enn in the neighborhood of the maximum, and perhaps (d) additional

information concerning elements in the dispersion matrix corresponding

to particular variances and covariances that are of special interest.
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Table 1 Results from Sequential Design Example

Experiment

N__Efgl_mm_wmgi &2 y 8, N 5 83 .
1 1.0 1.0 0. 126
2 2.0 1.0 0,219
3 1.6 20 0,076
4 2.0 2.0 0.126 10. 39 48, 83 0,74
5 0. 1 0.0 C, 186 3.11 15,19 0.79
6 3.0 0.0 0, 606 3. 96 15,32 0. 66
7 0,2 0,0 0.268 3. 61 14,00 0. 66
8 3.0 0.0 0,614 3. 56 13.96 0. 67
9 0.3 0.0 0.318 3.32 13,04 0. 67
10 30 . D8 0.298 3,33 13, 48 0. 67
il 3.0, bio 0, 509 3,74 13.71 0. 63
12 G2 6.0 0. 247 3. 58 13,15 0. 63
13 3.0 0.8 0,319 3,57 12,1 0. 63

(2) We notice that the experimental points from the fifth onwards are
all contained in three distinct regions of the factor space. Let us
designate these regions as A, B, and C where

A is the region in the neighborhood of &, = 0.2 and £; = 0.0

S R " " £, =3,0" £:=0.0

egn = & s = “Ei=HhE" g =08
These sites, A, B, and C are shown in Figure 1. The experimental
points in turn fall into the regions

ABABACBAC



Since there are three parameters we w uld expect that there would

be at least three sites for observation points and, furthermore, an
optimal design might require a different number of points at each site,
as in the case above.

{3) Once again, as is true in most situations in which a maximum

is being sought (e, g., in determining maximum yield conditions

by using response surface methods or,

in finding the maximum likelihood estimates), it is useful to determine
not only the point in the operability region for which the value of the
determinant is maximized but also the nature of the dependence of the
determinant on the variables § in the neighborhood of this maximum.

A print-out of the type we are using (Figure 2) indicates far
more than the point at which the determinant is maximized and enables
the experimenter to use informed judgment in selecting his actual runs;
for instance, he might find that the determinant fell off very rapidly in
the direction of the variable £, indicating that the control of this variable
is of critical importance relative to the others. Information of this kind
can be of considerable value to the experimenter,

{4) The example further illusirates the fundamental difference between
the problem in which the obiect is in estimating the response n and
the problem in which the object is to estimate parameters 6. After four

A A
experiments, for example, although the parameter estimates 0, and 6,
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are widely discrepant from the true values, nevertheless the estimates for
n that are produced in the region of the experimental design are in close
agreement with the true values,

The point that is illustrated here is compensating nature of the errors
in 6; and ’33. Although both estimates are much greater than their corresponding
true values the errors are such that when these estimated values are substituted
into Equation 57 in place of @, and 6, the results in terms of estimated
values of n over the region in which the data have been taken are in close
agreement with the true values. Such correlation among the estimates is
common in models such as Equation 57; in particular, this correlation is
characteristic of estimates of parameters in catalytic reaction kinetics since

the models are often of this form,
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Figure 1. Contour diagram of N vs. £€; and £ for the
model N = 8098,/ (1461614026 >)



Figure 2 Condensation of Computer Print-Out of 31 X 31
Crid of Determinant feg X 1010 a5 a Function of

€1 and €2
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2.0 b 5 5 5 5 5 6
1.5 4 5 5 5 5 6 8
1.0 4 5 5 5 8 15 27
0.5 b 5 T 22 57 112 182

0 4 389 1155 1737 2154% 2460 2693

0O 0.5 1.0 1.5 2.0 2.5 3.0

€1



